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In this paper, we consider pattern avoidance in a subset of words on t1, 1, 2, 2, . . . , n, nu called reverse double lists.

In particular a reverse double list is a word formed by concatenating a permutation with its reversal. We enumerate

reverse double lists avoiding any permutation pattern of length at most 4 and completely determine the corresponding

Wilf classes. For permutation patterns ρ of length 5 or more, we characterize when the number of ρ-avoiding reverse

double lists on n letters has polynomial growth. We also determine the number of 1 ¨ ¨ ¨ k-avoiders of maximum length

for any positive integer k.
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1 Introduction

Let Sn be the set of all permutations on rns “ t1, 2, . . . , nu. Given π P Sn and ρ P Sk we say that

π contains ρ as a pattern if there exists 1 ď i1 ă i2 ă ¨ ¨ ¨ ă ik ď n such that πia ď πib if and

only if ρa ď ρb. In this case we say that πi1 ¨ ¨ ¨πik is order-isomorphic to ρ, and that πi1 ¨ ¨ ¨πik is an

occurrence of ρ in π. If π does not contain ρ, then we say that π avoids ρ. Of particular interest are the

sets Snpρq “ tπ P Sn | π avoids ρu. Let snpρq “ |Snpρq|. It is well known that snpρq “ p2n

n q
n`1

for ρ P S3;

see Knuth (1968). For ρ P S4, 3 different sequences are possible for tsnpρquně1. Two of these sequences

are well-understood, but an exact formula for snp1324q remains open; see Conway and Guttmann (2015).

Pattern avoidance has been studied for a number of combinatorial objects other than permutations. The

definition above extends naturally for patterns in words (i.e. permutations of multisets) and there have

been several algorithmic approaches to determining the number of words avoiding various patterns; see

Brändën and Mansour (2005); Burstein (1998); Jelı́nek and Mansour (2009); Pudwell (2010).

In another direction, a permutation may be viewed as a bijection on rns. When we graph the points

pi, πiq in the Cartesian plane, all points lie in the square r0, n ` 1s ˆ r0, n ` 1s, and thus we may apply

various symmetries of the square to obtain involutions on the set Sn. For π P Sn, let πr “ πn ¨ ¨ ¨π1 and

let πc “ pn ` 1 ´ π1q ¨ ¨ ¨ pn ` 1 ´ πnq, the reverse and complement of π respectively. For example, the

graphs of π “ 1342, πr “ 2431, and πc “ 4213 are shown in Figure 1.
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π “ 1342 πr “ 2431 πc “ 4213

Fig. 1: The graphs of π “ 1342, πr “ 2431, and πc “ 4213

Pattern-avoidance in centrosymmetric permutations, i.e. permutations π such that πrc “ π has been

studied by Egge (2007, 2010), by Lonoff and Ostroff (2010), and by Barnabei et al. (2010). Ferrari (2011)

generalized this idea to pattern avoidance in centrosymmetric words. More recently, Cratty et al. (2017)

defined the set of double lists on n letters to be

Dn “ tππ | π P Snu.

In other words, a double list is a permutation of rns concatenated with itself. We see immediately that

|Dn| “ n!. Cratty et. al. completely characterized the members of Dn that avoid a given permutation

pattern of length at most 4. In all of these cases, knowing the first half of a permutation or word determines

the second half.

In this paper we consider a type of word that exhibits a different symmetry. In particular, let

Rn “ tππr | π P Snu.

For example, R3 “ t123321, 132231, 213312, 231132, 312213, 321123u. We call Rn the set of reverse

double lists on n letters. Consider

Rnpρq “ tσ P Rn | σ avoids ρu,

and let rnpρq “ |Rnpρq|. We obtain a number of interesting enumeration sequences for trnpρquně1 with

connections to other combinatorial objects. In Section 2 we consider rnp12 ¨ ¨ ¨kq for any positive integer

k. We give an analogue of the Erdős–Szekeres Theorem for reverse double lists; in other words, we

show that rnp12 ¨ ¨ ¨kq “ 0 for sufficiently large n. We also enumerate the number of 12 ¨ ¨ ¨k-avoiders of

maximum length. In Section 3 we completely determine rnpρq for ρ P S3 YS4. In Section 4, we give data

that describes all Wilf classes for avoiding a pattern ρ P S5; we also classify the enumeration generating

functions for many of these Wilf classes. More generally, we characterize when rnpρq has polynomial

growth for a pattern ρ of arbitrary length.

2 Avoiding monotone patterns

In this section, we show that rnp12 ¨ ¨ ¨kq “ 0 for sufficiently large n. Theorem 1 gives a sharp bound on

when rnp12 ¨ ¨ ¨kq “ 0, while Theorem 3 enumerates the maximal length avoiders of 12 ¨ ¨ ¨k.

Theorem 1. rnp12 ¨ ¨ ¨kq “ 0 for n ě
`

k
2

˘

` 1.
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Proof: Consider σ “ ππr P Rn. Following Seidenberg’s proof of the Erdős–Szekeres Theorem in

Seidenberg (1959), for 1 ď i ď n, let ai be the length of the longest increasing subsequence of π ending

in πi and let bi be the length of the longest decreasing subsequence of π ending in πi. By definition,

1 ď ai, bi ď n. Further, if i ‰ j, then pai, biq ‰ paj , bjq, since if πi ă πj then ai ă aj and if πi ą πj

then bi ă bj . Finally, for all i, the increasing subsequence of length ai in π ending at πi followed by

the reversal of the decreasing subsequence of length bi in π ending at πi, minus the digit πi in πr forms

an increasing subsequence of length ai ` bi ´ 1 in σ. If σ P Rnp12 ¨ ¨ ¨kq, it must be the case that

ai ` bi ´ 1 ă k for all i. There are
`

k
2

˘

distinct pairs of positive integers where ai ` bi ´ 1 ă k, so we

have that rnp12 ¨ ¨ ¨kq “ 0 for n ě
`

k

2

˘

` 1.

In fact, this bound is sharp. Let Jℓ be the decreasing permutation of length ℓ. Also, let α ‘ β denote

the direct sum of permutations α “ α1 ¨ ¨ ¨αn and β “ β1 ¨ ¨ ¨βm, i.e.

pα ‘ βqi “
#

αi 1 ď i ď n

n ` βi´n n ` 1 ď i ď n ` m
.

Then π “ Jk´1 ‘ Jk´2 ‘ ¨ ¨ ¨ ‘ J2 ‘ J1 is a permutation of length
`

k
2

˘

such that ππr P Rnp12 ¨ ¨ ¨kq.

Now that we have a sharp bound on when rnp12 ¨ ¨ ¨kq “ 0, a natural question is: how many maximal

12 ¨ ¨ ¨k-avoiders are there? This question is most easily answered using the Robinson–Schensted corre-

spondence between permutations and pairs of standard Young tableaux of the same shape. Recall that the

Robinson–Schensted correspondence maps a ÞÑ
´

a , 1

¯

. Now, given the pair of tableau pP,Qq for

π1 ¨ ¨ ¨πn´1, we insert πn in the following way:

(a) If πn is larger than all entries of row 1 of P , then append πn to the end of row 1 of P and append n

to the end of row 1 of Q.

(b) Otherwise, find the first entry i of row 1 of P that is larger than πn, replace this entry with πn and

now repeat steps (a) and (b) by trying to insert i into row 2, bumping if necessary. When we finally

have an entry that is added to the end of a row, insert a box in the corresponding place in Q with

entry n.

In general, we write pP pπq, Qpπqq for the pair of tableau corresponding to π. For example, the steps of

this bumping algorithm for the permutation 452316 are shown in Figure 2.

In this correspondence, the number of rows of P pπq gives the length of the longest decreasing subse-

quence of π, and the number of columns of P pπq gives the length of the longest increasing subsequence

of π. If σ “ ππr P Rpk

2qp12 ¨ ¨ ¨kq, we expect both the longest increasing subsequence and the longest

decreasing subsequence of π to have length less than k. But more can be said. Consider the following

result of Greene:

Theorem 2 (Greene (1974), Theorem 3.1). Let π be a permutation, let P pπq have k rows and let λi

denote the length of the ith row of P pπq. Then for all 1 ď i ď k, the maximum size of the union of i

increasing subsequences in π is equal to λ1 ` λ2 ` ¨ ¨ ¨ ` λi.

We are ready to state a characterization of P pπq if ππr P Rpk

2qp12 ¨ ¨ ¨kq.
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4 ÞÑ
´

4 , 1

¯

4523 ÞÑ
˜

2 3

4 5
,
1 2

3 4

¸

45 ÞÑ
´

4 5 , 1 2

¯

45231 ÞÑ

¨

˚

˝

1 3

2 5

4

,

1 2

3 4

5

˛

‹

‚

452 ÞÑ
˜

2 5

4
,
1 2

3

¸

452316 ÞÑ

¨

˚

˝

1 3 6

2 5

4

,

1 2 6

3 4

5

˛

‹

‚

Fig. 2: The Robinson–Schensted correspondence applied to the permutation 452316

Theorem 3. rpk

2qp12 ¨ ¨ ¨kq is equal to the number of pairs of standard Young tableaux pP,Qq of shape

pk ´ 1, k ´ 2, . . . , 1q where P has increasing diagonals (i.e. the entry in row r column c is less than the

entry in row r ´ 1, column c ` 1 for 2 ď r ď k ´ 1 and 1 ď c ď k ´ 2).

First, we show that the pk ´ 1, k ´ 2, . . . , 1q shape of P pπq is necessary for ππr P Rpk

2qp12 ¨ ¨ ¨kq.

