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In a recent paper we gave a counterexample to a longstandifjgature concerning the characterization of regular
languages of level 2 in the Straubing-Thérien concatendtierarchy of star-free languages. In that paper a new
upper bound for the corresponding pseudovariety of moneasimplicitly given. In this paper we show that it is
decidable whether a given monoid belongs to the new uppendolMVe also prove that this new upper bound is
incomparable with the previous upper bound.
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1 Introduction

A well-known result due to SchUtzenberg[ZZ] gives a agtit characterization of star-free regular
languages. This prompted both Eilenberg’s identificatibthe combinatorial properties of classes of
regular language$][8], leading to a natural correspondeetveeen varieties of languages (excluding the
empty word,.e. +-languages, or possibly includingiite. x-languages) and pseudovarieties (respectively
of semigroups or monoids), and Brzozowski's hierarchiaaistruction of star-free--languages. As
acknowledged by Eilenberﬂ [8, Chapter IX], the reason ttkdi +-languages was to avoid technical
difficulties with the empty word, but these were later ovenedy ThérienlEQ] and StraubinElZS], who
also established a simple syntactic connection betweeBrthazowski hierarchy and what came to be
known as the Straubing-Thérien hierarchy. The hieraschvere later refined by Pi|ﬂ|14] by introducing
intermediate (half) levels whose syntactic characteomadepends on a stable quasiorder rather than just
a congruence.

Starting from the trivial variety of languages, the levelste refined Straubing-Thérien hierarchy are
defined inductively by alternately taking polynomial andoBxan closures. While it is decidable whether
a given regular language belongs to each of the levels 0,11&hd 3/2, decidability remains an open
problem for level 2 or higher. Via Eilenberg’s corresponckgrfor the clas$’; of all languages from the
second level, the problem translates to decidability of tmership of an arbitrary given finite monoid in
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the corresponding pseudovariety of monoiis This is considered one of the main longstanding open
problems in the algebraic theory of regular Ianguagé$@]).

Pin and StraubindES] showed that the languages from thenselevel), over a finite alphabeti
are the finite Boolean combinations of languages of the fdfja; Ajas - - - ap A}, where theg;’s are
letters and thed,’s are subsets ofl. Work of several authors led to the conjecture that the éyual
Vo = By @ S holds [18,[1p[26] 27, 28], whe® is the Mal'cev product[[13, Section 6B; is the
pseudovariety of finite semigroups corresponding totheariety of languages of dot-depth one, &id
is the pseudovariety of finite semilattices. Indeed, Sﬁw@,] established that the classes contain
the same 2-generated monoids and COVﬂiﬁl [6, 7] that theyindh&asame inverse monoids, while Pin
and Weil , Theorem 5.9] proved that a similar equalitydsdbr all half levels.

In the recent papeﬂ[S] we disproved the equality = B; @ SI. We discovered certain new pseu-
doidentities which are satisfied by member¥gfand we showed an example of a mondide B; @ SI
which does not satisfy one of these pseudoidentities. Thepseudoidentities are all those of the form
u” = u”vu” whereu andv are pseudowords such thé , satisfies the inequality < v; hereVs/,
is the pseudovariety of ordered monoids correspondingviel 82 in the Straubing-Thérien hierarchy.
These new pseudoidentities define a pseudovariety of firdteomsF. Now the results fron‘[[3] can be
summarized in the following way, C F, M € B; @ SI, andM ¢ F, so thatM ¢ V,. This implies
B @ Sl g FandVQ 7& B @ Sl

In this paper we also provide an example of a monoid whichrigddoF and does not belong to
B1 @ SI, and so we also haweZ B; @ SI. Hence the two upper boun8s @ S| andF are incomparable
and we get a new tighter upper bound for the clgssnamely(B; @ SI) N F. One can hope that the
inclusionV, C (B; @ SI) N F turns out to be an equality. This equality would solve thempaibblem if
one can show that the membership problem for the pseudtwéBe @ SI) N F is decidable. The main
contribution of this paper is the decidability of the mendtgp problem for the pseudovariefyfrom
which the decidability of the membership problem {84 @ SI) N F follows.

Perhaps surprisingly, the membership problem for the pmseartety F is not easy to solve. When
we want to test whether the new pseudoidentities are sdtisfia given finite monoid/ the following
relation plays a crucial role. For a finite mondid we define a relatioms (M) C M x M by the rule
(s,t) € 13/9(M) if there is a pair of pseudowords v such thaV;, = u < v and an evaluatiop such
thato(u) = s, p(v) = t. Now we see thad/ < F if and only if for every(s,t) € 73/2(M) we have
s¥ = s“ts¥. The latter condition is easy to test whenever we know thedicel 73, (1 ). Unfortunately,
we do not know whether it is possible to compute this relatiogeneral. Our solution of the membership
problem is based on the trick that it is enough to computertiresitive closure ofs 5 (M), because the
conditions” = s“ts* is satisfied for all pairgs, t) from 75 (M) if and only if the condition is satisfied
for all pairs(s, ¢) from the transitive closure af; /5 (M).

The paper is organized as follows. In Sectﬂ)n 2, we recallafeeliminaries and notation. Then in
Sectior[ B we introduce the relatieg,» (M) and some other equivalent descriptions of this relatioe- Se
tion H is devoted to the formal definition of the new upper bibE@nd the trick concerning the transitive
closure of the relations 5 (M). In Section{5 we prove the difficult part of the crucial chaesization
of the transitive closure of the relatieg,, (/). Here we apply the Factorization Forest Theor@ [23].
The decidability ofF is also established, which achieves the purpose of thisrpSpetior[b presents an
example of a monoid which shows tHatz B, @ SI.
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2 Preliminaries

2.1 Stable quasiorders

In this paper the key notion is stable quasiorder in monditise we recall some easy observations and
we fix notation. Note that in this paper a monoid is either it a free (profinite) monoid.

For an arbitrary se¥/ we say that a relatioR, i.e.a subset of\/ x M, is a quasiorder if and only if it
is reflexive and transitive. Such a relati®rdetermines an equivalence relation

R*=RNR ' ={(s,t) e M x M| (s,t) € Rand(t,s) € R}.

