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We show how the ECO method can be applied to exhaustively generate someclasses of permutations. A previous
work initiating this technique and motivating our research was published in Acta Informatica, 2004, by S. Bacchelli,
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1 Introduction
There is a significant literature on the exhaustive generation of permutations, see for instance (11; 15; 17;
24; 25) and (21) for a survey. More recently, great interest was given to the generation of particular classes
of permutations, see for example (3; 4; 5; 6; 9; 10; 18; 27) andthe references therein.

In this paper we show how the ECO method can be applied to exhaustively generate unrestricted per-
mutations, Bell permutations, involutions, fixed point free involutions and derangements. The obtained
algorithms are new, run in constant amortized time and are easy to implement and to understand. Actually
there already exist, more or lessad hoc, efficient generating algorithms for these classes of permutations.
For example, unrestricted permutations are generated looplessly in (11), Bell permutations by a CAT al-
gorithm in (18), involutions looplessly in (27), derangements are generated in Gray code order by a CAT
algorithm in (6). Here we emphasize a general unified ECO method based approach.

This note is the extended form of its preliminary conferenceversion (26).

ECO operators and rules
We just restate the definition of anECO operatoras it is formalized in (2; 12). LetO be a class of
combinatorial objects andOn the subclass of objects of sizen. An operatorϑ on the classO is a family
of functions (one for eachn) ϑ : On → 2On+1 ∪ 2On+2 with 2On being the power set ofOn. If the
operatorϑ satisfies the following conditions:

1. if x1, x2 ∈ O, andx1 6= x2, thenϑ(x1) ∩ ϑ(x2) = ∅,

2. for eachy ∈ On, n ≥ 1, there exists a uniquex ∈ On−1 ∪ On−2 such thaty ∈ ϑ(x),
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then{ϑ(x) ∩ On}x∈On−1∪On−2
is a partition ofOn, n ≥ 1, andϑ is called an ECO operator.

In addition, if

3. for eachx ∈ On andy ∈ ϑ(x) one can computey from x, and conversely, in constant time and
constant size extra-space,

then we callϑ uniform. So, uniformity has an algorithmic meaning.
An ECO (or succession) rulecorresponding to an ECO operator is a formal system consisting of a root

e0 and a set ofproductionsof the form

(k)
1
 (e1(k))(e2(k)) . . . ((ej)(k))
2
 (ej+1(k))(ej+2(k)) . . . ((ek)(k))

wheree0 and eachei(k), 1 ≤ i ≤ k, are integers. The right side of these productions are sequences of
parenthesed integers.

An ECO rule explains how, to an objectx ∈ On with card(ϑ(x)) = k, the operatorϑ associates itsk
successorsy1, y2, . . . , yj ∈ On+1, yj+1, yj+2, . . . , yk ∈ On+2 with card(ϑ(yi)) = ei(k). Note that in
productions above the size of objects does not occur explicitly, and when each object of sizen has only
successors of sizen + 1, then these productions can be expressed simply

(k)  (e1(k))(e2(k)) . . . ((ek)(k)).

Permutations
Let Sn denote the set of all length-n permutations and for aπ ∈ Sn we denote byπ the permutation
in Sn+1 such thatπ(i) = π(i) for all i, 1 ≤ i ≤ n, andπ(n + 1) = n + 1. 〈j, k〉 is the transposition
of i andj, that is the permutationπ of appropriate length withπ(i) = i for all i, exceptπ(j) = k and
π(k) = j. For two permutationsπ, σ ∈ Sn, π · σ denotes their product, i.e., the permutation inSn with
(π · σ)(i) = π(σ(i)) for all i. For example, ifπ, σ ∈ S4 with π = 23 1 4 andσ = 34 1 2 ∈ S4, then
π · σ = 14 2 3.