Lemma 1. Suppose π P Spk

2q. If P pπq does not have the shape pk ´ 1, k ´ 2, . . . , 1q, then ππr contains

an increasing subsequence of length k.

Proof: We know that P pπq has at most k ´ 1 rows; otherwise, π contains a decreasing subsequence of

length k, and πr contains an increasing subsequence of length k. Now, if λj is the length of row j of P pπq,

let r be the first row such that λj ě k ´ j ` 1. We know from Theorem 2 that the maximum size of the

union of r increasing subsequences in π is equal to λ1 ` ¨ ¨ ¨ ` λr. In fact, we can find disjoint increasing

subsequences of lengths λ1, λ2, . . . , λr in π. This means that there are at least r distinct elements of π

that are the last element in an increasing subsequence of length k ´ r ` 1. However, from the proof of

Theorem 1, we know that there are at most r ´ 1 such elements if ππr avoids 12 ¨ ¨ ¨k. Therefore, P pπq
and Qpπq have shape pk ´ 1, k ´ 2, . . . , 1q whenever ππr P Rpk

2qp12 ¨ ¨ ¨kq.

Notice while P pπq having the shape pk ´ 1, k ´ 2, . . . , 1q is necessary for ππr P Rpk

2qp12 ¨ ¨ ¨kq, it is

not sufficient. For example, when π “ 246513, P pπq has the shape p3, 2, 1q, but ππr contains a 1234

pattern, realized by the digits 1 and 3 in π together with the digits 5 and 6 in πr. However, by Lemma 1,

we may restrict our attention to

S
˚

pk

2q “
!

π P Spk

2q
ˇ

ˇ

ˇ
P pπq has shape pk ´ 1, k ´ 2, . . . , 1q

)

.

To prove Theorem 3, we must show that for π P S˚

pk

2q, ππr avoids 12 ¨ ¨ ¨k if and only if P pπq has

increasing diagonals.

Before we finish the proof of Theorem 3, we recall a construction of Viennot (1977) that relates the

entries of P pπq to the graph of π. Consider the points pi, πiq for 1 ď i ď n. The shadow of point pxi, yiq,
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1 2 3 4 5 6

1

2

3

4

5

6

Fig. 3: The shadow lines of π “ 452316

denoted Sppxi, yiqq, is Sppxi, yiqq :“
 

pu, vq P R
2
ˇ

ˇu ě xi and v ě yi
(

. In other words, the shadow is

the collection of all points above and to the right of the original point. Consider the points of the graph

of π that are not in the shadow of any other point. The boundary of the union of their shadows is the

first shadow line L1 of π. To form the second shadow line (and subsequent shadow lines), remove the

points on the first shadow line from the graph of π, and repeat. An example, showing the shadow lines of

π “ 452316, is given in Figure 3.

Viennot showed that the y-coordinates of the rightmost point on each shadow line are the entries in the

first row of P pπq. Indeed, using the Robinson–Schensted correspondence, we saw in Figure 2 that

P p452316q “
1 3 6

2 5

4

and the y-coordinates of the rightmost points on the shadow lines in Figure 3 are 1, 3, and 6. The second

row of P pπq can be found in a similar way: mark the corners of the shadow lines where there is no point

of the original permutation, as shown by the squares in the left side of Figure 4. Then, using these corners

as the new permutation graph, draw shadow lines again, as shown in the right side of Figure 4. The y-

coordinates of rightmost points on each of the new shadow lines are the second row of P pπq; in this case

the entries are 2 and 5. We can iterate this shadow line process to obtain all rows of P pπq. Shadow lines

are the main tool in our proof of Theorem 3 that follows. We proceed with a series of lemmas.

Next, we characterize the permutations π for which ππr P Rpk

2qp12 ¨ ¨ ¨kq in terms of shadow lines.

Lemma 2. Suppose π P Spk

2q. Then ππr avoids 12 ¨ ¨ ¨k if and only if
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1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

Fig. 4: Iterating the shadow line procedure to obtain the second row of P pπq for π “ 452316

1. shadow line i of π contains k ´ i points for all 1 ď i ď k ´ 1, and

2. the jth point on the ith shadow line of π is the unique point such that the longest increasing sub-

sequence ending in that point has length i and the longest decreasing subsequence ending in that

point has length j.

Proof: Suppose π P Spk

2q and ππr avoids 12 ¨ ¨ ¨k. Using the labeling from Theorem 1 there is a unique

point in π with each label pa, bq for 2 ď a ` b ď k. For any permutation π, by construction, each point

on shadow line i has a “ i. Moreover, the jth point on shadow line i has b ě j. Since we know there is

exactly one point with each label, it must be the case that the jth point on shadow line i has label pi, jq.

This labeling also results in exactly k ´ i points on the ith shadow line, as desired.

Suppose, on the other hand that ππr contains 12 ¨ ¨ ¨k. This means that the labeling from Theorem 1

results in a point πℓ with the label pa, bq where a` b ě k ` 1. By the shadow line construction, this point

must be on shadow line a. If πℓ is really the bth point on shadow line a, then we have violated condition

(1) since shadow line a has at least b ě k ` 1 ´ a points. If πℓ is not the bth point on shadow line a, then

we have violated condition (2).

As in Viennot’s general case, these shadow lines are a tool to better understand the structure of P pπq in

the context of Rpk

2qp12 ¨ ¨ ¨kq.

Lemma 3. If ππr avoids 12 ¨ ¨ ¨k, then column i of P pπq consists of the entries from the ith shadow line

of π.

Proof:

By Lemma 2 we know that the jth point on the ith shadow line of π is the unique point such that the

longest increasing subsequence ending in that point has length i and the longest decreasing subsequence

ending in that point has length j and that the ith shadow line of π has k ´ i points for all 1 ď i ď k ´ 1.
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We claim that if two points are adjacent points on the same shadow line at one iteration of the shadow

line construction, then they must be on the same shadow line at the next iteration. Suppose to the contrary

that πa ą πb are adjacent points on the same shadow line in one iteration, but they are on different shadow

lines in the next iteration. Then one of the two cases in Figure 5 must occur. That is, when we consider

the square points at height πa and πb, either there is a square on a different shadow line that forms the

1 in a 312 pattern (in which case πa moves to an earlier shadow line than πb), or there is a square on a

different shadow line that forms the 2 in a 231 pattern (in which case πb moves to an earlier shadow line

than πa), but not both (in which case, πa and πb would stay on the same line). In either case, since both

πa and πb are involved in the next iteration, there must be at least one more point πc further to the right

on their shadow line.

In the case where there is a square on a different shadow line that forms the 1 in a 312 pattern (on the

left of Figure 5), suppose that πd is the height of the square that plays the role of this 1. Call the next

point on πd’s shadow line πe, Since πd’s square forms a 312 pattern with πa and πb’s squares, πe appears

horizontally between πb and πc. If πd is the first point on the shadow line, we have a contradiction since

the longest decreasing subsequence ending at πe should have length 2. However, πa, πb, and πe form a

longer decreasing subsequence ending in πe. If πd is not the first point on its shadow line, then call the

previous point πf . Since there is no 231 pattern using the squares from πa and πb, πf ą πa. The longest

decreasing subsequence ending in πe should be the one that follows the shadow line containing πe, ending

in πfπdπe, however, taking the same decreasing subsequence and replacing πdπe with πaπbπe forms an

even longer decreasing subsequence, which is a contradiction. So, this case is impossible if ππr avoids

12 ¨ ¨ ¨k.

The case where there is a square on a different shadow line that forms the 2 in a 231 pattern (on the right

of Figure 5) is similar. Again, suppose πd is the height of the square that plays the role of this 2 and call

the next point on πd’s shadow line πe. Since πd’s square forms a 231 pattern with πa and πb’s squares,

πe appears before πb. If πe is the last element on its shadow line we have a contradiction because πe’s

shadow line should have one more element than πa’s shadow line, and the longest decreasing subsequence

ending in πe (following its shadow line) should be longer than the longest decreasing subsequence ending

in πc. However, taking πe’s shadow line and replacing πdπe with πdπbπc produces a longer decreasing

subsequence ending in πc. If πe is not the last element on its shadow line, then call the next point on the

shadow line πf . Since there is no 312 pattern using the squares from πa and πb, we know that πf appears

to the right of πc. Again, the longest decreasing subsequence ending in πf should be the decreasing

subsequence formed by following πf ’s shadow line. However, following this shadow line and replacing

πdπeπf with πdπbπcπf forms a longer decreasing subsequence ending in πf , which is a contradiction.

So, this case is also impossible if ππr avoids 12 ¨ ¨ ¨k.

In summary, if ππr avoids 12 ¨ ¨ ¨k, then two adjacent elements on the same shadow line in one iteration

of the shadow lines construction will be adjacent elements on the same shadow line at the next iteration.

This means that each row of P pπq takes one element from each of the original shadow lines and the k ´ i

elements of the ith shadow line appear in the ith column of P pπq.

Note that the converse of Lemma 3 is false. For example, when π “ 645123, then P pπq has shape

(3,2,1) where the columns of P pπq correspond to the original shadow lines of π. However, ππr contains

1234 using the digits 1, 2, and 3 from π along with the digit 4 from πr.

While Lemma 2 completely characterizes π for which ππr P Rpk

2qp12 ¨ ¨ ¨kq by giving conditions on

shadow lines, we have only given partial conditions on the correponding tableau P pπq. By Lemma 1, we
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πa

πb

πc

πd

πe

πf πa

πb

πc

πd

πe

πf

Fig. 5: Cases for points on the same shadow line

know that it is necessary for P pπq to have shape pk ´ 1, k ´ 2, . . . , 1q and by Lemma 3 is it necessary

that the ith column of P pπq consist of the entries of the ith shadow line of π. As we have seen, neither of

these conditions is sufficient for ππr P Rpk

2qp12 ¨ ¨ ¨kq. The missing condition is that given in Theorem 3;

i.e. the diagonals of P pπq must be increasing.

