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We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG)
model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space,
and edges are assigned according to a threshold function involving the distance between nodes as well as randomly
chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks,
the Internet, etc.) need to be studied by using a “richer” stochastic model (which in this case includes both a distance
between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph’s
clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic
behavior of the chromatic number is identical: 𝜒 = ln𝑛

ln ln𝑛
(1 + 𝑜(1)). Finally, we consider the leading corrections

to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number.
We show that the gap between the lower and upper bound is within 𝐶 ln𝑛/(ln ln𝑛)2, and specify the constant 𝐶.
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1 Introduction
Numerous approaches have been proposed in recent years to study the structure of large real-world techno-
logical and social networks, and to optimize processes on these networks. A particularly fertile approach
has been to consider the network as an instance of an ensemble, arising from a suitable random genera-
tive model. One straightforward example is the random geometric graph (RGG) model, where nodes are
placed at random in a Euclidean space and edges are placed between any two nodes within a threshold
distance. This has the advantage of describing many aspects of systems such as sensor networks, while
avoiding unnecessary detail. Even though geometric correlations in RGGs complicate the probabilistic
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analysis of the model, recent work has clarified many of its structural properties including threshold be-
havior Penrose (2003); Gupta and Kumar (1998); Goel et al. (2004), random walk behavior Avin and
Ercal (2007) and chromatic number McDiarmid and Müller; Müller (2008); Penrose (2003).

RGGs fail, however, to capture heterogeneity in the network. Geographical threshold graphs (GTG)
aim at generalizing RGGs, providing this heterogeneity via a richer stochastic model that nevertheless
preserves much of the simplicity of the RGG model. GTGs assign to nodes both a location and a weight,
which may represent a quantity such as transmission power in a wireless network or influence in a social
network. Edges are placed between two nodes if a symmetric function of their weights and the distance
between them exceeds a certain threshold Bradonjić and Kong (2007).

Recent work has analyzed structural properties of GTGs, such as connectivity, clustering coefficient,
degree distribution, diameter, existence and absence of the giant component Bradonjić et al. (2007, 2008).
These properties are not merely of theoretical importance, but also play an important role in applications.
In communication networks, connectivity implies the ability to reach all parts of the network. In packet
routing, the diameter gives the minimal number of hops needed for transmission between two arbitrary
nodes. And in the case of epidemics, the existence or absence of the giant component controls whether
the epidemic spreads or is contained.

When considering wireless networks, a natural quantity to study is the chromatic number. This is the
minimum number of colors needed to color vertices, such that no two adjacent vertices in the graph receive
the same color. Treating the colors as the different radio channels or frequencies, the chromatic number
gives the minimal number of channels needed so that neighboring radios do not interfere with each other.
In this paper we study the asymptotic behavior of the chromatic number for GTGs with constant mean
degree. We propose a greedy coloring algorithm, and analyze the behavior of this algorithm along with
the graph’s clique number. This leads to upper and lower bounds on the chromatic number.

The paper is organized as follows. Section 2 defines the GTG model. Section 3 presents our main
asymptotic result, based on our analysis of the coloring algorithm. We show that for graphs 𝐺 of con-
stant mean degree, both the clique number 𝜔(𝐺) and chromatic number 𝜒(𝐺) are with high probability
ln𝑛

ln ln𝑛 (1 + 𝑜(1)). Section 4 analyzes the gap between lower and upper bounds on the chromatic number,
given respectively by the clique number and the greedy coloring algorithm. We show that this gap is
at most 𝐶 ln𝑛/(ln ln𝑛)2, and bound the constant 𝐶. Finally, Section 5 concludes with open questions
regarding the chromatic number for sparser and denser GTGs.

2 Geographical Threshold Graph Model
Given random points 𝑋1, 𝑋2, · · · ∈ [0, 1]2 that are i.i.d., uniformly at random, and i.i.d. nonnegative
weights 𝑊1,𝑊2, . . . , we construct a random geographical threshold graph 𝐺𝑛 as follows. Let 𝑁 =𝑑 Po(𝑛)
be the number of nodes, independent of the 𝑋𝑖 and 𝑊𝑖. Let 𝜃𝑛 be a given threshold parameter that depends
on 𝑛. Then 𝐺𝑛 has vertex set 𝑉 (𝐺𝑛) = {1, . . . , 𝑁}, and for 𝑖, 𝑗 ∈ 𝑉 (𝐺𝑛), 𝐺𝑛 has edge 𝑖𝑗 ∈ 𝐸(𝐺𝑛) iff