Fact 1 stated below gives a recursive construction forSn. It is based on the ECO operator

ϑ : Sn → 2Sn+1 ,

π
ϑ

7−→ {π · 〈i, n + 1〉 | 1 ≤ i ≤ n} ∪ {π}.

The first three levels of this recursive construction are depicted in Figure 1(a). For instance,ϑ(1) =
{2 1, 1 2} = S2 andϑ(2 1) = {3 1 2, 2 3 1, 2 1 3} ⊂ S3. The ECO rule corresponding to this ECO
operator is (see the first row of Table 1).

root : (2)
rule : (k)  (k + 1)k,

which means that:

• the root permutation, i.e. the length-1 permutation, has two successors, and
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• if a permutation hask successors, then each of them has in turnk +1 successors, that is, eachei(k)
equalsk + 1.

Fact 1 S1 = {1}. If π ∈ St, t ≥ 1, then

• for anyi ∈ {1, 2, . . . , t} the permutationπ · 〈i, t + 1〉 is in St+1,

• the permutationπ is in St+1.

Moreover, any permutation inSt, t ≥ 2, can be uniquely obtained from a permutation inSt−1 by one of
the two transformations above.

The algorithmic implementation of this construction is given by the recursive procedure in Algorithm 1.
Note that, if in this algorithm the last recursive call ofgen Perm(t + 1) is removed, then it produces
1-cycles, that is, permutations consisting of a single cycle. In this case, the first levels of the obtained
generating tree are presented in Figure 1(b), and this tree is the restriction to1–cycles of the generating
tree for unrestricted permutations in Figure 1(a).

Algorithm 1 Algorithm producing exhaustively length-n permutations.n andπ are both global variables
and initiallyπ is 1 2 3 . . . n ∈ Sn. The main call isgen Perm(1) and the statementπ := π · 〈i, t + 1〉
after each recursive call restores the value ofπ before this call.

procedure gen Perm(t)
local i;
if t = n then Print(π);
else for i from 1 to t do

π := π · 〈i, t + 1〉;
gen Perm(t + 1);
π := π · 〈i, t + 1〉;

end do
gen Perm(t + 1);

end if
end procedure.

In the remainder of this paper we will give similar ECO-basedrecursive constructions together with
their algorithmic implementations for Bell permutations,involutions, pure involutions and derangements.
As for unrestricted permutations above, the computation tree for each obtained algorithm coincides with
the induced tree of the corresponding ECO operator.

2 Bell permutations
A cycleC in a permutationπ ∈ Sn is a sequenceC = (x0x1 . . . xj−1) such thatxi+1 = π(xi) for all i,
0 ≤ i ≤ j − 1, where the subscripti is taken moduloj. Obviously, the cycle(xixi+1 . . . xj−1x0x1 . . . xi−1)
is equivalent to the cycleC and we choose to represent the cycles with their smallest element last. Any
permutation is a product of disjoint cycles and thestandard cycle representationof a permutation is ob-
tained by imposing that cycles be written in increasing order of their smallest element (that is, their last
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(b) 1-cycles

Fig. 1: The first levels of the generating tree for permutations and1–cycles.

element). For example, the standard cycle representation of 4 2 5 1 7 6 3 ∈ S7 is (4 1)(2)( 5 7 3)(6). As
an aside independent of the rest of this article, letπ′ be the permutation inSn obtained after erasing the
parentheses in the standard cycle representation ofπ ∈ Sn. π can uniquely be recovered fromπ′ and
the transformationπ 7→ π′ is a bijection fromSn to itself. This map is essentially thetransformation
fondamentaleof (14, Proposition 1.3.1), see also (23, pp. 17).

We now consider the setBn of permutations inSn where each cycle is a decreasing sequence of inte-
gers.Bn is in bijection with the set of all partitions of{1, 2, . . . n}: each cycle inπ ∈ Bn represents a
block of the partition. For instance the partition corresponding to4 2 7 1 3 6 5 ∈ B7 is{4, 1}{2}{7, 5, 3}{6}.
Thus,Bn is counted by the Bell numbers (sequence A000110 in (22)) andwe call it the set ofBell per-
mutations. See also (16) for an alternative definition of Bell permutations in terms of pattern avoidance.