Proof Proof of Theorem 3:

By Lemma 1 and Lemma 3 we restrict our attention to π P S
˚

pk

2q such that the ith column of P pπq
consists of the entries of the ith shadow line of π. We show that the diagonals of P pπq are increasing if

and only if ππr avoids 12 ¨ ¨ ¨k.

Suppose that d is the smallest integer for which there is a decrease in a diagonal between some element

x in column d and element y in column d ` 1. Since x ą y and x is on an earlier shadow line than y, we

know that x appears to the left of y. The entry z in row 1 column d` 1 corresponds to the last element on

the pd ` 1qst shadow line, which means the longest decreasing subsequence in π ending in z should have

length k ´ d´ 1. However, the elements x through the end of column d together with elements y through

z of column d ` 1 form a decreasing subsequence of length k ´ d in π that ends in z, which contradicts

ππr avoiding 12 ¨ ¨ ¨k.

Suppose on the other hand that all diagonals in P pπq are increasing. As in the proof of Theorem 1,

given (partial) permutation π˚, let ak be the length of the longest increasing subsequence of π˚ ending

in π˚
k and let bk be the length of the longest decreasing subsequence of π˚ ending in π˚

k . The (partial)

permutation under consideration will be made clear from context. We claim that for any element πk, if πk

is the jth element of the ith shadow line of π then pak, bkq “ pi, jq. Since πk is on the ith shadow line,

ak “ i automatically, and we need only check that the maximal decreasing sequence ending in this entry

is of length j.

Let πpfq be the partial permutation formed by the first f shadow lines of π. We claim that that πpfq

uses labels pa, bq where 1 ď a ď f and 2 ď a ` b ď k each exactly once and proceed by induction on f .

Notice that πp1q consists of only the first shadow line. Its jth digit is at the end of a maximal increasing

sequence of length 1 and a maximal decreasing sequence of length j, and πp1q has length k ´ 1, so it
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satisfies our claim.

Now suppose that the partial permutationπpf´1q uses labels pa, bq where 1 ď a ď f´1 and 2 ď a`b ď
k each exactly once. We will show that πpfq uses labels pa, bq where 1 ď a ď f and 2 ď a ` b ď k each

exactly once.

Since the increasing diagonals property implies that the jth point on shadow line f is larger than the

jth point on any previous shadow line, that point cannot be at the end of a longer decreasing sequence in

πpfq than the one it already ends just by following shadow line f .

However, can including the digits from shadow line f affect the longest decreasing subsequence ending

at some point in πpf´1q? We claim not. Suppose, to the contrary that there is some point πk in πpfq

that has the expected label pak, bkq “ pi, jq as the jth element of the ith shadow line when we restrict to

πpf´1q, but its second coordinate is larger when we restrict to πpfq.

This implies that there is some j˚ for which the j˚th element of shadow line f appears before the

j˚th element of an earlier shadow line e in πpfq in order to make a longer decreasing subsequence ending

in πk. However, we assumed that column i of P pπq corresponds to shadow line i of π for all i, which

means each entry stays in the same column of P pπq as it was originally inserted throughout the Robinson-

Schensted bumping algorithm. When there are j˚ elements of shadow line f before the j˚th element of

shadow line e, one of the elements from column f will necessarily be bumped to an earlier column during

the Robinson-Schensted bumping algorithm. So this is impossible. That is, given that πpf´1q uses labels

pa, bq where 1 ď a ď f ´ 1 and 2 ď a ` b ď k each exactly once, if P pπq satisfies the increasing

diagonals property then πpfq uses labels pa, bq where 1 ď a ď f and 2 ď a ` b ď k each exactly once.

Since this is true for all 1 ď f ď k ´ 1, when we consider the labels of π “ πpk´1q we see that π avoids

12 ¨ ¨ ¨k by Lemma 2.

We are now in a position to compute rpk

2qp12 ¨ ¨ ¨kq since Rpk

2qp12 ¨ ¨ ¨kq is in bijection with pairs of

standard Young tableau pP,Qq where P and Q both have shape pk´1, k´2, . . . , 1q and P has increasing

diagonals.

Corollary 1.

rpk

2qp12 ¨ ¨ ¨kq “
˜

ˆ

1

2
pk ´ 1q2 ` k

2
´ 1

2

˙

!

k´1
ź

i“1

pi ´ 1q!
p2i ´ 1q!

¸˜

`

k
2

˘

!
śk´1

i“1
p2i ´ 1qk´i

¸

.

Proof: Here, the first factor of

˜

ˆ

1

2
pk ´ 1q2 ` k

2
´ 1

2

˙

!

k´1
ź

i“1

pi ´ 1q!
p2i ´ 1q!

¸

is OEIS sequence A003121 in Sloane (2018), which is the number of standard Young tableaux of shape

pk ´ 1, . . . , 1q with increasing diagonals, while

˜

`

k

2

˘

!
śk´1

i“1
p2i ´ 1qk´i

¸
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is the total number of standard Young tableaux of shape pk ´ 1, . . . , 1q, as computed by the hook length

formula and described in OEIS sequence A005118.

3 Avoiding patterns of small length

We have already described reverse double lists avoiding a monotone pattern of arbitrary length. Although

rnp12 ¨ ¨ ¨kq “ 0 for sufficiently large n, there are other patterns ρ for which rnpρq exhibits other behavior.

In the rest of the paper, we consider reverse double lists avoiding a variety of non-monotone patterns.

3.1 Avoiding patterns of length 3

In this subsection, we consider patterns of length 3. First, notice that the graph of a reverse double list

σ P Rn is a set of points on the rectangle r0, 2n ` 1s ˆ r0, n ` 1s. Using the reverse and complement

involutions described in Section 1,

σ P Rnpρq ðñ σr P Rnpρrq ðñ σc P Rnpρcq.

In fact, if σ P Rnpρq, then σ “ σr , so Rnpρq “ Rnpρrq. Partition the set of permutation patterns of

length k into equivalence classes where ρ „ τ means that rnpρq “ rnpτq for n ě 1. When ρ „ τ , ρ and

τ are said to be Wilf equivalent. When this equivalence holds because of one of the symmetries of the

rectangle, we say that ρ and τ are trivially Wilf equivalent. Using trivial Wilf equivalence we have that

123 „ 321 and 132 „ 213 „ 231 „ 312, so we need only consider 2 patterns in this section: 123 and

132.

With pattern-avoiding permutations, avoiding a pattern of length 3 is the first non-trivial enumeration,

and for any pattern ρ of length 3, we have that snpρq is the nth Catalan number. Reverse double lists are

more restrictive, so we obtain simpler sequences for rnpρq. More strikingly, although snp123q “ snp132q
for n ě 1, we obtain two distinct sequences in this new context.

By Theorem 1, rnp123q “ 0 for n ě 4. On the other hand, there are 132-avoiders of arbitrary length.

Proposition 1. rnp132q “ rnp213q “ rnp231q “ rnp312q “ 2 for n ě 2.

Proof: The n “ 2 case is straightforward to check.

Now, suppose n ě 3. We claim

Rnp132q “ tnpn ´ 1q ¨ ¨ ¨ 312213 ¨ ¨ ¨ pn ´ 1qn, npn ´ 1q ¨ ¨ ¨ 321123 ¨ ¨ ¨ pn ´ 1qnu .

Assume for contradiction that σ “ ππr P Rnp132q and π1 ‰ n. This implies that either π1 “ 1

or 2 ď π1 ď n ´ 1. If π1 “ 1, then the digits 1 and 3 in π and 2 in πr form a 132 pattern. If

2 ď π1 ď n ´ 1, then the digit 1 in π together with n and π1 in πr form a 132 pattern. Thus, π1 “ n.

Further, if σ P Rnp132q, then let σ1 be the reverse double list formed by deleting both copies of n. It

must be the case that σ1 P Rn´1p132q since a copy of 132 in σ1 would also be a copy of 132 in σ. Thus,

Rnp132q “ tnσ1n|σ1 P Rn´1p132qu. Since R2p132q “ t1221, 2112u, the claim follows by induction,

and so |Rnp132q| “ 2 when n ě 2.

At this point, we have completely characterized reverse double lists avoiding a single pattern of length

3. Although we obtained only trivial sequences, the fact that we obtained two distinct Wilf classes when

avoiding a pattern of length 3 mirrors results for pattern-avoiding double lists in Cratty et al. (2017).
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3.2 Avoiding patterns of length 4

Next, we analyze reverse double lists avoiding a single pattern of length 4. Using the symmetries of the

rectangle, we can partition the 24 patterns of length 4 into 7 trivial Wilf classes, as shown in Table 1.

There is one non-trivial Wilf equivalence for patterns of length 4; namely 1324 „ 2143. To contrast: for

double lists, there are no non-trivial Wilf equivalences for patterns of length 4. For permutations, we have

an additional trivial Wilf equivalence since snpρq “ snpρ´1q for n ě 1, so snp1342q “ snp1423q. There

are a number of additional non-trivial Wilf equivalences for pattern-avoiding permutations so that every

length 4 pattern is equivalent to one of 1342, 1234, or 1324. For large n, we have that

snp1342‚q ă snp1234:q ă snp1324˝q.