Then we can consider the factor 9% R which is naturally ordered by the relatid?) i.e. sR® < tR®
if and only if (s,¢) € R. We will denote this ordered séb//R¢, <) simply by M/R. The number of
classes im//R is called thandexof R.

If we take an arbitrary relatio® on M then we can consider the smallest transitive relation dgonta
ing R, so-calledransitive closurenamelyR* = | J,cy R, whereR! is the composition of copies ofR.
More formally, for each € N we define

R' = {(s,t) € M x M | there exists, s1,...,5; € M suchthats = sy Rs; Rsy R--- Rs; =t}.

Note that if the original relatiork is reflexive then we hav&’ C R/ whenever < j. This implies that
for two arbitrary pairgsi, s2), (t1,t2) € R* there is an exponentsuch thai(s, s2), (t1,t2) € R’
For an arbitrary monoid/ we say that a relatioR is stableif for all s, s2,t1,t2 € M we have

((81752) €ER and(tl,tg) S R) implies(sltl, 52t2> € R. (21)

In other words, the relatioR is stable if and only ifR is a subsemigroup af/ x M. In some papers a
stable relation? on a monoidV/ is defined by the following condition

(s,t) € Rimplies((sz,tz) € Rand(zs, zt) € R) (2.2)

forall s, ¢, 2 € M. Note that[2) follows from[(2}1) wheR is a reflexive relation. On the other hand if
Ris atransitive relation then (2.1) is a consequenc@ (2.2)

If Ris a stable reflexive relation on a monaid then the transitive closurB* is a stable quasiorder
on M. Indeed, for eacti the relationR’ is a stable relation o/ and the reflexivity ofR implies the
claim. This basic observation means that if we have a relafimon M and we want to construct the
smallest stable quasiorder containiRgve can first extend to a reflexive relation, which we then use to
generate a submonoid M x M, and finally we take the transitive closure.

2.2 Free profinite monoid

According to Reiterman’s Theorel‘ﬂZO], pseudovarietieslgébras are defined by pseudoidentities, that
is formal equalities of implicit operations. In the case mterest for this paper, implicit operations are
operations whose interpretation in finite monoids commwidshomomorphisms. Reiterman’s Theorem
has been extended independently by Molchalﬁv [11] (seé@p via the nonstandard approach, and by
Pin and Weil ] to first order structures, the latter haypagticularly in mind pseudovarieties of ordered
monoids, for which the equality (of implicit operations)replaced by the order relation. By endowing
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all unordered monoids from a given pseudovariétpy all possible stable partial orders, one obtains a
pseudovariety of ordered monoids, which is identified with

Simple examples of implicit operations are the so-cadieplicit operationsgiven by words, and the
w-power, which associates to each elemenf a finite monoid its unique idempotent powei = s"

(n > 0).

The implicit operations over a fixed finite sétcan be viewed as the elements of the projective lifit
of all A-generated finite monoids, which is the structure one isdembhsider when trying to identify the
“most general” such monoid. Here, finite monoids are viewetbpological monoids under the discrete
topology. In general, projective limits of finite monoidearalledprofinite monoids They may also be
characterized as compact totally disconnected monoidarrs out thatF', is the free profinite monoid
on the set4, in which the discrete submonoid generateddyywhose elements are the explicit operations,
is a free monoid and thus is identified wittt. Thus, elements of’y become a generalization of usual
words, which prompts calling them alternativglyeudowordsSee [Il[IZ] for details.

Denote byP, the monoid of all subsets of under the union operation. The mapping that sends each
lettera € A to the singleton{a} extends to a unique continuous homomorphism Fy — Pj4. Its
restriction toA* is the usual content function and, more generally, a letter A belongs tox(u) for a
given pseudoword € Fy if and only if there is a factorization of the form = zay with z,y € F4
(cf. [EI, Section 8.1]). For this reason,is also called theontent function

Note thatP, is a semilatticei.e. a commutative and idempotent monoid. Moreoverufor € F4, we
haveS| = v = v if and only if a(u) = «(v). For a subseB of an alphabetd we denote by B] the set
of all words overA such that their content iB, i.e. [B] = {u € A* | a(u) = B} = a7 1(B) N A*.In
particular, forB = () we write[] = [(] = {e} wheree is the empty word.

2.3 Regular languages and syntactic quasiorder

We recall the concept of syntactic quasiorder, which waséhiced by Pin under the name syntactic order
(seee.g.[@]).
For an arbitrary language C A* we define relatior<; on A* in the following way. Foru,v € A*
we writeu <p, v if
(Ve,y € A") (zvy € L = zuy € L).

The relation<;, is a stable quasiorder on the moneald and it is called thesyntactic quasiordeof L.

In this paper we deal only with regular languages, for whighhas finite index. The reason is that for a
regular languagé there are only finitely many languages of the form! Ly~ = {u € A* | zuy € L}.
We denotelM;, = A*/<; which is a finite ordered monoid, called thedered syntactic monoidf L.
The natural projectiow;, : A* — M;, is called thesyntactic morphismNote thaté, (L) is an ideal in
(M, <) and tha; * (¢r(L)) = L.

Now we consider the extension ¢f, to the continuous morphismy, : F4 — M of compact
monoids. The relation o4 consisting of the pair$u, v) such thaty; (u) < ¢ (v) is still denoted
by <. Note that it is a stable quasiorder 613. Thus if we speak about syntactic quasiorder and syntac-
tic morphism we can consider these extensions 4o

Using the continuous morphisiy, we see that the topological closuteof L is clopen inF, and that
¢ (o1 (L)) = L. An alternative definition of the relatiori;, is given by the next lemma, whose proof
amounts to an easy exercise.
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Lemma 2.1 Let L be a regular language over an alphabétand letu,v € F4 be pseudowords. Then
the following statements are equivalent:

(i) u<g o,
(ii) forall 2,y € Fa, zvy € Limplieszuy € L,
(iii) forall =,y € A*, xvy € Limplieszuy € L.