For π ∈ Sn, a tail in π ∈ Sn is an integeri such thatπ(i) is minimal in its cycle, and letTπ denote
the set of tails ofπ.

Lemma 1 B1 = {1} and the set of tails of the permutation1 is T1 = {1}. If π ∈ Bt, t ≥ 1, and its set
of tails isTπ, then

(i) for any i ∈ Tπ, the permutationπ · 〈i, t + 1〉 is in Bt+1 and its set of tails isTπ,

(ii) the permutationπ is in Bt+1 and its set of tails isTπ ∪ {t + 1}.

Moreover, any permutation inBt, t ≥ 2, can be uniquely obtained from a permutation inBt−1 by one of
the two transformations above.

Proof: The proof is based on the following observations. Ifπ ∈ Bt, t ≥ 1, andi is a tail ofπ, thenπ(i)
is the maximal element in the cycle ofi andπ · 〈i, t + 1〉 is the permutation obtained fromπ by inserting
t + 1 betweeni andπ(i) in this cycle. So,π · 〈i, t + 1〉 ∈ Bt+1 and the set of tails ofπ · 〈i, t + 1〉 equals
that ofπ. On the other hand,π is a lengtht + 1 Bell permutation wheret + 1 is a new single element
cycle. ✷
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Fig. 2: The first four levels of the generating tree for Bell permutations. It is simply the restriction to Bell permuta-
tions of the generating tree for unrestricted permutations in Figure 1(a). The tails of each permutation are underlined.

The previous recursive construction is embodied in the generating procedure in Algorithm 2 and the
induced generating tree is the restriction to Bell permutations of the generating tree for unrestricted per-
mutations induced by Fact 1. The first levels of this tree are depicted in Figure 2.

Now we show how the construction in Lemma 1 is related to the ECO rule for Bell permutations in
Table 1. Suppose thatπ is a Bell permutation withc cycles (and so,c = card(Tπ)). π producesc + 1
permutations:c by point (i) and one by point (ii). Let consider now a permutation with k successors, and
so withk − 1 cycles. It produces

• by point (i): k − 1 Bell permutations withk − 1 cycles each, and so withk successors;

• by point (ii): one Bell permutation withk cycles, and so withk + 1 successors.

Algorithm 2 Procedure generating length-n Bell permutations. Initiallyπ = 12 3 . . . n ∈ Sn, T = {1}
and the main call isgen Bell(1).

procedure gen Bell(t)
local i;
if t = n then Print(π);
else for i ∈ T do

π := π · 〈i, t + 1〉; gen Bell(t + 1); π := π · 〈i, t + 1〉;
end do
T := T ∪ {t + 1}; gen Bell(t + 1); T := T \ {t + 1};

end if
end procedure.
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3 Involutions
An involution is a permutationπ whereπ · π equals the identity permutation, and letIn ⊆ Sn denote
the set of length-n involutions. Here we give two recursive constructions forIn: by fixed pointsandby
recurrence.

3.1 Involution by fixed points

Lemma 2 I1 = {1} and the set of fixed points of the permutation1 is F1 = {1}. If π ∈ It, t ≥ 1, and
Fπ is the set of its fixed points, then

(i) for any i ∈ Fπ, the permutationπ · 〈i, t + 1〉 is in It+1 and its set of fixed points isFπ \ {i},

(ii) the permutationπ is in It+1 and its set of fixed points isFπ ∪ {t + 1}.

Moreover, any permutation inIt, t ≥ 2, can be uniquely obtained from a permutation inIt−1 by one of
the two transformations above.