In Table 1 each pattern is marked according to its Wilf equivalence class for permutations; patterns equiv-

alent to 1342 are marked with ‚, those equivalent to 1234 are marked with :, and those equivalent to 1324

are marked with ˝. For permutations, the monotone pattern 1234 is neither the hardest nor the easiest

pattern to avoid; for double lists, it is the easiest pattern to avoid, and for reverse double lists it is the

hardest pattern to avoid. Other than the trivial equivalences of reverse and complement, Wilf equivalence

in the context of reverse double lists appears to be a very different phenomenon than equivalence in the

contexts of permutations or double lists. We now consider each of these patterns in turn.

Pattern ρ trnpρqu
1ďnď9

1234: „ 4321: 1, 2, 6, 16, 32, 32, 0, 0, 0

1243: „ 2134: „ 3421: „ 4312: 1, 2, 6, 16, 34, 62, 102, 156, 226

1324˝ „ 4231˝ 1, 2, 6, 16, 36, 76, 156, 316, 636

2143: „ 3412: 1, 2, 6, 16, 36, 76, 156, 316, 636

1423‚ „ 2314‚ „ 3241‚ „ 4132‚ 1, 2, 6, 16, 36, 80, 178, 394, 870

1432: „ 2341: „ 3214: „ 4123: 1, 2, 6, 16, 38, 92, 222, 536, 1294

1342‚ „ 2431‚ „ 3124‚ „ 4213‚ 1, 2, 6, 16, 40, 98, 238, 576, 1392

2413‚ „ 3142‚ 1, 2, 6, 16, 44, 120, 328, 896, 2448

Tab. 1: Enumeration of reverse double lists avoiding a pattern of length 4

3.2.1 The pattern 1234

By Theorem 1, rnp1234q “ 0 for n ě 7.

3.2.2 The pattern 1243

Theorem 4. rnp1243q “ n3

3
´ 7n

3
` 4 for n ě 2.

Proof: We claim that

rnp1243q “
#

n! n ď 2

rn´1p1243q ` pn ` 1qpn ´ 2q n ě 3
.
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The cases where n ď 2 are easy to check by brute force, so we focus on the case where n ě 3. Let

σ “ ππr P Rnp1243q, and let σ1 P Rn´1p1243q be the reverse double list formed by deleting both copies

of n in σ. We consider 4 cases based on the value of π1.

Suppose π1 “ n. Then σ “ nσ1n. Since n can only play the role of a 4 in a 1243 pattern, nσ1n P
Rnp1243q for any σ1 P Rn´1p1243q. There are rn´1p1243q reverse double lists on n letters in this case.

Suppose π1 “ n ´ 1. We claim that π2 “ n ´ 2. Assume for contradiction that π2 ‰ n ´ 2. This

implies π2 “ n or 1 ď π2 ď n ´ 3. If π2 “ n, then the digit 1 in π along with the digits n ´ 2, n, and

n ´ 1 in πr form a 1243 pattern. If 1 ď π2 ď n ´ 3, then the digits π2 and n ´ 2 in π along with the

digits n and n ´ 1 in πr form a 1243 pattern. Thus, if π1 “ n ´ 1, π2 “ n ´ 2. By a similar argument,

π3 “ n ´ 3, and in general, πi “ n ´ i for 1 ď i ď n ´ 2. Finally, πn´1 “ 1 and πn “ n or πn´1 “ n

and πn “ 1. Thus there are exactly two 1243-avoiding reverse double lists on n letters in this case.

Suppose π1 “ 1. We claim that π2 “ n. Assume for contradiction that π2 ‰ n. This implies

2 ď π2 ď n ´ 2 or π2 “ n ´ 1. If 2 ď π2 ď n ´ 2, then the digits 1, π2 and n in π along with the digit

n ´ 1 in πr form a 1243 pattern. If π2 “ n ´ 1, then the digits 1 and 2 in π along with the digits n and

n ´ 1 in πr form a 1243 pattern. Hence, if π1 “ 1, then π2 “ n. By a similar argument, π3 “ n ´ 1, and

in general, πi “ n ` 2 ´ i for 2 ď i ď n ´ 2. Finally, either πn´1 “ 2 and πn “ 3 or πn´1 “ 3 and

πn “ 2. Thus there are exactly two 1243-avoiding reverse double lists on n letters in this case.

Finally, suppose 2 ď π1 ď n ´ 2. Let π1 “ a. First, we claim that π1 ¨ ¨ ¨πa´1 “ apa ´ 1q ¨ ¨ ¨ 2. If

π1 “ 2, this claim is already true, so suppose π1 ą 2 but π2 ‰ a´ 1. If π2 ă a´ 1 then the digits π2 and

a ´ 1 in π along with the digits n and a in πr form a 1243 pattern. If π2 ą a then the digit 1 in π along

with the digits 2, π2, and a in πr form a 1243 pattern. Therefore, π2 “ a ´ 1. A similar argument shows

that πj “ a ´ j ` 1 for 1 ď j ď a ´ 1.

We have shown that πa´1 “ 2. Now, consider πa. We claim that πa P t1, nu. Suppose to the contrary

that a ` 1 ď πa ď n ´ 1. If a ` 1 ď πa ď n ´ 2, then the digits 2, πa, and n in π along with n ´ 1 in πr

form a 1243 pattern. If πa “ n ´ 1 then the digits 2 and a ` 1 in π along with n and n ´ 1 in πr form a

1243 pattern. Therefore, either πa “ 1 or πa “ n.

By a similar argument, there are at most 2 possible values for πj where a ` 1 ď j ď n ´ 2. Either

πj “ 1 or πj “ maxpt1, . . . , nuztπ1, . . . , πj´1uq. Finally, a ` 2 and a ` 1 may appear in either order in

π. Hence, the number 1 can take position h where a ď h ď n, and the remaining positions of πa ¨ ¨ ¨πn

must be filled with either npn ´ 1q ¨ ¨ ¨ pa ` 3qpa ` 2qpa ` 1q or npn ´ 1q ¨ ¨ ¨ pa ` 3qpa ` 1qpa ` 2q.

To summarize, if 2 ď π1 ď n ´ 2, where π1 “ a, then we have π1 ¨ ¨ ¨πa´1 “ a ¨ ¨ ¨ 2. The digit 1 may

appear in any of the n ´ a ` 1 remaining positions. After the initial a ´ 1 digits and the location of 1 are

chosen, there are 2 ways to fill in the rest of π. Either the remaining digits are npn ´ 1q ¨ ¨ ¨ pa ` 3qpa `
2qpa`1q or npn´1q ¨ ¨ ¨ pa`3qpa`1qpa`2q. There are

řn´2

a“2
2pn´a`1q “ n2 ´n´6 1243-avoiding

reverse double lists on n letters in this case.

Combining all four cases, we see that

rnp1243q “ rn´1p1243q ` 2 ` 2 ` n2 ´ n ´ 6 “ rn´1p1243q ` pn ` 1qpn ´ 2q.
The theorem then follows from the facts that (i) the n “ 2 terms of the theorem statement and the claim

agree and (ii)
ˆ

n3

3
´ 7n

3
` 4

˙

´
ˆ pn ´ 1q3

3
´ 7pn ´ 1q

3
` 4

˙

“ pn ` 1qpn ´ 2q.
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3.2.3 The patterns 1324 and 2143

We now come to two patterns that are Wilf-equivalent for non-trivial reasons. Although there is not a

simple symmetry of graphs that demonstrates rnp1324q “ rnp2143q, we show that rnp1324q and rnp2143q
each satisfy the same recurrence.

Theorem 5. rnp1324q “ 5 ¨ 2n´2 ´ 4 for n ě 3.

Proof: The case where n “ 3 is easy to check by brute force, so we focus on when n ě 4. Let

σ “ ππr P Rnp1324q. We consider 2 cases.

Suppose σ1 P Rn´1p1324q with σ1
1 “ a. We can build σ “ ππr P Rnp1324q by either using σ1 “ a or

σ1 “ a` 1, and incrementing all digits of σ1 that are at least σ1 by 1. It is impossible for σ1 to participate

in a 1324 pattern with σ2 since they are consecutive integers. It is impossible for σ1 to participate in a

1324 pattern without σ2 since any 1324 pattern involving σ1 would imply the existence of a 1324 pattern

using σ2 in place of σ1. Therefore, there are 2rn´1p1324q reverse double lists where σ2 “ σ1 ˘ 1.

Now, suppose that |π2 ´ π1| ą 1. Then if π1 ă π2 ă n, the digits π1, π2, and π1 ` 1 in π along with

the digit n in πr form a 1324 pattern. If π1 ą π2 ą 1, then the digit 1 in π along with the digits π1 ´ 1,

π2, and π1 in πr form a 1324 pattern. So, if |π2 ´ π1| ą 1 it must be the case that either π1 ă π2 “ n or

π1 ą π2 “ 1.

If π1 ă π2 “ n, then π1 “ n ´ 2, otherwise π1 and π1 ` 2 in π and π1 ` 1 and n in πr form a 1324

pattern. Also, the word π3 ¨ ¨ ¨πnπn ¨ ¨ ¨π3 must avoid 132, or nπ3 ¨ ¨ ¨πnπn ¨ ¨ ¨π3n will contain a 1324

pattern. We know that there are exactly two 132-avoiding reverse double lists for n ě 2, so there are two

1324-avoiding reverse double lists on n letters where π1 ă π2 “ n. Similarly, by taking the complements

of all reverse double lists where π1 ă π2 “ n we see that there are two reverse double lists on n letters

where π1 ą π2 “ 1.

In summary, given σ1 P Rn´1p1324q, we can produce exactly two members σ “ ππr of Rnp1324q
where |π1 ´ π2| “ 1. There are 4 additional reverse double lists where |π1 ´ π2| “ 2, so for n ě 4, we

have

rnp1324q “ 2rn´1p1324q ` 4.