𝑊𝑖 + 𝑊𝑗

‖𝑋𝑖 −𝑋𝑗‖2
≥ 𝜃𝑛. (1)

For technical convenience we identify opposite edges of [0, 1]2, making it into a torus.
We will specifically analyze the regime of constant expected degree. If E(𝑊𝑖) is a constant, then

this occurs when the threshold parameter is linear in the expected number of nodes, 𝜃𝑛 = Θ(𝑛). For
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simplicity we take 𝜃𝑛 = 𝑛, since if 𝜃𝑛 = 𝑐𝑛 for some constant 𝑐 > 0, the weights can always be rescaled
to 𝑊𝑖 := 𝑊𝑖/𝑐.

3 Asymptotic Results
If 𝐺 is a graph then 𝜔(𝐺) denotes its clique number and 𝜒(𝐺) its chromatic number. We will show
formally that the clique number and chromatic number of the geographical threshold graph are essentially
the same as those for a random geometric graph with the same (constant) average degree.

Note that, since coloring a clique of size 𝜔(𝐺) requires 𝜔(𝐺) different colors, 𝜔(𝐺) ≤ 𝜒(𝐺).

Theorem 3.1 Suppose that weights are distributed such that Pr(𝑊𝑖 > 𝑥) = 𝑂(𝑥−𝛾) for some 𝛾 > 1.
Then

𝜔(𝐺𝑛)

ln𝑛/ ln ln𝑛
→ 1 in probability,

and
𝜒(𝐺𝑛)

ln𝑛/ ln ln𝑛
→ 1 in probability,

as 𝑛 → ∞.

The rest of this section is devoted to proving the theorem.

3.1 Lower bound
Let 𝑤̂ ∈ R be such that Pr(𝑊𝑖 > 𝑤̂) ≥ 1/2. Then the probability that 𝐺𝑛 contains fewer than 𝑛/3
vertices with weight more than 𝑤̂ is exponentially small. In fact, this probability is bounded above by
the probability that a Po(𝑛/2)-variable is less than 𝑛/3, which is exp(−Ω(𝑛)), as can be seen by the
Chernoff bound. Let 𝐺′

𝑛 be the subgraph of 𝐺𝑛 induced by 𝑛/3 of the points with weight at least 𝑤̂. Note
that if 𝑖, 𝑗 ∈ 𝑉 (𝐺′

𝑛) and ‖𝑋𝑖 − 𝑋𝑗‖2 < 2𝑤̂/𝑛 then certainly 𝑖𝑗 ∈ 𝐸(𝐺′
𝑛). Thus 𝐺′

𝑛 (and hence also
𝐺𝑛) contains the ordinary random geometric graph RGG(𝑛/3,

√︀
2𝑤̂/𝑛) as a subgraph, with probability

1 − exp(−Ω(𝑛)). By Lemma 5.3 of McDiarmid (2003),

Pr(𝜔(𝐺𝑛) < (1 − 𝜀) ln𝑛/ ln ln𝑛) = 𝑜(1).

3.2 Upper bound
Let us define a “level” 𝐿𝑘 as follows:

𝐿𝑘 :=

{︃
{𝑖 ≤ 𝑁 : 𝑊𝑖 < 1}, 𝑘 = −1

{𝑖 ≤ 𝑁 : 4𝑘 ≤ 𝑊𝑖 < 4𝑘+1}, 𝑘 ≥ 0.

Note that the set {𝑋𝑖 : 𝑖 ∈ 𝐿𝑘} of the points of the Poisson process corresponding to level 𝑘 (for 𝑘 ≥ 0)
is in fact a Poisson process itself with intensity 𝑛

(︀
𝐹 (4𝑘+1) − 𝐹 (4𝑘)

)︀
on the unit square and intensity 0

elsewhere, where 𝐹 denotes the cdf of 𝑊1. Moreover, these Poisson processes corresponding to the levels
𝐿−1, 𝐿0, 𝐿1, . . . are independent.

For 𝑥 ∈ [0, 1]2 let us denote

𝑀𝑥 :=

∞∑︁
𝑘=−1

|{𝑖 ∈ 𝐿𝑘 : ‖𝑋𝑖 − 𝑥‖ ≤ 6
√

2 · 2𝑘/
√
𝑛}|,
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and let us set
𝑀 := max

𝑥∈[0,1]2
𝑀𝑥.