Proof: Clearly, every permutation obtained from aπ ∈ It, t ≥ 1, by each of the two transformations
above is an involution. Conversely, for anyτ ∈ In, n ≥ 2, there exists a uniqueπ ∈ In−1 such thatτ is
obtained fromπ by one of these transformations. Indeed, ifn is not a fixed point ofτ , then leti = τ(n)
andπ be the involution defined byπ(j) = τ(j) for all j, 1 ≤ j ≤ n − 1, exceptπ(i) = i; and so
τ = π · 〈i, n〉. If n is a fixed point ofτ , thenπ is simply defined byπ(j) = τ(j) for all j, 1 ≤ j ≤ n− 1,
and in this caseτ = π. ✷

The recursive construction in the previous lemma is implemented in Algorithm 3 and the first levels of
the induced generating tree are depicted in Figure 3. Now we show how this lemma mirrors the first ECO
rule for involutions in Table 1.

1

2 1

2 1 3

2 1 4 3 2 1 3 4

1 2

3 2 1

3 4 1 2 3 2 1 4

1 3 2

4 3 2 1 1 3 2 4

1 2 3

4 2 3 1 1 4 3 2 1 2 4 3 1 2 3 4

Fig. 3: The first four levels of the generating tree for involutions by fixed points.

Let π be an involution withf fixed points. Then it producesf + 1 involutions:f by point (i) and one
by point (ii). Conversely, ifπ hask successors, then it hasf = k − 1 fixed points and produces
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• by point (i): k − 1 involutions withf − 1 fixed points each, and so withf = k − 1 successors

• by point (ii): one involutions withf + 1 fixed points, and so withf + 2 = k + 1 successors.

Algorithm 3 Procedure generating length-n involutions by fixed points. Initiallyπ is 1 2 3 . . . n ∈ Sn,
F = {1} and the main call isgen Inv(1).

procedure gen Inv(t)
local i;
if t = n then Print(π);
else for i ∈ F do

π := π · 〈i, t + 1〉; F := F \ {i};
gen Inv(t + 1);
F := F ∪ {i}; π := π · 〈i, t + 1〉;

end do
F := F ∪ {t + 1}; gen Inv(t + 1); F := F \ {t + 1};

end if
end procedure.

3.2 Involution by recurrence
Here we describe an alternative definition forIn involving a jumpingsuccession rule, that is, the succes-
sors of an length-n involution are involutions of lengthn + 1 and lengthn + 2. Forπ ∈ Sn, π denotes
the permutation(π) ∈ Sn+2.

Lemma 3 Let defineI0 = {ǫ}, with ǫ being the ‘length-zero’ permutation. Ifπ ∈ It, t ≥ 0, then

(i) π is in It+1,

(ii) π · 〈t + 1, t + 2〉 is in It+2,

(iii) for all i ∈ {1, 2, . . . t}, π · σ is in It+2 where

• σ = 〈i, t + 2〉 if i is a fixed point ofπ, and

• σ = 〈i, t + 1〉 · 〈π(i), t + 2〉 · 〈t + 1, t + 2〉 elsewhere.

Moreover, any permutation inIt, t ≥ 1, can be uniquely obtained from a permutation inIt−1 or in It−2

by one of these transformations.

Proof: It is easy to check that every permutation obtained from aπ ∈ It, t ≥ 0, by each of the three
transformations above is an involution. Now we show that foreachτ ∈ In, n ≥ 1, there exists a unique
involutionπ of lengthn − 1 or n − 2 such thatτ is obtained fromπ by one of these transformations. An
involution τ ∈ In can be in one of the three following cases:

(1) n is fixed point ofτ ,
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(2) n ≥ 2, andτ(n) = n − 1 (and soτ(n − 1) = n), or

(3) n ≥ 2, n is not a fixed point ofτ andτ(n) 6= n − 1.

In case (1)π ∈ In−1 is defined byπ(j) = τ(j) for all j, 1 ≤ j ≤ n− 1, andτ = π. Similarly, in case (2)
π ∈ In−2 is defined byπ(j) = τ(j) for all j, 1 ≤ j ≤ n − 2, andτ = π · 〈n − 1, n〉.