From this recurrence it follows that rnp1324q “ 5 ¨ 2n´2 ´ 4 for n ě 3.

Reverse double lists avoiding 2143 follow the same recurrence but for different structural reasons.

Theorem 6. rnp2143q “ 5 ¨ 2n´2 ´ 4 for n ě 3.

Proof: The case where n “ 3 is easy to check by brute force, so we focus on when n ě 4. Let

σ “ ππr P Rnp2143q.

Suppose σ1 P Rn´1p2143q. We can build σ “ ππr P Rnp2143q by either using σ1 “ 1 and increment-

ing all digits of σ1 or by using σ1 “ n. In both cases is impossible for σ1 to participate in a 2143 pattern

since σ1 is either the largest or the smallest digit in σ. Therefore, there are rn´1p2143q reverse double

lists where σ1 “ 1 and rn´1p2143q reverse double lists where σ1 “ n.

Now, suppose 1 ă π1 ă n. Then, every digit larger than π1 must be in increasing order in πr , otherwise

π1 and 1 in π together with the decreasing pair of larger digits in πr form a 2143 pattern. Similarly, every

digit smaller than π1 must appear in increasing order in π, otherwise the decreasing pair of smaller digits

in π together with n and π1 in πr form a 2143 pattern.
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If 3 ď π1 ď n ´ 2, we already have a problem since either 1 appears before n in π or 1 appears before

n in πr . In the first case, π11npn ´ 1q is a copy of 2143 in σ, and in the second case, 21nπ1 is a copy of

2143 in σ.

So it must be the case that π1 “ 2 or π1 “ n ´ 1. In the first case, either πn´1 “ 1 or πn “ 1 and all

other digits of π are in decreasing order. In the second case, we take the complement of the words where

π1 “ 2 to get the words where π1 “ n ´ 1.

In summary, given σ1 P Rn´1p2143q, we can produce one member σ “ ππr of Rnp2143q where

π1 “ 1 and one where π1 “ n. There are 4 additional reverse double lists where π1 “ 2 or π1 “ n ´ 1,

so for n ě 4, we have

rnp2143q “ 2rn´1p2143q ` 4.

From this recurrence it follows that rnp2143q “ 5 ¨ 2n´2 ´ 4 for n ě 3.

3.2.4 The pattern 1423

Theorem 7. rnp1423q “ 2rn´1p1423q ` rn´3p1423q ` 2 for n ě 5.

Proof: Suppose n ě 5, let σ “ ππr P Rnp1423q, and let σ1 P Rn´1p1423q be the reverse double list

formed by deleting both copies of n in σ. We consider 5 cases based on the value of π1.

Suppose π1 “ n. Since n can only play the role of a 4 in a 1423 pattern, nσ1n P Rnp1423q for any

σ1 P Rn´1p1423q. There are rn´1p1423q reverse double lists on n letters in this case.

Suppose π1 “ n ´ 1. We claim that π2 “ n. Assume for contradiction π2 ‰ n. This implies π2 “ 1

or 2 ď π2 ď n ´ 2. If π2 “ 1, then the digits 1 and n in π along with the digits 2 and n ´ 1 in πr form a

1423 pattern. If 2 ď π2 ď n ´ 2, then the digit 1 in π along with the digits n, π2, and n ´ 1 in πr form a

1423 pattern. Thus, when π1 “ n ´ 1, π2 “ n. Notice that π2 “ n can only play the role of 4 in a 1423

pattern. However, since π1 “ n ´ 1, it cannot be part of a 1423 pattern in σ. On the other hand, n ´ 1

can play the role of a 3 or a 4. If the copy of n ´ 1 in πr serves as a 3 in an occurrence of 1423, then the

copy of n in π must serve as the 4; however, there is no number to play the role of the 1 that precedes n.

Therefore whenever σ2 P Rn´2p1423q, we have pn´1qnσ2npn´1q P Rnp1423q. There are rn´2p1423q
reverse double lists on n letters in this case.

Suppose 3 ď π1 ď n ´ 2. We claim that π2 “ π1 ` 1. Let π1 “ a. Assume for contradiction

π2 ‰ a ` 1. This implies π2 “ 1, 2 ď π2 ď a ´ 1, a ` 2 ď π2 ď n ´ 1, or π2 “ n.

If π2 “ 1, then the digits 1 and n in π along with the digits 2 and a in πr form a 1423 pattern. If

2 ď π2 ď a ´ 1, then the digit 1 in π along with the digits n, π2, and a in πr form a 1423 pattern. If

a ` 2 ď π2 ď n ´ 1, then the digits a and n in π along with the digits a ` 1 and π2 in πr form a 1423

pattern. If π2 “ n, then the digits a, n, and a`1 in π along with the digit n´1 in πr form a 1423 pattern.

Thus, when π1 “ a, then π2 “ a ` 1. By a similar argument, πj “ a ` j ´ 1 for 1 ď j ď n ´ a ´ 1.

We have that πn´a´1 “ n ´ 2. We claim that tπn´a, πn´a`1u “ tn ´ 1, nu. Suppose to the contrary

that πn´a R tn ´ 1, nu. If πn´a ă a ´ 1, then the digits πn´a and n in π along with the digits

a ´ 1 and a in πr form a 1423 pattern. If πn´a “ a ´ 1, then the digit 1 in π along with the digits

n, a ´ 1, and a in πr form a 1423 pattern. So it must be the case that πn´a P tn ´ 1, nu. Similarly,

πn´a`1 “ tn ´ 1, nuztπn´au. Ultimately, either πn´a “ n ´ 1 and πn´a`1 “ n or πn´a “ n and

πn´a`1 “ n ´ 1.
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Now, the remaining a ´ 1 positions of π can be filled with σ˚ P Ra´1p1423q. Because n and n ´ 1

can be interchanged and because there exist 2ra´1p1423q reverse double lists on n letters where π1 “ a

for 3 ď a ď n ´ 2, there are

n´3
ÿ

i“2

2rip1423q reverse double lists in this case.

Suppose that π1 “ 2. We claim that either π2 “ 1 or π2 “ 3. Assume for contradiction that π2 R t1, 3u.

This implies π2 “ n or 4 ď π2 ď n ´ 1. If π2 “ n, then the digits 2, n, and 3 in π along with the digit

n ´ 1 in πr form a 1423 pattern. If 4 ď π2 ď n ´ 1, then the digits 2 and n in π along with the digits 3

and π2 in πr form a 1423 pattern. Therefore, if π1 “ 2, then π2 “ 1 or π2 “ 3. By a similar argument,

πj P t1,minpt2, . . . , nuztπ1, . . . , πj´1uqu for 2 ď j ď n´2. Finally, n´1 may either precede or follow

n. We have n ´ 1 choices for the location of 1 and 2 choices for the order of n ´ 1 and n in π, so there

are 2pn ´ 1q 1423-avoiding reverse double lists on n letters where π1 “ 2.

Suppose that π1 “ 1. We claim that π2 “ 2. Assume for contradiction π2 ‰ 2. Then the digits 1

and n in π along with the digits 2 and π2 in πr form a 1423 pattern. By a similar argument, πi “ i

for 1 ď i ď n ´ 2. Finally, πn´1 “ n ´ 1 and πn “ n or πn´1 “ n and πn “ n ´ 1, giving two

1423-avoiding reverse double lists on n letters when π1 “ 1.

Combining our 5 cases, we have shown that for n ě 5,

rnp1423q “ rn´1p1423q ` rn´2p1423q `
n´3
ÿ

i“2

2rip1423q ` 2n. (1)

We are ready to prove the n ě 5 case of the theorem by induction. For the base case, when n “ 5,

r5p1423q “ 36, and 2r4p1423q ` r2p1423q ` 2 “ 2 ¨ 16 ` 2 ` 2 “ 36, as desired.

Now, suppose rkp1423q “ 2rk´1p1423q ` rk´3p1423q ` 2 for some k ě 5. From Equation 1, we have:

rk`1p1423q “ rkp1423q ` rk´1p1423q ` 2pk ` 1q `
k´2
ÿ

i“2

2rip1423q

“ rkp1423q ` rk´1p1423q ` 2k ` 2 `
k´3
ÿ

i“2

2rip1423q ` 2rk´2p1423q

“ rkp1423q ` 2rk´2p1423q ` rk´1p1423q ` 2k ` 2 `
k´3
ÿ

i“2

2rip1423q.

(2)

On the other hand, when n “ k, Equation 1 gives:

k´3
ÿ

i“2

2rip1423q “ rkp1423q ´ rk´1p1423q ´ rk´2p1423q ´ 2k. (3)

After substituting Equation 3 into Equation 2, we have:

rk`1p1423q “ rkp1423q ` 2rk´2p1423q ` rk´1p1423q ` 2k ` 2

` rkp1423q ´ rk´1p1423q ´ rk´2p1423q ´ 2k,

which simplifies to
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rk`1p1423q “ 2rkp1423q ` rk´2p1423q ` 2

“ 2rpk`1q´1p1423q ` rpk`1q´3p1423q ` 2.

3.2.5 The pattern 1432

Theorem 8. rnp1432q “ 2rn´1p1432q ` rn´2p1432q for n ě 5.

Proof: Suppose n ě 5, and let σ “ ππr P Rnp1432q. We consider 5 cases based on the value of π1.

Suppose π1 “ 1. Then 2 ď π2 ď n ´ 2 or π2 P tn ´ 1, nu. If 2 ď π2 ď n ´ 2, then the digits 1 and n

in π along with the digits n ´ 1 and π2 in πr form a 1432 pattern. If π2 “ n ´ 1 or π2 “ n, the the digits

1, π2, and n ´ 2 in π along with the digit n ´ 3 in πr form a 1432 pattern. Thus, π1 ‰ 1.