2.4 Some known results on the Straubing-Thérien hierarchy

We recall the characterizations b%,,, the level3/2 of the Straubing-Thérien hierarchy. The first is
implicitly contained in [15].

Proposition 2.2 ([@, Theorem 8.8]) A language over an alphabet is of level3/2 if and only if it is a
finite union of languages of the forAfa; Ajas - - - ar Aj,, where eactd; C A and eachu; € A.

Proposition 2.3 ([@, Theorem 8.7], [@, Theorem 8.9]) A language is of leved/2 if and only if its or-
dered syntactic monoid satisfies the pseudoideatity, < u* for all pseudowords,, v over some finite
alphabet satisfyingy(u) = «(v).

The following proposition from|]3] gives new pseudoideiesitfor the pseudovariety,. The proof is
also recalled as it is quite easy.

Proposition 2.4 ([E, Proposition 2]) Letw andv be pseudowords such thdg, = u < v. ThenV, =
u? = u¥ou”.

Proof: Since), is the Boolean closure df;/,, we haveV, = 2 = yifand only if Vg5 = o = y, i.e.if
andonly ifVs s = o <yandVg), =y < .

From the assumptioNs/; = v < v, we deduce that(u) = a(v) becausesl C Vj/,. From
Propositior] 2]3, we obtain immediatel » = u“vu® < u®.

When we multiplyu < v by «* from both sides, we obtain’vu® < u“vu®. SinceVs,y = ot =
x¢, we conclude tha¥'s /, |= u® < u“vu®. o

3 Relations on monoids related to level 3/2

For each finite alphabet and natural number. we denoté/,, (A) the set of all languages ovdrof the
form
[Ao] a [A1] a2 [AQ] T [Ak—l] Ak [Ak] ) (3.1)

wherek < m, ay,...,ar € AandAy,...,A; C A. SinceA is finite, so is each of the selt4,(A4). We
denotel/(A) their union over alln > 0. The languages of levél/2 over an alphabet are exactly the
finite unions of languages frotd(A), because for each finite alphali2tone can express the language
B* as the finite union of all languages of the fof@| with C C B, which in turn are of level 1.

Now, we define a relatior? on the free profinite monoi#’4 in the following way:

u =4 v if, forall L € Uy, (A), v e Limpliesu € L.
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Note that ifu <2 v for someu,v € F, then the implication € . = u € L is satisfied also for
each languagé@ which is a finite union of finite intersections of languagesii/,,(A). One can prove
that such languages form a positive variety of languageis.laim is a special case ﬂl4, Theorem 5.1]
or alternatively of[p, Theorem 1]. One can also prove it diseby showing that each morphic preimage
and also each derivative of a language from the dasgA) is a finite union of finite intersections of
languages frond,,,(A). This method is used ir[|[4] to prove that the polynomial ctesof a variety of
languages constitutes a positive variety, although thedés for morphic preimageﬂ[4, Lemma 2.2.2] is
not correcfl]

Lemma 3.1 Let A be an alphabety: be a number and, v € F'4 be pseudowords. Then
u =<2 v ifand only if, for all L € U,,(A), u <y, v.

In other Wordsjﬁ is the intersection of all relations ;, for L € U,,,(A).

Proof: Letu,v € F4 be such thatt <2 v and letL € U,,(A). We want to show that <;, v, which
is equivalent to conditior] (jii) in Lemma 2.1. Lety € A* be such thatvy € L and we show that also
zuy € L. Since the seL is open, we may consider a sequence of wigs,cn converging tov such
that for eachn, we havexv,y € L. Hencev,, € 2~ 'Ly~! and we see that ¢ K for K = 2z~ 'Ly,
The languagdy is a finite union of finite intersections of languages frofn(A) and the implication
v € K = u € K follows fromu < v. Thus there is a sequence of wofds ),,cy converging tau such
thatu, € K = 2~ 'Ly~ for eachn € N. Hencexu,y € L and we deduce thatuy € L.

On the other hand, fat,v € F4 andL € U,,(A) we have

(u <y vandv € L) impliesu € L

because we can consider conditi¢n (iii) in Lemimd 2.1 withndy empty words. This property entails
the implication “=". |

GivenX C Fa, writeu <4 vif u,v € Fa andv € X = u € X. Then=4% is a quasiorder in which
the elements ok are minima and the remaining elements are maxima.

Lemma 3.2 The following hold for every natural numbst.
(i) ForeachA the relation<# is a stable quasiorder of4.
(i) For every continuous morphism : F4 — Fp we have

forall u,v € Fa, u <2 vimpliesy(u) =B 4 (v).

(iii) The equivalence relation determined by the quasiordé. has index at mosttm (A1,

() The problem lies in the fact that the formula does not take axtcount the possibility of a letter covering several of dise
tinguished letters. For instance, the formula fails for lieenomorphismy : a* — b* defined byp(a) = b2, for which
e~ H[1b[]b]]) = {a} = [] a[], while the language given by Arfi's formula is empty, sincéeast one of the derivatives in the
languages in the union is empty.
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Proof: By Lemma[3.]L, the relatior?: is the intersection of all stable quasiorders with L € U,,,(A4),
and therefore it is itself a stable quasiorder, which pr(@esOn the other hand, since? is also the
intersection of the quasiorders of the fom%, each of which has index 2, we obtaﬂ iii).

@) Let u,v € F4 be such thau <2 v, let L € U, (B), and suppose that(v) € L. From the
continuity of, we obtain the equality~' (L) = ¢—1(L). Now K = ¢~ '(L) C A* is a finite union
of finite intersections of languages fraiy, (A). Sincev € K andu <% v we haveu € K. Hence
Y(u) € L, which proves that)(u) <2 v (v). m

From Lemma$ 3]1 an{d 3.2 one can also state that the orderesian6n/ <2 is a free (pro)finite or-
dered monoid in the pseudovariety of ordered monoids cporeding to the positive variety of languages
generated by allf,,,(B).