Very roughly, 𝑀 represents the greatest number of neighbors that a sufficiently high-weight node can
have. Then we have the following lemma.

Lemma 3.2 The chromatic number satisfies 𝜒(𝐺𝑛) ≤ 𝑀 .

Proof: Let us order the vertices by nondecreasing weight and greedily color them. That is, we first color
the vertex with smallest weight, then the vertex with second smallest weight and so on; and when we
choose a color for a vertex we always pick the smallest available color (i.e., the smallest color that does
not occur among the neighbors of the vertex that have already been colored). We claim that in this way
we will never need more than 𝑀 colors.

For ease of notation let us assume (w.l.o.g.) that 𝑊1 ≤ 𝑊2 ≤ · · · ≤ 𝑊𝑁 . Let 𝑁<(𝑖) represent all
neighbors of node 𝑖 with lower weight than 𝑖:

𝑁<(𝑖) := {𝑗 < 𝑖 : 𝑖𝑗 ∈ 𝐸(𝐺𝑛)}.

Note that if 𝑖 ∈ 𝐿𝑘 and 𝑗 ∈ 𝑁<(𝑖) then ‖𝑋𝑖 −𝑋𝑗‖ ≤ 2𝑘+3/2/
√
𝑛. For 1 ≤ 𝑖 ≤ 𝑁 let 𝑐(𝑖) denote the

color that the algorithm has assigned to vertex 𝑖. Observe that for each 1 ≤ 𝑖 ≤ 𝑁 we have

{1, . . . , 𝑐(𝑖) − 1} ⊆ {𝑐(𝑗) : 𝑗 ∈ 𝑁<(𝑖)}, (2)

because otherwise the algorithm would not have used color 𝑐(𝑖) for 𝑖.
Now let 𝑖 be an arbitrary vertex. For notational convenience let us write 𝑗0 := 𝑖 and let 𝑘0 denote the

level of 𝑖. Let 𝑚 be the maximal number for which there exist strictly decreasing sequences 𝑗0 > 𝑗1 >
· · · > 𝑗𝑚 and 𝑘0 > 𝑘1 > · · · > 𝑘𝑚 with the following properties. For each 𝑝 = 0, . . . ,𝑚− 1 we have

1. 𝑐(𝑗𝑝+1) = max
(︀
{1, . . . , 𝑐(𝑗𝑝) − 1} ∖ {𝑐(𝑗) : 𝑗 ∈ 𝑁<(𝑗𝑝) ∩ 𝐿𝑘𝑝}

)︀
;

2. 𝑗𝑝+1 ∈ 𝐿𝑘𝑝+1
∩𝑁<(𝑗𝑝).

(Observe that, for each color 𝑐 ∈ {1, . . . , 𝑐(𝑗𝑝) − 1} ∖ {𝑐(𝑗) : 𝑗 ∈ 𝑁<(𝑗𝑝) ∩ 𝐿𝑘𝑝} – provided this set is
non-empty – there is a 𝑗 ∈ 𝑁<(𝑗𝑝) with 𝑐(𝑗) = 𝑐 by (2) and the level of 𝑗 is necessarily strictly less than
𝑘𝑝.) It is possible that 𝑚 = 0. In that case {1, . . . , 𝑐(𝑗0) − 1} ⊆ {𝑐(𝑗) : 𝐿𝑘0

∩𝑁<(𝑗0)}. This gives

𝑐(𝑖) ≤ |𝐿𝑘0 ∩𝑁<(𝑖)| + 1
≤ |{𝑗 ∈ 𝐿𝑘0

: ‖𝑋𝑗 −𝑋𝑖‖ ≤ 2𝑘0+3/2/
√
𝑛}|

≤ 𝑀𝑋𝑖

≤ 𝑀.