Let nowτ ∈ In as in case (3). Whenn − 1 is a fixed point ofτ let i = τ−1(n) = τ(n) and define the
length-(n − 2) permutationπ by π(j) = τ(j) for all j, 1 ≤ j ≤ n − 2, exceptπ(i) = i; in this caseπ is
an involution,i is a fixed point ofπ andτ = π · 〈i, n〉. Soτ is obtained fromπ by the first transformation
of the last point of the present lemma.

Whenn − 1 is not a fixed point ofτ , then define the length-(n − 2) permutationπ as

π(j) =







τ(j) if 1 ≤ j ≤ n − 2, j 6= i, j 6= k

i if j = k

k if j = i

wherei = τ(n − 1) andk = τ(n). Clearly, π is an involution,i is not a fixed point ofπ andτ =
π · 〈i, n − 1〉 · 〈π(i), n〉 · 〈n − 1, n〉; andτ is obtained fromπ by the second transformation of the last
point of the this lemma. ✷

Below we show that the lemma above is related to the second ECOrule for involutions in Table 1. Its
algorithmic counterpart is given by Algorithm 4 and in Figure 4 are depicted the first levels of the induced
generating tree.

Algorithm 4 Procedure generating length-n involutions by recurrence. Initiallyπ = 12 3 . . . n and the
main call isgen Inv R(0).

procedure gen Inv R(t)
local i,σ;
if t = n then Print(π);
else gen Inv R(t + 1);

if t ≤ n − 2 then
π := π · 〈t + 1, t + 2〉; gen Inv R(t + 2); π := π · 〈t + 1, t + 2〉;
for i from 1 to t do

if π[i] = i then σ := 〈i, t + 2〉;
else σ := 〈i, t + 1〉 · 〈π[i], t + 2〉 · 〈t + 1, t + 2〉;
end if
π := π · σ; gen Inv R(t + 2); π := π · σ−1;

end do
end if

end if
end procedure.

If π is an involution of lengtht, then it hast + 2 successors: one of lengtht + 1 by point (i), andt + 1
of lengtht + 2 by point (ii) and (iii). Conversely, ifπ hask successors (and so lengtht = k − 2), then it
produces
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Fig. 4: The first five levels of the generating tree for involutions by recurrence.

• by point (i): one involution of lengtht + 1, and so witht + 3 = k + 1 successors

• by point (ii) and (iii): k − 1 involutions of lengtht + 2, and so witht + 4 = k + 2 successors each.

3.3 Pure involutions
A pure involution(or fixed point free involution) is an involution with no fixed point, that is, with no entries
i with π(i) = i. So, a pure involution is a permutation which is both an involution and a derangement and
let Pn denote the set of length-n pure involutions. ClearlyPn = ∅ for any oddn. The next lemma is the
restriction of Lemma 3 to involutions where fixed points are disallowed. Its algorithmic counterpart is the
generating procedure given in Algorithm 5 and its corresponding ECO rule is given in Table 1.

Algorithm 5 Procedure generating length-n pure involution. Initiallyπ = 12 3 . . . n and the main call is
gen P Inv(0).

procedure gen P Inv(t)
local i,σ;
if t = n then Print(π);
else π := π · 〈t + 1, t + 2〉; gen P Inv(t + 2); π := π · 〈t + 1, t + 2〉;

for i from 1 to t do
σ := 〈i, t + 1〉 · 〈π[i], t + 2〉 · 〈t + 1, t + 2〉;
π := π · σ; gen P Inv(t + 2); π := π · σ−1;

end do
end if
end procedure.
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Lemma 4 LetP0 = {ǫ}. If π ∈ Pt, t ≥ 0, then

• π · 〈t + 1, t + 2〉 is in Pt+2;

• for all i ∈ {1, 2, . . . t}, π · σ is in Pt+2 whereσ = 〈i, t + 1〉 · 〈π(i), t + 2〉 · 〈t + 1, t + 2〉.