By asystem of relations we mean an operator which determines, for each finite alghalzerelation
p? on the free profinite monoid’s. E.g.for eachm we have a system of relations,,. We call a
system of relationg a fully invariant system of stable quasiordefdt satisfies conditionsl](i) anc[kii) of
Lemm. If every relatiop” has finite index inf'4, then we speak of flly invariant system of stable
quasiorders of finite index

Another example of a fully invariant system of stable quedges of finite index is given by the kernel
of the content functiom. More precisely we consider the relatierf' on /4 given by the following rule
foru,v € Fy:

u="v if a(u) = a(v).

Further, we define a relation on F4 as the intersection of all relatiorls;“n, i.e.
u =4 v if, forall L € U(A), v € Limpliesu € L.

The following is an immediate consequence of Lemmds 3.1 ahd 3

Proposition 3.3 The system of relations is a fully invariant system of stable quasiorders. For each
alphabet4, the relation<“ is the intersection of all relations ;, for L € U(A). O

Lety : F4 — M be a continuous morphism to a finite mondifi For a binary relatiorR on F4, we
define the relatio(R) on the monoid\/ by the rule

o(R) ={(s,t) € M x M | there exist,,v € F4 such thatu R v, p(u) = sandp(v) =1t}.

Note that if R is a stable relation o4 theny(R) is a stable relation ofd/. But o(R) need not be a
quasiorder even iR is. We show that the definition gf( R) does not depend apor A when we consider
a fully invariant system of stable quasiorders.

Lemma34 Lety: F4 — M andp : Fg — M be a pair of continuous morphisms. Further, febe a
fully invariant system of stable quasiorders.

(i) If Bis onto thenp(p?) C B(p?).

(i) If both » and 3 are onto thenp(p?) = B(p?).
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Proof: The second statement follows from applying the first oneewfo, assume thatis onto and let
(s,t) € w(p?). Then by the definition op(p*) we haveu,v € F such thatu,v) € p4, o(u) = s, and
©(v) = t. Sinces is onto andB* is dense inF'z, we can consider for eaeche A a wordu, € B* such
that5(u,) = ¢(a) € M. Then there is a continuous morphism F4 — F'p such that)(a) = u, for

alla € A, sothatp = 8 0 1). Sincep is fully invariant we obtair(+(u), ¥ (v)) € p? from (u,v) € pA.

From the definition of3(p?) we get

(s:8) = (p(u), 0(v)) = (B (w)), B (v))) € B(p"),
which completes the proof of the lemma. O

Thus, we can define for each fully invariant system of stalbiasgprders) and every finite monoid
M the relationp™ on M by taking an arbitrary onto continuous morphism F, — M and putting
p™ = ¢(p?). In particular, we can consider the relationd’ and < for eachm. The relation="
is sometimes known in the literature as the se$lgpointlike pairsof elements ofAf (cf. [@, Subsec-
tion 2.4.1]).

We say that we have agffective descriptionf a finite ordered monoid if its multiplication table and
its order relation are known.

Useful properties of the relations? and <" are given in the following lemma. Some of them are
formulated in a more general setting.

Lemma35 Lety : F4 — M be an arbitrary onto continuous morphism and pelbe a fully invariant
system of stable quasiorders; in particulet! = (p*). Then the following properties hold.

(i) The relationp™ is stable.

(i) If the equivalence relation corresponding ¢é' has finite index then we have
pM = {(s,t) € M x M | there existi, v € A* such thatu p* v, p(u) = s andp(v) =t} .

Moreover, if we have an effective description of the finigeoed monoid?, /p* thenp™ is com-
putable.

(iiiy For eachm we have<2!, , C <2 and the relation=" is the intersection of all relations:}’.

Proof: (f) We already mentioned that(R) is a stable relation whenev&is a stable relation.

(i) The inclusion ‘2" is trivial. If we take (s, t) € p™ then we havéu, v) € p* for someu,v € Fy4
such thatp(u) = s andp(v) = t. We denote; the natural morphism fronk’4 to the finite ordered
monoid F4/p?. Sincep~!(s) andn~!(n(u)) are both clopen subsets iy which containu € Fa, it
follows that their intersection is also non-empty and clopeF 4. This entails that it contains some word
u' € A*. Hence we have(u') = s and(v/,u) € p (and alsa(u, u’) € p). By the same argument we
obtainv’ € A* suchthatp(v') = t and(v,v’) € p. Sincep” is a transitive relation we gét’, v') € p?.
We proved the first part of]ii).

For the second part we define a relational morphisfrom M to Fa/p” asm = no ¢~!. In other
wordsm = {(p(u),n(u)) | u € A*}. In factr is a submonoid of the finite monoid x F/p and it is
generated by the sé& = {(¢(a),n(a)) | a € A}.
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Since we have an effective description of the finite orderedoid 4 /p* we can compute as the
submonoid of the finite monoidil x F/p? generated bys. Now (s,t) € pM if and only if there exist
u,,v, € Fa/p? such that, < v, and(s,u,) € w and(t,v,) € . By the above, the latter condition on
the pair(s, t) can be effectively checked.

From the inclusions< C <4 | C <4 it follows that<™ C <M , C <M |t remains to show
that(),,~, <M C <M. So, suppose thatt € M are such that <2 ¢ for all m > 0. Then, for each
m > 0 there existu,, € p~1(s) andv,, € ¢~!(t) such thats,, <2 v,,. Since the spacg, is compact,
there is a sequence of indices < msy < --- such that each of the subsequenges, ). and (v, )k
converges to the respective limitandv. As ¢ is continuous, we have(u) = s andy(v) = t. We
claim thatu <4 v, which will establish that < ¢, as required. Indeed, given a langudge U,,(A),
consider the syntactic morphisp, : F4 — M, which is continuous. Hence there is soisuch that
mie > m andor (um,) = ¢r(u) ander(vm,) = ¢r(v). SiNCEUM, =& vm, andL € Uy (A), we
conclude in particular that,,,, <;, v.,,, whence alsa <;, v, which proves the claim. O

Recall that we have defined the relation, (M) € M x M by the rule(s,t) € 73/5(M) if there are
a finite set of variable&(, a pair of pseudowords, v € Fx such thaWs,, = u < v, and a continuous
morphismy : Fx — M such thatp(u) = s, ¢(v) = t. We show that the inequalities satisfiedMp,,
are exactly given by the system of relatiodsand that the relatioms ,, (/) coincides with the previous
relation<*.