Now suppose that 𝑚 > 0. By maximality of 𝑚 we have

{1, . . . , 𝑐(𝑗𝑚) − 1} ⊆ {𝑐(𝑗) : 𝐿𝑘𝑚
∩𝑁<(𝑗𝑚)}. (3)

Also note that, by definition of 𝑗𝑝 we have

{𝑐(𝑗𝑝+1) + 1, . . . , 𝑐(𝑗𝑝) − 1} ⊆ {𝑐(𝑗) : 𝑗 ∈ 𝐿𝑘𝑝
∩𝑁<(𝑗𝑝)} for 𝑝 = 0, . . . ,𝑚− 1. (4)
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Combining (3) and (4) we find

𝑐(𝑖) = |{1, . . . , 𝑐(𝑗𝑚) − 1}| + 1 +
∑︀𝑚−1

𝑝=0 |{𝑐(𝑗𝑝+1) + 1, . . . , 𝑐(𝑗𝑝) − 1}| + 1

≤
∑︀𝑚

𝑝=0 |𝐿𝑘𝑝
∩𝑁<(𝑗𝑝)| + 𝑚 + 1

≤
∑︀𝑚

𝑝=0 |{𝑗 ∈ 𝐿𝑘𝑝 : ‖𝑋𝑗 −𝑋𝑗𝑝‖ ≤ 2𝑘𝑝+
3
2 /

√
𝑛}|.

(5)

Let us observe that:

‖𝑋𝑗𝑝 −𝑋𝑗𝑚‖ ≤
∑︀𝑚−1

𝑞=𝑝 ‖𝑋𝑗𝑞 −𝑋𝑗𝑞+1
‖ ≤

∑︀𝑚−1
𝑞=𝑝 2𝑘𝑞+3/2/

√
𝑛

< 2𝑘𝑝+5/2/
√
𝑛,

for all 1 ≤ 𝑝 ≤ 𝑚. Thus, if ‖𝑋𝑗 −𝑋𝑗𝑝‖ < 2𝑘𝑝+
3
2 /

√
𝑛 then

‖𝑋𝑗 −𝑋𝑗𝑚‖ ≤ ‖𝑋𝑗𝑝 −𝑋𝑗𝑚‖ + ‖𝑋𝑗 −𝑋𝑗𝑝‖
≤ (2𝑘𝑝+5/2 + 2𝑘𝑝+3/2)/

√
𝑛

= 6
√

2 · 2𝑘𝑝/
√
𝑛.

(6)

Combining (6) with (5) we get:

𝑐(𝑖) ≤
∑︀𝑚

𝑝=0 |{𝑗 ∈ 𝐿𝑘𝑝
: ‖𝑋𝑗 −𝑋𝑗𝑚‖ ≤ 6

√
2 · 2𝑘𝑝/

√
𝑛}|.

≤ 𝑀𝑋𝑗𝑚

≤ 𝑀.

Since the vertex 𝑖 was arbitrary, the claim follows. 2

Remark: Note that Lemma 3.2 does not depend on the fact that the points and weights are random,
but rather it will hold for any “deterministic” threshold graph if we replace 𝑛 by its threshold 𝜃𝑛 in the
definition of 𝑀𝑥 above.

To finish the proof of the theorem it now suffices to prove the following lemma.

Lemma 3.3 Suppose that weights are distributed such that Pr(𝑊𝑖 > 𝑥) = 𝑂(𝑥−𝛾) for some 𝛾 > 1.
Then, for any 𝜀 > 0:

Pr

(︂
𝑀 ≥ (1 + 𝜀)

ln𝑛

ln ln𝑛

)︂
→ 0,

as 𝑛 → ∞.

Proof: Let us set

𝑀 ′
𝑥 :=

∞∑︁
𝑘=−1

|{𝑖 ∈ 𝐿𝑘 : ‖𝑋𝑖 − 𝑥‖ ≤ 12
√

2 · 2𝑘/
√
𝑛}|,

and 𝐴 := {( 𝑎√
𝑛
, 𝑏√

𝑛
) : 0 ≤ 𝑎, 𝑏 ≤

√
𝑛} (where 𝑎 and 𝑏 are integers). Now, for any 𝑥 ∈ [0, 1]2 there is

𝑧 ∈ 𝐴 with ‖𝑥−𝑧‖ ≤
√

2/
√
𝑛. So if ‖𝑋𝑖−𝑥‖ ≤ 6

√
2·2𝑘/

√
𝑛 then ‖𝑋𝑖−𝑧‖ ≤

√
2/
√
𝑛+6

√
2·2𝑘/

√
𝑛 <

12
√

2 · 2𝑘/
√
𝑛 for all 𝑘 ≥ −1, and thus

𝑀 ≤ max
𝑥∈𝐴

𝑀 ′
𝑥. (7)
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Let 𝑥 ∈ R2 be arbitrary and note that 𝑀 ′
𝑥=𝑑

∑︀∞
𝑘=−1 𝑍𝑘, where the 𝑍𝑘 are independent Poisson random

variables, and

E(𝑍𝑘) =

{︃
𝜋(12

√
2)24−1𝐹 (1), 𝑘 = −1

𝜋(12
√

2)24𝑘
(︀
𝐹 (4𝑘+1) − 𝐹 (4𝑘)

)︀
, 𝑘 ≥ 0.