Moreover, any permutation inPt, with t even,t ≥ 2, can be uniquely obtained from a permutation in
Pt−2 by one of the transformations above.

4 Derangements
A derangementis a permutation with no fixed points; letDn denote the set of derangements of length
n. The lemma below gives a recursive definition forDn; see Table 1 for its corresponding ECO rule and
Figure 5 for the induced generating tree. Its algorithmic version is given by Algorithm 6.

Algorithm 6 Procedure generating the set of all length-n derangements.π is initialized by1 2 3 . . . n,
and the main call isgen Der(0).

procedure gen Der(t)
local i,σ;
if t = n then Print(π);
else for i from 1 to t do

π := π · 〈i, t + 1〉; gen Der(t + 1); π := π · 〈i, t + 1〉;
end do
if t ≤ n − 2 then

π := π · 〈t + 1, t + 2〉; gen Der(t + 2); π := π · 〈t + 1, t + 2〉;
for i from 1 to t do

σ := 〈i, t + 1〉 · 〈π[i], t + 2〉 · 〈t + 1, t + 2〉;
π := π · σ; gen Der(t + 2); π := π · σ−1;

end do
end if

end if
end procedure.

Lemma 5 D0 = {ǫ}. If π ∈ Dt, t ≥ 0, then

(i) for all i ∈ {1, 2, . . . t}, π · 〈i, t + 1〉 is in Dt+1,

(ii) π · 〈t + 1, t + 2〉 is in Dt+2,

(iii) for all i ∈ {1, 2, . . . t}, π · 〈i, t + 1〉 · 〈π(i), t + 2〉 · 〈t + 1, t + 2〉 is in Dt+2.

Moreover, any permutation inDn, n ≥ 2, can be uniquely obtained from a permutation inDn−1 or Dn−2

by one of the three transformations above.
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ǫ

21

312

4123 3421 3142

231

4312 2413 2341 2143 3412 4321

Fig. 5: The first five levels (the second level is empty) of the generating tree forderangements.

Proof: It is routine to check that for aπ ∈ Dt, t ≥ 0, the permutations obtained fromπ by applying each
of the three transformations above is a derangement.

Conversely, for everyτ ∈ Dn, n ≥ 2, we define a permutationπ of lengthn − 1 or n − 2 such that
τ is uniquely obtained fromπ by one of these transformations. For aτ ∈ Dn one of the following cases
occurs:

(1) n belongs to a cycle ofτ of length at least three, or

(2) n belongs to a length-2 cycle ofτ andτ(n) = n − 1 (and so,τ(n − 1) = n), or

(3) n belongs to a length-2 cycle ofτ andτ(n) 6= n − 1.

In case (1) , leti = τ−1(n) and defineπ as the length-(n − 1) permutation withπ(j) = τ(j) for all j,
1 ≤ j ≤ n − 1, exceptπ(i) = τ(n) 6= i. Clearlyπ ∈ Dn−1, τ = π · 〈i, n〉 andn belongs to a cycle ofτ
of length at least three. In this caseτ is uniquely obtained from aπ ∈ Dn−1 and ai ∈ {1, 2, . . . , n − 1}.

In case (2) the length-(n − 2) permutationπ defined byπ(j) = τ(j) for all j, 1 ≤ j ≤ n − 2 is in
Dn−2 andπ · 〈n − 1, n〉 = τ . In this caseτ is uniquely obtained from aπ ∈ Dn−2.