Suppose 2 ď π1 ď n ´ 3. Then π2 “ n or 1 ď π2 ď n ´ 1. If π2 “ n, then the digits π1, n, and n ´ 1

in π along with the digit n ´ 2 in πr form a 1432 pattern. If 1 ď π2 ď n ´ 1, then two cases must be

considered. If π1 ă π2, then the digit 1 in π along with the digits n, π2, and π1 in πr form a 1432 pattern.

If π1 ą π2, then the digits π2 and n in π along with the digits n ´ 1 and π1 in πr form a 1432 pattern.

Thus, π1 ě n ´ 2.

Suppose π1 “ n ´ 2. We claim that π2 “ n. Assume for contradiction that π2 ‰ n. This implies

π2 “ n ´ 1 or 1 ď π2 ď n ´ 3. If π2 “ n ´ 1, then the digit 1 in π along with the digits n, n ´ 1, and

n ´ 2 in πr form a 1432 pattern. If 1 ď π2 ď n ´ 3, then the digits π2 and n in π along with the digits

n ´ 1 and n ´ 2 in πr form a 1432 pattern. Thus, if π1 “ n ´ 2, then π2 “ n.

Now, n can only play the role of a 4 in a 1432 pattern in σ, but π1 “ n ´ 2 prevents the first copy of

n from being in such a pattern, and the fact that it is the penultimate digit of πr prevents the second copy

of n from being in such a pattern. Also, n ´ 2 can only play the role of 2, 3, or 4, so it will not play the

role of 1 in the beginning of a 1432 pattern. If the second copy of n ´ 2 serves as a 2, then n ´ 1 in πr

can serve as the 3 and n in π must serve as the 4. However, there is no number to play the role of 1 that

precedes n in π. Thus, the remaining positions can be filled in with any member of Rn´2p1432q. There

are rn´2p1432q 1432-avoiding reverse double lists on n letters where π1 “ n ´ 2.

Suppose π1 “ n ´ 1. Since n ´ 1 can only play the role of a 3 or a 4 in a 1432 pattern, it cannot

play the role of 1 at the beginning or 2 at the end of such a pattern. There are rn´1p1432q ways to fill in

the remaining digits of σ, so there are rn´1p1432q 1432-avoiding reverse double lists on n letters where

π1 “ n ´ 1.

Suppose π1 “ n. The only role n can play in a 1432 pattern is a 4, however n only appears as the first

and the last member of σ, so it cannot be involved in a 1432 pattern. There are rn´1p1432q ways to fill in

the remaining digits of σ, so there are rn´1p1432q 1432-avoiding reverse double lists on n letters where

π1 “ n.

Combining our 5 cases, we have that for n ě 5,

rnp1432q “ 2rn´1p1432q ` rn´2p1432q.
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3.2.6 The pattern 1342

Theorem 9. rnp1342q “ 2rn´1p1342q ` rn´2p1342q ` 2 for n ě 4.

Proof: Suppose n ě 4, and let σ “ ππr P Rnp1342q. We consider 5 cases based on the value of π1.

Suppose π1 “ 1. Then π2 “ n. Assume for contradiction that π2 ‰ n. This implies that π2 “ 2 or

3 ď π2 ď n ´ 1. If π2 “ 2, then the digits 1 and 3 in π along with the digits 4 and 2 in πr form a 1342

pattern. If 3 ď π2 ď n ´ 1, then the digits 1, π2, and n in π along with the digit 2 in πr form a 1342

pattern. Hence, when π1 “ 1, π2 “ n. By a similar argument, πi “ n ´ i` 2 for 2 ď i ď n´ 2. Finally,

either πn´1 “ 2 and πn “ 3 or πn´1 “ 3 and πn “ 2. Thus, there are two ways to avoid 1342 when

π1 “ 1.

Suppose 2 ď π1 ď n´ 3. Then π2 “ 1, 2 ď π2 ď n ´ 2, or π2 P tn´ 1, nu. If π2 “ 1, then the digits

1 and n ´ 1 in π along with the digits n and π1 in πr form a 1342 pattern. If 2 ď π2 ď n ´ 2, then two

cases must be considered. If π1 ă π2, then the digits π1 and n ´ 1 in π along with the digits n and π2 in

πr form a 1342 pattern. If π1 ą π2, then the digits π2 and n ´ 1 in π along with the digits n and π1 in πr

form a 1342 pattern. If π2 P tn ´ 1, nu, then the digit 1 in π along with the digits n ´ 2, π2, and π1 in πr

form a 1342 pattern. Hence, there are no 1342-avoiding reverse double lists where 2 ď π1 ď n ´ 3.

Suppose π1 “ n ´ 2. Then π2 “ n ´ 1. Assume for contradiction that π2 ‰ n ´ 1. This implies that

π2 “ n or 1 ď π2 ď n ´ 3. If π2 “ n, then the digit 1 in π along with the digits n ´ 1, n, and n ´ 2 in

πr form a 1342 pattern. If 1 ď π2 ď n ´ 3, then the digits π2 and n ´ 1 in π along with the digits n and

n ´ 2 in πr form a 1342 pattern. Thus, if π1 “ n ´ 2, then π2 “ n ´ 1. Notice that n ´ 1 can only play

the role of a 3 or 4 in a 1342 pattern. Also, n ´ 2 cannot play the role of a 1. If n ´ 2 plays the role of 2,

then n in πr must play the role of 4. Now, the only number to play the role of 3 is n ´ 1 in π. However,

there is no digit that can play the role of a 1 that precedes n ´ 1 in π. Thus, the remaining positions can

be filled in rn´2p1342q ways.

Suppose π1 “ n ´ 1. Since n ´ 1 can only play the role of a 3 or a 4 in a 1342 pattern, it cannot

play the role of 1 at the beginning or 2 at the end of such a pattern. There are rn´1p1342q ways to fill in

the remaining digits of σ, so there are rn´1p1342q 1342-avoiding reverse double lists on n letters where

π1 “ n ´ 1.

Suppose π1 “ n. The only role n can play in a 1342 pattern is a 4, however n only appears as the first

and the last member of σ, so it cannot be involved in a 1342 pattern. There are rn´1p1342q ways to fill in

the remaining digits of σ, so there are rn´1p1342q 1342-avoiding reverse double lists on n letters where

π1 “ n.

Combining all 5 cases, for n ě 4, we have shown:

rnp1342q “ 2rn´1p1342q ` rn´2p1342q ` 2.

3.2.7 The pattern 2413

Theorem 10. rnp2413q “ 2rn´1p2413q ` 2rn´2p2413q for n ě 3.

Proof: The cases where n ď 4 are easy to check by brute force, so we focus on n ě 5. Let σ “ ππr P
Rnp2413q, and let σ1 P Rn´1p2413q be the reverse double list formed by deleting both copies of n in σ.

We consider 5 cases based on the value of π1.
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Suppose π1 “ 1. Since 1 can only play the role of a 1 in a 2413 pattern, adding 1 to the beginning

and end of σ1 P Rn´1p2413q will not create a 2413 pattern. Thus, there are rn´1p2413q ways to create a

2413-avoiding reverse double list on n letters where π1 “ 1.

Suppose π1 “ 2. We claim that π2 “ 1. Assume for contradiction that π2 ‰ 1. This implies that

π2 “ n or 3 ď π2 ď n ´ 1. If π2 “ n, then the digits 2, n, and 1 in π along with the digit 3 in πr form

a 2413 pattern. If 3 ď π2 ď n ´ 1, then the digits 2 and n in π along with the digits 1 and π2 in πr form

a 2413 pattern. Hence, if π1 “ 2, then π2 “ 1. Notice that 2 can only play the role of 1 or 2 in a 2413

pattern, but its location forces 2 to either be the first digit or last digit in a 2413 pattern. If 2 is involved in

a 2413 pattern, it plays the role of 2. If it plays the role of 2 then the 1 in πr must play the role of 1, but

there is no digit after 1 that can play the role of 3. Also, 1 can only play the role of 1, but the location of

1 prevents either copy from participating in a 2413 pattern. Now, the remaining positions can be filled in

rn´2p2413q ways to avoid a 2413 pattern.

Suppose 3 ď π1 ď n ´ 2. Now, π2 “ n, 2 ď π2 ď n ´ 1, or π2 “ 1. If π2 “ n, the digits π1, n,

and 1 in π along with the digit n ´ 1 in πr form a 2413 pattern. If 2 ď π2 ď n ´ 1, two cases need to

be considered. If π1 ą π2, then the digits π2 and n in π along with the digits 1 and π1 in πr form a 2413

pattern. If π1 ă π2, then the digits π1 and n in π along with the digits 1 and π2 in πr form a 2413 pattern.

If π2 “ 1, the digit 2 in π along with the digits n, 1, and π1 in πr form a 2413 pattern. In every case, there

are no 2413-avoiding reverse double lists on n letters where 3 ď π1 ď n ´ 2.

Suppose π1 “ n ´ 1. We claim that π2 “ n. Assume for contradiction that π2 ‰ n. This implies

π2 “ 1 or 2 ď π2 ď n ´ 2. If π2 “ 1, then the digit 2 in π along with the digits n, 1, and n ´ 1 in πr

form a 2413 pattern. If 2 ď π2 ď n ´ 2, then the digits π2 and n in π along with the digits 1 and n ´ 1 in

πr form a 2413 pattern. Hence, if π1 “ n ´ 1, then π2 “ n. Notice that n ´ 1 can only play the role of

a 3 or 4 in a 2413 pattern, so it cannot play as the 2 at the beginning of a 2413 pattern. If n ´ 1 plays the

role of 3, the number n in π can play the role of 4. However, there does not exist a number before n in π

to play the role of 2. Also, n can only play the role of a 4, but the location of n prevents either copy from

participating in a 2413 pattern. Now, the remaining positions can be filled in rn´2p2413q ways to avoid a

2413 pattern.