Proposition 3.6 Let A be a finite alphabet.

(i) Foreachu,v € F4 we have

Vs/o | u <o ifandonlyif u <* .

(i) For every finite monoid/ we havers,(M) = <M,

Proof: () Letu,v € F4 be such thaV/s/, = u < v. Then for eachl € U/(A) and its syntactic morphism
¢r, : Fa — My, we havepr,(u) < ¢1(v), i.e.u <, v. This shows that: <* v by Propositior 3]3.

Now, letu, <4 v. We want to show that for eadh € V3,2(B) and its syntactic morphismy, : Fp —
M, onto the ordered syntactic monald;, of L, we haveM; = u < v. Itis enough to prove it for
languaged. € U(B) because/s, is the positive variety of languages generated by/tl’). So, let
L € U(B) with syntactic morphisng;, : Fz — My, and takey : F4 — M), an arbitrary continuous
morphism. Since the syntactic morphisiy is onto we obtaini(<4) C ¢ (<?) from Lemma[3}.
Thus, as we are assuming that<4 v, so that(y(u),¥(v)) € %(=4), we conclude that there are
u', v’ € Fg such thath(u) = ér ('), ¥(v) = ¢ (v'), andu’ <5 +'. Propositior] 3]3 yields' <; v’
and we get)(u) = ¢r,(v') < ¢r(v') = ¥ (v) in M. We have thus proved thaf;, = u < v.

(i) We fix the finite alphabeB3 = M and onto continuous morphisth: Fz — M given byS|p =
idp and we show thaty»(M) = B(<”). The inclusion3(=<) C 73/,(M) follows from (). Let
(s,t) € 13/2(M). Then there are a finite set of variabl¥s a pair of pseudowords, v € Fx such that
V3,2 = u < v and a continuous morphism: Fx — M such thatp(u) = s, ¢(v) = t. Hence we have
u =X v from (). Lemma[3.J4 then yield&, t) € o(=X) C B(=P). m
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4 New upper bound

In the first section we have defined the pseudovariety of fimit@oids
F: [[u“’:u“’vu“’|V3/2 lZUS’U]] .

Our goal is to solve the membership problemFoiSo, for a fixed monoid/ we need to test whether

w

¥ = s¥ts¥ (4.2)
forall (s,t) € 73,2(M) = =M. The crucial trick in our contribution is the following lenam

Lemma4.1 Let R be a reflexive stable relation on a given finite mondid Then conditionl) holds
for every pair(s, t) from R if and only if condition [4]1) holds for every paj, t) from the transitive
closure ofR.

Proof: Assume that conditior@.l) holds for every p@airt) from R. We show by induction with respect
to 4 that condition [(4]1) holds for every pais, t) from R’. Fori = 1, this is given. Leti > 1 and
(s,t) € R' be an arbitrary pair. Thus theredss M such tha(s,z) € R*~! and(z,t) € R. SinceR is a
stable relation we havg“ 25, s“ts*) € R. Condition [4.]L) holds foR, hence we have

(s¥28¥)" = (s28%)"(s¥ts¥) (s¥ 28¥)".
On the other hand, by the induction hypothesis, sifice) € Ri~!, we haves” = s“zs¥. Hence
s = (s¥zs¥)“ and we get
s = (s¥zs¥)Y = (s¥28%)Y(s¥tsV) (s¥zs%)Y = ¥ (s¥ts¥)sY = sVts¥.
Now since condition 1) holds for every péir, t) from R’ for everyi, condition ) holds for all pairs
(s,t) from R* = |J,cy R'. The opposite implication in the statement is trivial, hesmR C R*. O

If we apply this observation to our relation then we obtain the following basic characterization of
the pseudovarietly.

Proposition 4.2 Let M be a finite monoid. Thei/ € F if and only if the condition[(4] 1) holds for every
pair (s, t) from the transitive closure of the relatior.

Proof: The statement is an easy consequence of the definition ofldbsF; and Propositi0.6 and

Lemma[4]L. m
We should show that the transitive closure¥ can be computed. In fact, we give an alternative
characterization of this relation which is motivated by Rsition[2.B. We define
Su={(s,s) e M x M |seM}uU{(sts*,s¥) e M x M | s =" t}. (4.2)

Furthermore, we denote Hy',) the submonoid of the monoitl' x M generated by the sét, and we
denote the transitive closure of the relati@, ), i.e. (Sas)*, by Ths. The two following results clarify
the meaning of';.
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Lemma 4.3 For each finite monoid/ the relationT’, is a computable stable quasiorder.

Proof: Since M is finite and= is a fully invariant system of stable quasiorders of finitddr, the
relation=" is computable by Lemmp 3.5. Hence one can compute also thioreb,,. Generating
the submonoidSy,) and then the transitive closut§y,)* = T\, is routine. The fact thaly, is stable
follows from a general observation concerning the travesitiosure of a stable relation. O

Proposition 4.4 Let M be a finite monoid. Then the transitive closure<@f is Ty,.

Proof: We haveS,; C <™ by Propositior] 2]3 and Propositign 3]§ (ii). By Lemfna 35 e have
(Sy) € =M. Thus the transitive closure ¢6,,), i.e. Ty, is a subset of the transitive closure-ef/.
Thus we proved thaty, € (=xM)*. The reverse inclusiof=™)* C T, is much more difficult. By
Lemma[3.5[({]i) we know tha™ < < for every natural number. Hence we havé<)* C (M)
for everym. To prove(=xM)* C Ty, it is therefore enough to prove that there is a numhbewith the

property(=2)* C Ty,. This statement is contained in Propositjor} 5.2 in the nestisn. |

5 Application of the Factorization Forest Theorem

To finish the proof of Propositioh 4.4 we use the Factorizaforest Theorem of Imre Simon. In fact,
our proofis inspired by the proof concerning polynomiakelees given by Pin and WeﬂlB] (see algp [5,
Section 3]). The following brief introduction to factorikan forests is essentially borrowed from 18,
Section 4].