= 𝑂(4𝑘(1−𝛾)).

So in particular 𝑀 ′
𝑥 is itself Poisson with a mean that is bounded above by some constant, say 𝜇. Using a

well known bound, see for instance the Lemma 4.4 of McDiarmid (2003), we obtain that

Pr(𝑀 ′
𝑥 > (1 + 𝜀) ln𝑛/ ln ln𝑛) ≤

(︂
𝑒𝜇

(1 + 𝜀) ln𝑛/ ln ln𝑛

)︂(1+𝜀) ln𝑛/ ln ln𝑛

(8)

= exp
(︀
− (1 + 𝜀 + 𝑜(1)) ln𝑛

)︀
.

Hence, by Eq. (7), applying the union bound,

Pr
(︁
𝑀 > (1 + 𝜀) ln𝑛/ ln ln𝑛

)︁
≤ 𝑛𝑒−(1+𝜀+𝑜(1)) ln𝑛

≤ 𝑛− 𝜀
2 . (9)

The last inequality holds for 𝑛 sufficiently large. This shows that 𝑀/(ln𝑛/ ln ln𝑛) is upper bounded by
1 + 𝜀, with high probability. 2

Remark: It is possible to adapt a subsequence trick from Penrose (2003) (page 123) to strengthen the
type of convergence in Theorem 3.1 from convergence in probability to almost sure convergence. We now
briefly sketch the main ideas.

The probability that the clique number of the RGG is less than (1 − 𝜀) ln𝑛/ ln ln𝑛 has been upper
bounded by exp(−𝑛𝜀+𝑜(1)) in McDiarmid (2003) (page 201). These computations combined with the
Borel-Cantelli Lemma give that lim inf 𝑀/(ln𝑛/ ln ln𝑛) ≥ 1 a.s.

To prove that lim sup𝑀/(ln𝑛/ ln ln𝑛) ≤ 1 a.s. let us define a sequence (𝑚𝑘)𝑘 by setting 𝑚𝑘 := 𝑘3/𝜀.
Then the upper bound (9) together with the Borel-Cantelli lemma give that

Pr

(︂
𝑀(𝑚𝑘)

ln𝑚𝑘/ ln ln𝑚𝑘
≤ 1 + 𝜀 for all but finitely many 𝑘

)︂
= 1. (10)

If instead of 𝜃𝑛 =
√
𝑛 we had taken 𝜃

(𝜀)
𝑛 := (1 − 𝜀)

√
𝑛 then all computations leading up to (10) would

have held. For 𝑛 ∈ N, let 𝑚(𝑛) := ⌈𝑛𝜀/3⌉3/𝜀 be the least element of (𝑚𝑘)𝑘 with 𝑛 ≤ 𝑚𝑘. Observe that
lim𝑛→∞ 𝑚(𝑛)/𝑛 = 1, so that in particular 𝜃(𝜀)𝑚(𝑛) ≤ 𝜃𝑛 for all sufficiently large 𝑛. Now, let 𝑀 (𝜀) denote
the analogue of 𝑀 , which we obtain if we use the same points 𝑋1, 𝑋1, . . . and weights 𝑊1,𝑊2, . . . , with
the threshold 𝜃

(𝜀)
𝑛 instead. Let us assume that the random variables 𝑁(1), 𝑁(2), . . . , which determine the

number of points used in the construction of the GTG and definition of 𝑀 , have been coupled in such a
way that 𝑁(𝑘) ≤ 𝑁(𝑘 + 1) for all 𝑘. (This can be achieved by setting 𝑁(𝑘) = 𝑌1 + · · · + 𝑌𝑘 with the
𝑌𝑖’s i.i.d. Po(1)-variables). Then we obtain

𝑀(𝑛) ≤ 𝑀 (𝜀)(𝑚(𝑛)), (11)

for all sufficiently large 𝑛 (using that 𝜃(𝜀)𝑚(𝑛) ≤ 𝜃𝑛 for all sufficiently large 𝑛). Combining (11) with (10)
proves that lim sup𝑀/(ln𝑛/ ln ln𝑛) ≤ 1 a.s.
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2r0

2r0

Fig. 1: Tiling of the unit square, showing one ball 𝐵𝑖 and the high-weight nodes (𝑊 ≥ 𝑤0) within the ball.