Finally, letτ be as in case (3) above and define the length-(n − 2) permutationπ by

π(j) =







τ(j) if 1 ≤ j ≤ n − 2, j 6= i, k

i if j = k

τ(n − 1) if j = i

wherei = τ(n) = τ−1(n) andk = τ−1(n − 1). In other words,π is the permutation obtained from
τ by deleting the length-2 cycle containingn and then replacing(n − 1) in its cycle byi = τ(n), thus
π ∈ Dn−2. For exampleπ = 21 corresponds toτ = 43 2 1 and toτ = 34 1 2. π andτ are related by
τ = π · 〈π−1(i), n − 1〉 · 〈i, n〉 · 〈n − 1, n〉 and so any permutation inDn satisfying case (3) above is
uniquely obtained from aπ ∈ Dn−2 and ani ∈ {1, 2, . . . , n − 2}. If for a givenπ as in the previous
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object ECO rule k

Permutations
root : (2)
rule : (k)  (k + 1)k k − 1 = the length

Bell permutations
(2)
(k)  (k)k−1(k + 1)

k − 1 = ♯ of cycles

Involutions
(2)
(k)  (k − 1)k−1(k + 1)

k − 1 = ♯ of fixed points

(2)

(k)
1
 (k + 1)
2
 (k + 2)k−1

k − 2 = the length

Pure Involutions
(1)
(k)  (k + 2)k k − 1 = the length

Derangements

(1)

(k)
1
 (k + 2)

k−1

2

2
 (k + 4)

k+1

2

k−1

2
= the length

Bessel permutations
(2)
(2)  (2)(3)
(k)  (k − 1)(k)k−2(k + 1), if k > 2

k − 1 = the length

Tab. 1: ECO systems for some classes of restricted permutations together with the meaning of the parameterk.

expression forτ , i covers{1, 2, . . . , n − 2} so doesπ−1(i), and replacingπ−1(i) by i this expression
becomesτ = π · 〈i, n − 1〉 · 〈π(i), n〉 · 〈n − 1, n〉, which completes the proof. ✷

Now we show that the construction in lemma above is related tothe ECO rule for derangements in
Table 1. Letπ be a derangement of lengtht. It produces2t + 1 successors:t derangements of length
t + 1 by point (i), andt + 1 derangements of lengtht + 2 by point (ii) and (iii). Then,t is related tok, the
number of successors ofπ, by k = 2t + 1. Suppose now thatπ hask successors. Its length ist = k−1

2

and it produces

• by point (i): t = k−1

2
derangements, each of them of lengtht + 1 and so with2(t + 1) + 1 = k + 2

successors;

• by point (ii) and (iii): t + 1 = k+1

2
derangements, each of them of lengtht + 2 and so with

2(t + 2) + 1 = k + 4 successors.

5 Complexity
If a generating algorithm produces combinatorial objects so that only a constant amount of computation
is done between successive objects, in an amortized sense, then one says that it runs inconstant amortized
time(CAT). Now we explain why the generating algorithms presented here are CAT.

A recursive generating algorithm satisfying the followingproperties is a CAT algorithm, see for instance
(20): The amount of computation in each call is proportionalto the number of recursive calls produced
by it, and each call
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1. is a terminal call and produces a combinatorial object, or

2. produces at least two recursive calls, or

3. produces only one recursive call which in turn has either property 1 or 2.

All the algorithms presented in this paper are CAT. Indeed, if sets (of tails or of fixed points) are rep-
resented by linked lists, then in each generating procedurethe amount of computation in each call is
proportional to the number of recursive calls produced. In addition, except for the initial call of the proce-
dure generating derangements (that is,gen Der(0)), all the algorithms satisfy the three CAT properties
and that is a direct consequence of the shape and uniformity of the corresponding ECO rules and operators.

6 Concluding remarks
The techniques presented here were anticipated in (1; 7). Nevertheless, the previous approaches used
strings of integers for encoding the objects and it was necessary to have another algorithm to retrieve the
object. Also, the application of our method to other classesof permutations such as Bessel permutations
(13; 8) (see the last row of Table 1 for their ECO system), or generally, to other classes of combinatorial
objects, remains an interesting problem.
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