A factorization forests a mapping fromd?4* to | J, -, (A™)™ which associates to every worde A*
of length at leas® a factorizationd(z) = (z1,z2,...,x,) of x such thate > 2, z1,29,...,2, € AT
andzyzs - - -z, = x. The integem is called thedegreeof the factorizationd(z). Thus a factorization
forest is a description of a recursive process to factoriaee/as products of letters. Theight function
of a factorization forest is a mapping:; : AT — N defined by the rule

ha() 0 ifreA
xTr) =
¢ 1+ max{ha(z;) |1 <i<n} if d(@) = (21,29, ...,20).

The heightof a wordz in a factorization forest is simply k() and theheightof d is given by H,; =
sup{hq(z) | x € AT}.

For a given wordr € A™, we define recursively the so-calléakctorization treeof x as a tree with
rootz and direct descendants, x, . .., z,, whered(z) = (x1, 2, ...,z,), and the subtree with root
x; being the factorization tree af;.

Let M be a finite semigroup and let: A™ — M be a morphism. A factorization foregis Ramseyan
moduloy if, for every wordxz € A% A*, eitherd(x) is of degre€ or there exists an idempotente M
such thati(xz) = (x1,za,...,2,) Withn > 3 andp(z1) = p(x2) = -+ = o(x,) = e.

These definitions apply in particular if the semigraupis a monoid. Because there is no interest in
factorizations of the empty word, when we speak about a fietiion forest module : A* — M we
mean a factorization forest moduld 4+ : AT — M.

The Factorization Forest Theorem states that for every hiempp to a given finite semigroup/
there exists a factorization forest of finite height whictiRBmseyan modulg. Originally the theorem
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was proved by I. Simon with the upper bouid/ | in [E] and with an exponential upper bound but with
easier proof in|E4]. In successive papers the upper bountiéeen improved (seeg.[@] for references).
The most recent paper on the to[lO] establishes the lgmperd3| M| — 1 in the general case and the
upper boun@|M | in the case of aperiodic semigroups, which are both optiorahfe respective classes
of semigroups.

In our application the exact upper bound does not play are; meé use just the existence of it. So we
may as well formulate the theorem in existential form.

Theorem 5.1 ([E,@) Let M be a finite monoid ang : A* — M be a morphism. Then there exists a
factorization forest of finite height which is Ramseyan nimgu

Now we can return to our considerations. The missing parhefproof of Propositio@A is the
following statement. Note that, for our purposes, it islevant whether an integer as in the statement
of PropositioZ is computable, although from the prodélweand the Factorization Forest Theorem it
follows that such an integer can be indeed be computed.

Proposition 5.2 Let M be a finite monoid ang : A* — M be a morphism. Then there exists an integer
m such that( =M)* C Ty,.

Proof: Let d be a factorization forest of finite height which is Ramseyardnio o, whose existence is
ensured by Theore@.l. For the purpose of this proof, wedathibose any strict upper bouihd of the
heightH, of d. For definiteness, we puif = H; + 1. We prove that the inclusion in the statement holds
for m = 2K+1. SinceT), is a transitive relation it is enough to establish thaf C T),.

Lets,t € M and suppose thdt,t) € <M, By Lemma K'i) we can take,v € A* such that
o(u) = s, p(v) =t andu <2 v.

Intuitively, we take a factorization tree @f and in every factorization used in this tree. d(x) =
(x1,x2,...,2,) We keep just the first and last factoi®. z; andz,,, which we further factorize and
instead of the middle paft., . .., z,—1) we take just the produat; - - - z,,—; which we do not factorize
any further. Thus at the end of the process we obtain a faetiish of the wordv of the formv =
ajviazvs - - - vi_1a; Wherea; € A andv; € A*. Moreover, sincé;(v) < K we havek < 2K+1 = m,
We are led to consider the language

L={Jar|a(v)]ag - ap—1 [a(vp-1)] ax [] € Un(A).

Sincev € L andu j;j‘l v we haveu € L. Thus we can writer = ajujasus - - - ap_1ug_1a, Where the
u; € A* are such that(u;) = a(v;) foreveryi =1,...k — 1.

Now, if we consecutively replace; for u; in the mentioned factorization af, where the order of
replacements is given by the structure of the factorizatiea ofv, then the images undeérof the corre-
sponding pairs of words in this sequence are in the reldfjpn Thus at the end of the process we obtain
(s,t) = (¢(u), d(v)) € Tar. This is just the underlying idea of the proof which we nowgeed to make
more precise.

First, we consider a full binary tree of height, i.e. T = Ufio{lﬂ}i ={pe{1,2}* | |p| < K},
where each node € T which is not a leafj.e. |p| < K, has left childp1 and right childp2. The root
of T, i.e. the empty word over the alphabégt, 2}, is denoted by\. For technical reasons, we want to
distinguish this empty word from the empty word over the alpét A, which is denoted. In fact the
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tree structure ofl' is not needed for the following proof, but it can help to falld. We mention that
|T| = Zl 020 =28t —1=m—1.

Now, for our propose, we define a certain order, denoted_bgn the sefl' which is known in the
literature under the names “in-order traversal” and “syrimiméraversal” of the tree. For a pair of nodes
p,q € T we denote(p, ¢) € T the longest common prefix @f andg and we putp C ¢ if one of the
following conditions is satisfied:

p,q)1p’ andq = (p, q)2¢' for somep’, ¢’ € T,

)
p,q)1p’ andq = (p, ¢) for somep’ € T,
)
)=

p,q) andg = (p, q)2q¢’ for someq’ € T,

We writep C ¢ if p C ¢ andp # ¢. Taking arbitrary nodes, ¢ € T, such thap # ¢, exactly one of the
possibilitiesp = ¢ andq C p occurs. Elementary computations check thas also transitive. Altogether,
the relationC is a linear ordering off.