4 Mind the Gap!
In this section we analyze the gap between lower and upper bounds on the chromatic number, given
respectively by the clique number (Subsection 4.1) and the greedy coloring algorithm (Subsection 4.2).
In Subsection 4.3 we show that this gap is at most 𝐶 ln𝑛/(ln ln𝑛)2, and bound the constant 𝐶.

4.1 Lower Bound
Informally: we tile the space [0, 1]2 and inscribe a ball in each tile. Then the number of nodes within
a clique in an arbitrarily chosen ball will give us a lower bound on the chromatic number of the entire
geographical threshold graph within [0, 1]2. The number of the balls, or how we tile the space [0, 1]2, is a
parameter that we discuss later. Formally, the argument is the following.

For some threshold weight 𝑤0, let 𝛼 be defined by Pr(𝑊 ≤ 𝑤0) = 𝛼. We will appropriately choose
the constant 𝑤0 (and hence 𝛼) later. Let us define a radius 𝑟0 =

√︀
𝑤0/(2𝜃𝑛). We consider 𝑏 = 1/(2𝑟0)2

disjoint balls with radii 𝑟0 (see Figure 1) and call these balls 𝐵𝑖. For convenience, tile the square [0, 1]2

with 𝑏 = 1/(2𝑟0)2 sub-squares of the size 2𝑟0 × 2𝑟0, and within each of the squares inscribe a ball of
radius 𝑟0. The number of nodes within 𝐵𝑖 is given by Poisson distribution Po(𝑛𝑟20𝜋), while the number
of nodes with weights ≥ 𝑤0 within 𝐵𝑖 is given by Po((1 − 𝛼)𝑛𝑟20𝜋). For convenience we let 𝜆 =
(1 − 𝛼)𝑛𝑟20𝜋. Let us note that for 𝜃𝑛 = 𝑛 it follows 𝑏 = 1/(4𝑟20) = 𝜃𝑛/(2𝑤0) = 𝑛/(2𝑤0) (this is Θ(𝑛))
and 𝜆 = 𝜋

2 (1 − 𝛼)𝑤0 (this is Θ(1)).
Let us now consider only those nodes with weights 𝑊 ≥ 𝑤0 within a given ball 𝐵𝑖. All such nodes form

a clique, since by construction, each pair of nodes within 𝐵𝑖 satisfies the connectivity relation Eq. (1). Let
𝑘 be a positive integer to be specified later. Since the number of nodes 𝑛𝑖 within 𝐵𝑖 is a Poisson random
variable with mean 𝜆,

Pr(𝑛𝑖 ≥ 𝑘) ≥ 𝑒−𝜆𝜆
𝑘

𝑘!
. (12)

Denote 𝑝 := 𝑒−𝜆𝜆𝑘/𝑘!, and let 𝐼𝑖 be an indicator of the event {𝑛𝑖 ≥ 𝑘}, so that Pr(𝐼𝑖 = 1) ≥ 𝑝. Let us
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define 𝐽 =
∑︀𝑏

𝑖=1 𝐼𝑖. We will show that for sufficiently large 𝑘, Pr(𝐽 = 0) → 0. First, 𝐽 = 0 iff all 𝐼𝑖
are 0. Second, the indicators 𝐼𝑖 are mutually independent, since the balls 𝐵𝑖 are mutually disjoint. Thus,
Pr(∩𝐼𝑐𝑖 ) = Pr(𝐼𝑐𝑖 )𝑏 ≤ (1 − 𝑝)𝑏 = exp(ln(1 − 𝑝)𝑏). We have seen that 𝑏 = Θ(𝑛). Now choose 𝑘 so that
𝑝 = ln𝑛/𝑛. In that case, Pr(𝐽 > 0) ≥ 1 − exp(ln(1 − 𝑝)𝑏) = 1 − exp(−Θ(ln𝑛)) = 1 − 𝑛−Θ(1). Thus,
we must solve the following equation in 𝑘

𝑒−𝜆𝜆
𝑘

𝑘!
=

ln𝑛

𝑛
. (13)

Taking the logarithm,
𝜆− 𝑘 ln𝜆 + ln 𝑘! = ln𝑛− ln ln𝑛. (14)