Suppose π1 “ n. The only role n can play in a 2413 pattern is a 4, however n only appears as the first

and the last member of σ, so it cannot be involved in a 2413 pattern. There are rn´1p2413q ways to fill in

the remaining digits of σ, so there are rn´1p2413q 2413-avoiding reverse double lists on n letters where

π1 “ n.

Combining our cases, we have shown that for n ě 3,

rnp2413q “ 2rn´1p2413q ` 2rn´2p2413q.

3.2.8 Summary of length 4 patterns

We have now completely characterized rnpρq where ρ is a permutation pattern of length at most 4. By

exploiting the symmetry inherent in reverse double lists, we found recurrences for rnpρq for each pattern

of length 4. The corresponding results are given in Table 2. These results provide an interesting contrast

to pattern-avoiding permutations and double lists. First, there is exactly one non-trivial Wilf equivalence.

Second, the monotone pattern is the hardest pattern to avoid in the context of reverse double lists. Finally,
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we obtained a variety of behaviors (constant, cubic, and exponential), as compared to permutation-pattern

sequences which only grow exponentially.

Pattern ρ rnpρq
1234 „ 4321 0 (n ě 7)

1243 „ 2134 „ 3421 „ 4312
n3

3
´ 7n

3
` 4 (n ě 2)

1324 „ 4231 „ 2143 „ 3412 5 ¨ 2n´2 ´ 4 (n ě 4)

1423 „ 2314 „ 3241 „ 4132 2rn´1pρq ` rn´3pρq ` 2 (n ě 5)

1432 „ 2341 „ 3214 „ 4123 2rn´1pρq ` rn´2pρq (n ě 5)

1342 „ 2431 „ 3124 „ 4213 2rn´1pρq ` rn´2pρq ` 2 (n ě 4)

2413 „ 3142 2rn´1pρq ` 2rn´2pρq (n ě 3)

Tab. 2: Enumeration of reverse double lists avoiding a pattern of length 4

Each formula in Table 2 is straightforward to convert to a generating function via standard techniques.

The corresponding generating functions

8
ÿ

n“0

rnpρqxn are given in Table 3. Because each generating func-

tion is rational, we can find the corresponding linear recurrence satisfied by each sequence trnpρquně0

and determine the largest root of the corresponding characteristic equation to determine the exponen-

tial growth rate of the sequence. The table includes the exact growth rate for every sequence except

trnp1423quně0
. In that case, the largest root of the characteristic equation is

2

3
` 1

3

3

c

1

2
p43 ´ 3

?
177q ` 1

3

3

c

1

2
p43 ` 3

?
177q « 2.21.

Pattern ρ ogf for rnpρq exponential growth rate

1234
1 ` x ` 2x2 ` 6x3

`16x4 ` 32x5 ` 32x6

1243 ´x5`x4`4x2´3x`1

px´1q4

1324 2x4`2x3`x2´2x`1

px´1qp2x´1q
2

2143

1423 ´x5`2x4`x3`x2´2x`1

px´1qpx3`2x´1q « 2.21

1432 ´2x4´x3`x2`x´1

x2`2x´1
p1 `

?
2q « 2.41

1342 x4`2x3´2x`1

px´1qpx2`2x´1q p1 `
?
2q « 2.41

2413
px`1qp2x´1q
2x2`2x´1

p1 `
?
3q « 2.73

Tab. 3: Generating functions and exponential growth rates for avoiding a length 4 pattern
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Pattern ρ trnpρqu7n“5
Pattern ρ trnpρqu7n“5

12345: 104, 432, 1584 15324: 104, 442, 1772

12354: 104, 434, 1630 21543: 104, 442, 1800

15423: 104, 434, 1706 13425: 104, 444, 1808

21354: 104, 436, 1676 14325: 104, 444, 1828

21534 104, 436, 1746 25314: 104, 444, 1868

14523: 104, 436, 1748 15342 104, 444, 1880

12534: 104, 438, 1710 25413: 104, 444, 1884

13254 104, 438, 1720 24513
: 104, 444, 1888

12435: 104, 438, 1726 15432: 104, 446, 1846

12543 104, 438, 1766 14253 104, 448, 1904

15234
: 104, 440, 1704 14532 104, 448, 1914

12453: 104, 440, 1750 14352 104, 448, 1924

21453
: 104, 440, 1766 13524

: 104, 450, 1926

15243 104, 440, 1772 13542 104, 452, 1958

13452: 104, 440, 1802 25143 104, 454, 1982

23514: 104, 440, 1808 24153 104, 454, 1990

Tab. 4: Enumeration of reverse double lists avoiding a pattern of length 5

4 Avoiding a pattern of length 5 or more

There are 32 trivial Wilf classes for patterns of length 5. Table 4 shows the brute force data for trnpρqu7n“5

for one pattern ρ from each trivial Wilf class. From this data it is clear that there are no non-trivial Wilf

equivalences for patterns of length 5. There are some interesting observations that arise from the data.

Notice that r7p15243q “ r7p15324q while r6p15243q ‰ r6p15324q. From brute force data, it appears that

while r6p15243q ă r6p15324q, for n ą 7 rnp15243q ą rnp15324q. Similarly r6p23514q ă r6p13425q
and r7p23514q “ r7p13425q, while it appears that rnp23514q ą rnp13425q for n ą 7. This behavior is

in contrast to enumeration sequences for pattern-avoiding permutations and double lists where there is no

known example where sNpρq ă sN pτq (resp. dN pρq ă dN pτq) for some integer N but snpρq ě snpτq
(resp. dnpρq ě dnpτq) for n ě N .

We can say more about the growth rates of these sequences by relating rnpρq to pattern-avoiding permu-

tations, as described in Theorem 11. First, recall that a shuffle of words α1 ¨ ¨ ¨αi and β1 ¨ ¨ ¨βj is a word

w of length i`j where there is a subsequence of w equal to α, and a disjoint subsequence of w equal to β.

Now, given a permutation ρ P Sk define ρØ to be the set of permutations that are shuffles of ρ1 ¨ ¨ ¨ ρi and

ρk ¨ ¨ ¨ ρi`1 for any 1 ď i ď k. For example, 1234Ø “ t1234, 1243, 1423, 4123, 1432, 4132, 4312, 4321u.

In general, there are
`

k´1

i´1

˘

ways to shuffle ρ1 ¨ ¨ ¨ ρi with ρk ¨ ¨ ¨ ρi`1 where ρ1 ¨ ¨ ¨ ρi`1 is not a subsequence

of the resulting word. Summing over all possible values of i, if ρ P Sk, then |ρØ| “
k
ÿ

i“1

ˆ

k ´ 1

i ´ 1

˙

“ 2
k´1.

Theorem 11. Given ρ P Sk and n ě 0,

rnpρq “ snpρØq.
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Proof: Suppose σ “ ππr P Rn contains ρ. Then, for some 1 ď i ď n, ρ1 ¨ ¨ ¨ ρi is contained in

π while ρi`1 ¨ ¨ ¨ ρk is contained in πr. If ρi`1 ¨ ¨ ¨ ρk is contained in πr, then ρk ¨ ¨ ¨ ρi`1 is contained

in π. Further, ρ1 ¨ ¨ ¨ ρi and ρk ¨ ¨ ¨ ρi`1 use disjoint digits of σ, so π contains a shuffle of ρ1 ¨ ¨ ¨ ρi and

ρk ¨ ¨ ¨ ρi`1. It follows that σ avoids ρ if and only if π avoids all shuffles of ρ1 ¨ ¨ ¨ ρi and ρk ¨ ¨ ¨ ρi`1 for all

1 ď i ď k.

As a consequence of Theorem 11, when ρ P Sk , Rnpρq is isomorphic to a classical permutation

class SnpBq, where B is a set of 2k´1 classical permutations of length k. For example, rnp123q “
snp123, 132, 312, 321q. Because every set we have enumerated in this paper is a finitely-based classical

permutation class, we can use known machinery to determine asymptotic growth of rnpρq for arbitrary ρ.

For example, Vatter showed the following:

Theorem 12 (Vatter (2006), Theorem 7). Let B be a finite set of patterns. The pattern-avoidance tree

T pBq is isomorphic to a finitely labeled generating tree if and only if B contains both a child of an

increasing permutation and a child of a decreasing permutation.

Theorem 12 implies that snpBq has a rational generating function if B contains both a permutation that

is achieved by inserting one digit into an increasing permutation and another permutation that is achieved

by inserting one digit into a decreasing permutation. The patterns ρ for which ρØ fits this criteria are

marked with : in Table 4.

Rational generating functions can indicate either polynomial or exponential growth, however. In Albert

et al. (2007), Albert, Atkinson, and Brignall give necessary and sufficient conditions on when snpBq
exhibits polynomial growth. The direct sum α ‘ β of permutations α and β is the permutation formed by

concatenating α and β and incrementing all digits of β by |α|. The skew sum α a β of permutations α

and β is the permutation formed by concatenatingα and β and incrementing all digits of α by |β|. Further

let ǫ “ pe1, e2q be an ordered pair where te1, e2u Ď t´1, 1u. The pattern class W pǫq is the set of all

permutations π “ π1 ¨ ¨ ¨πn where there exists a value 1 ď j ď n such that πpiq is increasing if ei “ 1 and

πpiq is decreasing if ei “ ´1 where πp1q :“ π1 ¨ ¨ ¨πj and πp2q :“ πj`1 ¨ ¨ ¨πn. We have the following

characterization from Albert, Atkinson, and Brignall:

Theorem 13 (Albert et al. (2007), Theorem 1). snpBq has polynomial growth if and only if B contains

a member of each of the following 10 sets of permutations: W p1, 1q, W p1,´1q, W p´1, 1q, W p´1,´1q,

W p1, 1q´1, W p1,´1q´1, W p´1, 1q´1,

W p´1,´1q´1, L2 “
!