We say that a paify, x) is acompatible labelingn T if the following conditions are satisfied:

(i) bothy : T — A* and : T — A* are mappings;
(i) for eachleafp € T, i.e.p such thatp| = K, we havex(p) = x(p);
(iii) for eachp € T which is not a leafi.e. |p| < K, we havey(p) = x(pl) - x(p) - X(p2).

We call the wordy(\) € A* thevalueof the compatible labeling ofi and we also denote {(T).
Note that, for an arbitrary compatible labeliggon T, we have

X(A) = x(p1)x(p2) - - x(Pm-1),

wherep; C p2 C -+ C py—1 are all nodes fronT. Indeed, one can prove by induction with respect
to the treeT in bottom-up direction, that for eagh € T we havex(p) = x(pp1)--- x(pp:) where
pp1 C - - - C pp; are all nodes frorfT with the prefixp. Thus, ify : T — A* is an arbitrary mapping, then
there is a unique mappingsuch that the paiy, ) forms a compatible labeling dh. For this reason a
compatible labelindy, X) is usually referred simply by.

We say that a labelingon T is similar to a labelingy on T if the following conditions are satisfied:

(i) for eachp € T we havex(£(p)) = a(x(p));
(i) for eachp € T such thaty(p) € A we haves(p) = x(p).

Note that this relation is not symmetric, because for spra€l’ anda € A we can have(p) = aaa and
&(p) = a and in this casg is not similar to¢ but¢ could be similar toy.

For the wordv we will define a certain compatible labelifg.,, x,,) onT. The definition is inductive
in top-down direction with respect to the tr&eand it reflects the factorization efin the factorization
forestd. First of all, we puty,(\) = v. Next, if forp € T which is not a leafj.e. |p| < K, we have
definedy, (p) = = € A*, then we define the values (p), X, (p1) andy, (p2) as follows:
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() if = e then we puty, (p1) = xu(p) = X, (p2) = €
(b) if 2 € Athenwe puty,(pl) = €, x»(p) = z andy, (p2) = €;
(c) if d(x) = (a1, z2) then we puly, (pl) = x1, xo(p) = € andyx, (p2) = z2;

d) if d(x) = (z1,22,...,2n), n > 2 then we puly,(pl) = x1, xu(p) = X223 -+ Tp—1 @NAY, (p2) =
Tp.

Finally, if for a leafp € T we have defined, (p) = x € A*, then we puty,(p) = z. Sincehy(v) < K
we can see that in this cage(p) = x,(p) =z = .

Directly from the definition of the paify., X, ) we see that it is a compatible labeling @rwith the
valuey,(T) = x,(A) = v.

We have defined all technical notation and we can formulaethcial observations which finish the
proof of the proposition.

Lemmab5.3 Letv € A* be an arbitrary word and ., Xx,,) be the compatible labeling dfi given by the
previous definition. Let € A* be such that _jé v. Then there is a compatible labeliggpn T which is
similar to x,, and which has the valugT) = £()\) = w.

Lemmab5.4 Letwv be an arbitrary word and x,, X,,) be the compatible labeling dh given by the previ-
ous definition. 1€ is a compatible labeling off similar to x, then

((€(T)), ¢(X,(T))) € T

Proof of Lemma p.3: Letv € A* and consider the corresponding compatible labelipgndu € A*
such that, <4 v. We denoté = {p € T | x.,(p) # €}. Then for eaclp € S leta, € A be the last letter
in x.(p) and letv, € A* be such thab,a, = x.(p). Thusv = vy, a,, vp,ap, - - - vy, ap, , Wherek < m
andp; C p2 C --- C py are all nodes frors. We denoted; = «a(vp,) fori =1,..., k. We consider the
language

L = [Ai] ap, [As]ap, -+ [Ak] ap, [].

Asv € L € Uy, (A) andu <2 v, we deduce that € L and we can Writer = w,, Gy, Up, Gp, * * - Up, Apy »
where for eachh = 1, ..., k we haven(up,) = a(vp,) = A;.

We define a compatible labelirggon T in the following way: ifp ¢ S, i.e. x,(p) = ¢, then we put
&(p) = eand ifp € S then we put(p) = upa,. Now for eachp € T we havea({(p)) = a(x.(p))-
Moreover, if x,(p) € A theny,(p) = a, andv, = ¢, which entailsu, = ¢ and, consequently(p) =
ap, = Xo(p). Thus the constructed compatible labeliign T is similar toy,,. We know thaté()\) is
the product of all(p), for p € T, in the order_. Since&(p) = e for p ¢ S, this product is equal to
Up, Ay Upy Gy * * + Up, Ay, = 1w Wherep; C po C - -+ C py, are all nodes frong. O

Proof of Lemma Ez We prove the statement by an induction with respect to thectstre of T in
bottom-up direction. This means that we want to prove foheae T that

(e(€(p), ¢(X,(p)) € Tns- (5.1)

First, if pis a leaf inT thenx,, (p) = X, (p) = ¢, because the height satisfies the inequalitv) < K.
Thusé(p) = X(p) for this leafp and (5.1) is trivial.
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Now, letp be not a leaf and assume th5.1) is true for the npdlemdp2. We distinguish between
the cases (a)—(d) in the definition pf which were used for the definition af, (p).

In case (a), we havg, (p) = e which entailsy, (pg) = € for all ¢ € T such thapg € T. It follows that
&(pq) = e forall suchg € T. Consequently(p) = ¢ and (5.]1) is trivially satisfied.

In case (b), we havg,(p) = = € A, X,(pl) = X,(»2) = e. Since¢ is similar toy, we have
&(p) = xo(p) = z andé(pl) = £{(p2) = €. Consequently(p) = X, (p) = = and {5.1) is again trivially
satisfied.