According to Stirling’s formula 𝑘! =
√

2𝜋𝑘 𝑘𝑘𝑒−𝑘+𝛽/12𝑘 for some 𝛽 ∈ (0, 1), and applying the loga-
rithm, ln 𝑘! = 1

2 ln 2𝜋𝑘 + 𝑘(ln 𝑘 − 1) + 𝛽/12𝑘. Now, Eq.(14) is equivalent to

𝑘(ln 𝑘 − 1 − ln𝜆) = ln𝑛− ln ln𝑛− 𝜆− 1

2
ln 2𝜋 − 1

2
ln 𝑘 − 𝛽

12𝑘
. (15)

Let 𝜂 = 1 + ln𝜆 (this is Θ(1)), and introduce the (rescaled) variables 𝑦 = 𝑒−𝜂𝑘 and 𝑥 = 𝑒−𝜂(ln𝑛 −
ln ln𝑛− 𝜆− 1

2 ln 2𝜋 − 𝛽/12𝑘 − 𝜂/2). Then, Eq. (15) may be recast as

𝑦 =
𝑥

ln 𝑦
− 𝑒−𝜂

2
. (16)

For given 𝑥 and 𝜂, Eq. (16) has a unique solution in 𝑦. Noting that 𝑥 = Θ(ln𝑛), it is not hard to verify
that 𝑦 satisfies

𝑦 =
𝑥

ln𝑥

(︁
1 +

ln ln𝑥

ln𝑥
(1 + 𝑜(1))

)︁
. (17)

From the precise definition of 𝑥,

𝑥 = 𝑒−𝜂 ln𝑛
(︁

1 −𝑂
(︁ ln ln𝑛

ln𝑛

)︁)︁
, (18)

so
ln𝑥 = ln

(︁
𝑒−𝜂 ln𝑛 (1 − 𝑜(1))

)︁
= ln ln𝑛− 𝜂 − 𝑜(1)

and
ln ln𝑥 = ln

(︁
ln ln𝑛 (1 − 𝑜(1))

)︁
= ln ln ln𝑛− 𝑜(1).

Therefore from Eq. (17),

ln 𝑦 = ln𝑥− ln ln𝑥 + 𝑜(1)

= ln ln𝑛− ln ln ln𝑛− 𝜂 − 𝑜(1)

= ln ln𝑛
(︁

1 − ln ln ln𝑛 + 𝜂 + 𝑜(1)

ln ln𝑛

)︁
. (19)
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Plugging Eq. (18) and Eq. (19) into the right-hand side of Eq. (16) gives

𝑦 =
𝑒−𝜂 ln𝑛

(︁
1 −𝑂

(︁
ln ln𝑛
ln𝑛

)︁)︁
ln ln𝑛

(︁
1 − ln ln ln𝑛+𝜂+𝑜(1)

ln ln𝑛

)︁ − 𝑒−𝜂

2

=
𝑒−𝜂 ln𝑛

ln ln𝑛

(︁
1 +

ln ln ln𝑛 + 𝜂 + 𝑜(1)

ln ln𝑛

)︁
− 𝑒−𝜂

2
,

so
𝑘 = 𝑒𝜂𝑦

=
ln𝑛

ln ln𝑛

(︁
1 +

ln ln ln𝑛 + 𝜂 + 𝑜(1)

ln ln𝑛

)︁
.

We know that there is a clique of size at least 𝑘 within some ball 𝐵𝑖, with probability ≥ 1−𝑛−Θ(1). Since
𝑘 ≤ 𝜔(𝐺𝑛) ≤ 𝜒(𝐺𝑛), it follows that with probability ≥ 1 − 𝑛−Θ(1), the chromatic number satisfies

ln𝑛

ln ln𝑛

(︁
1 +

ln ln ln𝑛 + 𝜂 + 𝑜(1)

ln ln𝑛

)︁
≤ 𝜒(𝐺𝑛).