Àj

i“1
αi

ˇ

ˇ

ˇ
αi P t1, 21u for all i

)

and Lr
2.

Applying Theorem 13 to the case of reverse double lists yields the following:

Theorem 14. rnpρq has polynomial growth if and only if ρ is trivially Wilf equivalent to 12 ¨ ¨ ¨k or to

1 ¨ ¨ ¨ pk ´ 2qkpk ´ 1q.

Proof:

We can check that the theorem holds for ρ of length at most 9 by brute force methods, so without loss

of generality, we assume that k ě 10.

First, notice that snpρØq meets the criteria in Theorem 13 when ρ “ 12 ¨ ¨ ¨k or ρ “ 1 ¨ ¨ ¨ pk ´ 1qkpk´
1q. In the case of ρ “ 1 ¨ ¨ ¨k, ρ is a member of classes W p1, 1q, W p1,´1q, W p´1, 1q, W p1, 1q´1,

W p1,´1q´1, W p´1, 1q´1, and L2, while ρr is a member of the other 3 classes, and tρ, ρru Ă ρØ. In

the case of ρ “ 1 ¨ ¨ ¨ pk ´ 2qkpk ´ 1q, 1 ¨ ¨ ¨k is still a member of 7 of the 10 classes, ρr is a member of

the other 3 classes, and t1 ¨ ¨ ¨k, ρru Ă ρØ.



22 Monica Anderson, Marika Diepenbroek , Lara Pudwell, Alex Stoll

Now, suppose that ρØ has a member of each of the 10 necessary permutation classes. This means there

is some integer i such that a shuffle of ρ1 ¨ ¨ ¨ ρi together with ρn ¨ ¨ ¨ ρi`1 is in L2. By definition of shuffle,

the first digit of the shuffle is either ρ1 or ρn. By definition of L2, the first digit of the shuffle is either 1 or

2.

Similarly, there is some integer j such that a shuffle of ρ1 ¨ ¨ ¨ ρj together with ρn ¨ ¨ ¨ ρj`1 is in Lr
2
. By

definition of shuffle, the first digit of the shuffle is either ρ1 or ρn. By definition of Lr
2
, the first digit of

the shuffle is either n ´ 1 or n.

Combining these observations, either ρ1 P t1, 2u and ρn P tn´1, nu or ρ1 P tn´1, nu and ρn P t1, 2u.

We will assume that ρ1 P t1, 2u because if ρ1 P tn ´ 1, nu, then ρc1 P t1, 2u and ρc is Wilf-equivalent to

ρ.

Now, since ρn P tn ´ 1, nu and there is a shuffle of ρ1 ¨ ¨ ¨ ρi together with ρn ¨ ¨ ¨ ρi`1 in L2, it must

be the case that ρn is among the last 3 digits of the shuffle. In other words i ě n ´ 3. This implies that

ρ1 ¨ ¨ ¨ ρn´3 P L2.

Similarly, since ρ1 P t1, 2u and there is a shuffle of ρ1 ¨ ¨ ¨ ρj together with ρn ¨ ¨ ¨ ρj`1 in Lr
2
, it must

be the case that ρ1 is among the last 3 digits of the shuffle. In other words, i ď 3. This implies that

ρn ¨ ¨ ¨ ρ4 P Lr
2, and by taking reversal, ρ4 ¨ ¨ ¨ ρn P L2.

We assume that n ě 10, so ρ1 ¨ ¨ ¨ ρn´3 and ρ4 ¨ ¨ ¨ ρn overlap by at least 4 digits. It must then be the

case that ρ P L2 if ρØ has nontrivial intersection with both L2 and Lr
2.

Now, we know that ρ P
!

Àj

i“1
αi

ˇ

ˇ

ˇ
αi P t1, 21u

)

. Assume αi “ 21 for some 1 ă i ă j. In other

words ρ has a layer of size 2 that is not at the beginning or the end of ρ. We claim that there is no

member of ρØ in W p´1, 1q´1. Suppose to the contrary that there is such a member of ρØ. Write

ρ “ ρ1 ¨ ¨ ¨ ρℓα1α2ρℓ`3 ¨ ¨ ¨ ρn. where α1 ą α2 are the members of αi. Clearly ρ R W p´1, 1q´1, so

there must be an integer m such that a shuffle of ρ1 ¨ ¨ ¨ ρm and ρn ¨ ¨ ¨ ρm`1 is in W p´1, 1q´1. If m ď ℓ

then in the shuffle ρℓ`3 precedes α2 which precedes α1, and these three digits for a 312 pattern. But all

members of W p´1, 1q´1 avoid 312. If m ě ℓ ` 2 then ρℓ precedes α1 which precedes α2, and these

three digits form a 132 pattern. But all members of W p´1, 1q´1 avoid 132. So it must be the case that

m “ ℓ ` 1. Thus ρℓ precedes α1 and ρℓ`3 precedes α2. Since ρℓ ă α1, it must be the case that all digits

larger than α1 appear after α1 in increasing order. In other words ρℓ`3 must appear after α1. But then ρℓ,

α1, ρℓ`3 and α2 form a 1342 pattern, and all members of W p´1, 1q´1 avoid 1342. We have reached a

contradiction in every possible scenario, so the αi “ 21 is only possible if i “ 1 or i “ j.

Now, suppose that ρ “ 21 ‘
´

Àn´4

i“1
1

¯

‘ 21. We claim that there is no member of ρØ in W p1,´1q.

Suppose there is an integer j such that a shuffle of ρ1 ¨ ¨ ¨ ρj and ρn ¨ ¨ ¨ ρj`1 is in W p1,´1q. Since ρ1 ą ρ2,

it must be the case that j “ 1, and the shuffle in question is ρr “ 12 a
´

Án´4

i“1
1

¯

a 12. However, the

longest increasing sequence at the beginning of ρr is ρnρn´1, and then ρn´2 ¨ ¨ ¨ ρ1 is not in decreasing

order because ρ2 ă ρ1. So, there is no member of ρØ in W p1,´1q.

We have now shown that if ρØ has a nontrivial intersection with L2, Lr
2
, W p´1, 1q´1, and W p1,´1q,

then ρ P L2, there is at most one layer of size 2 in ρ, and that layer must either be the first layer or the

last layer. In other words, ρ is trivially Wilf-equivalent to either 12 ¨ ¨ ¨k or 1 ¨ ¨ ¨ pk ´ 2qkpk ´ 1q, which

is what we wanted to show.

Therefore, there are exactly 2 classes Rnpρq that have polynomial growth for ρ P Sk .
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5 Summary

In this paper, we have completely determined rnpρq for any permutation pattern ρ of length at most 4.

We have also determined the Wilf classes for patterns of length 5. By realizing that rnpρq “ snpρØq,

we took advantage of earlier results in the permutation patterns literature to completely characterize when

rnpρq has polynomial growth. We also modified a classic proof of the Erdős–Szekeres Theorem to show

that rnp12 ¨ ¨ ¨kq “ 0 for n ě
`

k
2

˘

` 1, and used the Robinson–Schensted correspondence to determine

rpk

2qp12 ¨ ¨ ¨kq for all k. There are still several open questions of interest:

1. All of the sequences in Table 2 have rational generating functions. Do there exist patterns ρ where

the sequence trnpρqu does not have a rational generating function?

2. We know that the majority of the sequences in Table 4 have rational generating functions because

of Theorem 12; however, actually computing the appropriate finitely-labeled generating trees was

prohibitive both in terms of time and computer memory. What other techniques can be used to

enumerate the members of the corresponding permutation classes?

3. We determined rpk

2qp12 ¨ ¨ ¨kq by characterizing the pairs of standard Young tableau that correspond

to π where ππr P Rpk

2qp12 ¨ ¨ ¨kq. While rpk

2q´1
p12 ¨ ¨ ¨kq “ rpk

2qp12 ¨ ¨ ¨kq and rpk

2q´2
p12 ¨ ¨ ¨kq “

rpk2q´1
p12 ¨ ¨ ¨kq
2

, for smaller length permutations π, ππr may avoid 12 ¨ ¨ ¨k without P pπq having

increasing diagonals. What can be said about P pπq where ππr P Rnp12 ¨ ¨ ¨kq for n ď k ´ 3?

Acknowledgements

The authors are grateful to two anonymous referees for their feedback, which improved the organization

and clarity of this paper.

References

M. H. Albert, M. D. Atkinson, and R. Brignall. Permutation classes of polynomial growth. Ann. Comb.,

11(3–4):249–264, 2007.

M. Barnabei, F. Bonetti, and M. Silimbani. The Eulerian numbers on restricted centrosymmetric permu-

tations. Pure Math. Appl. (PU.M.A.), 21(2):99–118, 2010.
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ter, editors, Permutation Patterns (2010), volume 376 of London Mathematical Society Lecture Note

Series, pages 193–211. Cambridge University Press, 2010.

A. Seidenberg. A simple proof of a theorem of Erdős and Szekeres. J. Lond. Math. Soc., 34:352, 1959.
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