In case (c), we have,(p) = e which impliesé(p) = € = x,(p). Thené(p) = &(p1)é(p2) and
Xo(p) = X, (P1)X,(p2). Since(p(E(pl)), ¢(X,(p1))) € Tar and (0(€(p2)), p(X,(p2))) € Trs We
obtain ) as a consequence of the fact thatis a stable relation oM.

In case (d), we havg,(pl) = z1, xu(p) = @2 - - - x—1 andx, (p2) = x,, and consequently, (p) =
x = T1X2 - Ty. Moreover,p(xzi) = p(x2) = -+ = p(x,) = eis an idempotent inV/. Since
¢ is similar toy, we haveé(p) = w € A* such thata(w) = a(zaxs---x,—1). This means that
o(w) =M ¢(xor3 -+ 2,_1) = e and we havde - p(w) - e,e) € Sy C Ty By induction hypothesis
we have(p(£(p1)), ¢(X,(p1))) € Tu, where the second coordinatedsbecausex, (pl) = z; and
¢(z1) = e. Thus(p(&(pl)),e) € Tar and, analogously(p(£(p2)),e) € Ta. SinceT)y is a stable
quasiorder we get the following sequencel@f-related elements af/. (Here we writel), in an infix
notation to make the presentation more readable.)

p(E() = ¢(E(P1) - (&) - 9(E(p2)) Tar € p(w) - e Tar e = (122 -~ 2n) = (X, (P))-
This achieves the proof of Lemrap.4. O
From Lemma$ 53 an{d 5.4 it immediately follows that
(5:1) = ((u), p(v)) = (p(E(T)), p(X,(T))) € Tis-
Thus we have proved the inclusief}! C Ty, and the proof of Proposition $.2 is finished. O

Combining Propositionk 4.2, 4.4 afid]5.2, we obtain the ¥dhg characterization of our new upper
boundF.

Theorem 5.5 The pseudovariet§f consists of all finite monoid8/ such thats* = s“ts* whenever

(S, t) cTuy.

Proof: By Propositio4, which is a consequence of Propos@n the relationl’,; is equal to the

transitive closure ok Hence we get the statement by applying Proposftign 4.2. O
From Theore5, we obtain the following main result of fraper.

Theorem 5.6 It is decidable whether a given finite mondidl belongs to the pseudovariety

Proof: It suffices to observe that the necessary and sufficient tondin a finite monoid\/ to belong
to F given by Theore.5 can be effectively checked, which fediérom Lemm3. O

Corollary 5.7 Itis decidable whether a given finite mondifibelongs to the pseudovaridt; @ SI)NF.

Proof: It is decidable whetheM belongs to the pseudovarieBy @ SI. Indeed, Straubing’s descrip-
tion [@,] of this upper bound is obviously decidableeaiatively using the description by the Mal'cev
product, the decidability result is containedEl[lG]. Herlge statement follows from TheorS.GD
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6 The new versus the old upper bound

By [B] there is a monoid/ € B; @ Sl such thatM ¢ F. This meangB; @ SI) Z F. In this section we
exhibit a monoidV € F such thatV ¢ B, @ SI.

Let A = {a,b} and L be the language of all words that after every faetbcontain a factob®. This
means thal, = (A*a?(A*b?A*)¢)¢, where the exponentstands for complementation if*. Note that
the languaget*v?A* = A*b(*bA* is of level2. Hence(A*b?A*)¢ is also of level 2 and consequently
L is a language of level 3. We consider the syntactic mombig= M, of this language and show that
N ¢ B; @ SlandthatV € F. ConsequentlyN ¢ Vs, so thatL is not in level 2.

In order to computéV, we first note that the minimal automaton/ofs the one described in Fig(a),
where 1 is the initial state and 1 and 2 are the final states ttigin routine to compute the presentation

N = {a,b: aba = a, bab = b, a® = ba® = a*, ab® = b* = b?)

and the eggbox picture of the monald, which is represented in Figu@(b), where ttemark the

idempotents.
1]

a | *ab

*ba| b

* 2 *GZb *62

*bza‘

(@) (b)

Fig. 1. Structural information about the language

We show thatV ¢ B, @ Sl. Itis known (seee.g.(8.1) at page 732 il [13]) th&, @ Sl is defined by
all pseudoidentities

(u? w0 wau®) Y wy v wy (U wavYwau ) = (U wrv¥wau ) (U wzv¥ wau® ) (6.1)

whereu,v,w; € Fa (i = 1,...,4) are such thatv(u) = a(v) = a(w1) = a(ws) = a(ws) = a(ws).
We consider such a pseudoidentity where wepstv = wz = wy = (zy)¥, w1 = ryx? andws = yry?
to obtain the pseudoidentity

((zy)?mya® (xy) yay? (2y)?)  wya® (xy)” = ((zy) vy (zy) yoy® (zy)*)” (6.2)

which is satisfied irB; @ SI. To check thatV fails the pseudoidentitm.Z), we simply evaluate- a
andy = bin N, so that the left hand side df (b.2) evaluateatbwhile the right hand side gives.

It remains to show thalV € F. To prove it, in view of Theorerh §.5, it suffices to show thét =
s¥ts* for every pair(s,t) € Tn. Recall thatly is the transitive closure of the submondigly) of the
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monoid N x N, whereSy is defined in 2). We start by noting that the relatioff is an equivalence
relation with two classes, namefyt } and NV \ {1}. Taking into account that the only idempotents in the
non-singleton="-class that are not right zeros ark andba, we conclude that the only non-diagonal
pairs inSy are the following:(b?, ab), (a?b, ab), (a?,ba), and(b?a, ba). Hence all non-diagonal pairs
(s,t) € Ty are such that is a right zero, and sg” = s“ts*, thereby showing tha¥ € F.

The constructed monoit¥ and its properties established above yield the followiateshent.

Proposition 6.1 F Z By @ SI. i

From the example fron[l[3] and Propositi6.1 we know ftat@ SI) NF is a smaller pseudovariety
of monoids than each & @ Sl andF. Hence(B; @ SI)NF is currently the best known decidable upper
bound forV,. We leave as an open question whettier @ SI) N F = V.
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