4.2 Upper Bound
In this subsection we derive an upper bound on the chromatic number, given by the greedy coloring
algorithm in Section 3. Consider the inequality (8). Letting 𝐵 = 1 + ln𝜇,

Pr
(︁
𝑀 ′

𝑥 > (1 + 𝜀) ln𝑛/ ln ln𝑛
)︁

≤
(︂

𝑒𝜇

(1 + 𝜀) ln𝑛/ ln ln𝑛

)︂(1+𝜀) ln𝑛/ ln ln𝑛

= exp
{︁(︁

𝐵 − ln
(︀
(1 + 𝜀)

ln𝑛

ln ln𝑛

)︀)︁
(1 + 𝜀)

ln𝑛

ln ln𝑛

}︁
= exp

{︁
ln𝑛

(︁𝐵(1 + 𝜀)

ln ln𝑛
− (1 + 𝜀)

ln(1 + 𝜀) + ln ln𝑛− ln ln ln𝑛

ln ln𝑛

)︁}︁
= exp

{︁
ln𝑛

(︁𝐵(1 + 𝜀)

ln ln𝑛
− (1 + 𝜀) ln(1 + 𝜀)

ln ln𝑛

−(1 + 𝜀) + (1 + 𝜀)
ln ln ln𝑛

ln ln𝑛

)︁}︁
= exp

{︁
ln𝑛

(︁ 𝐵

ln ln𝑛
+

𝐵𝜀

ln ln𝑛
− 𝜀 + 𝑂(𝜀2)

ln ln𝑛

−1 − 𝜀 +
ln ln ln𝑛

ln ln𝑛
+ 𝜀

ln ln ln𝑛

ln ln𝑛

)︁}︁
.

Let us choose 𝜀 to be
𝜀 =

ln ln ln𝑛 + 𝐵 + 𝛿

ln ln𝑛
for some 𝛿. Then it follows that

Pr
(︁
𝑀 ′

𝑥 > (1 + 𝜀) ln𝑛/ ln ln𝑛
)︁

≤ exp
{︁

ln𝑛
(︁
− 1 − 𝛿

ln ln𝑛
+ 𝜀

ln ln ln𝑛 + 𝐵 − 1 − 𝑜(1)

ln ln𝑛

)︁}︁
= exp

{︁
ln𝑛

(︁
− 1 − 𝛿 − 𝑜(1)

ln ln𝑛

)︁}︁
.
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Hence, by Eq. (7) and the union bound, Pr(𝑀 < (1 + 𝜀) ln𝑛/ ln ln𝑛) ≥ 1 − 𝑒−
ln𝑛

ln ln𝑛 (𝛿−𝑜(1)). Conse-
quently, for any positive constant 𝛿, the chromatic number satisfies

𝜒(𝐺𝑛) ≤ ln𝑛

ln ln𝑛

(︁
1 +

ln ln ln𝑛 + 𝐵 + 𝛿

ln ln𝑛

)︁
with probability ≥ 1 − exp(−Θ(ln𝑛/ ln ln𝑛)).

4.3 Comparison of Bounds
Let us now optimize the constants 𝜂 = 1 + ln𝜆 and 𝐵 = 1 + ln𝜇 to minimize the gap between lower and
upper bounds on 𝜒(𝐺𝑛). We define 𝑠1 = sup𝛼∈[0,1] 𝜂 and 𝑠2 = inf𝛼∈[0,1] 𝐵. By using the definition of
𝛼 = Pr(𝑊 ≤ 𝑤0), we obtain

𝑠1 = 1 + sup
𝛼∈[0,1]

ln𝜆

= 1 + sup
𝛼∈[0,1]

ln
(︀
(1 − 𝛼)𝑛𝑟20𝜋

)︀
= 1 + sup

𝛼∈[0,1]

ln
(︁𝜋

2

𝑛

𝜃𝑛
(1 − 𝛼)𝑤0

)︁
= 1 + ln

𝜋

2
+ sup

𝑤0≥0
ln

(︁
(1 − 𝐹 (𝑤0))𝑤0

)︁
= 1 + ln

𝜋

2
+ ln

(︁
sup
𝑤0≥0

𝑤0(1 − 𝐹 (𝑤0))
)︁
. (20)

For the other bound, 𝑠2 = 1 + inf𝛼∈[0,1] ln𝜇, and 𝜇 is bounded by

𝜇 ≤
∞∑︁

𝑗=−1

E(𝑍𝑗)

= 𝜋(12
√

2)2
(︁

4−1𝐹 (1) +

∞∑︁
𝑗=0

4𝑗
(︀
𝐹 (4𝑗+1) − 𝐹 (4𝑗)

)︀)︁
= 𝜋(12

√
2)2

(︁1

4
+

3

4

∞∑︁
𝑗=0

4𝑗(1 − 𝐹 (4𝑗))
)︁
,

so

𝑠2 ≤ 1 + ln
(︁

72𝜋
(︁

1 + 3

∞∑︁
𝑗=0

4𝑗(1 − 𝐹 (4𝑗))
)︁)︁

. (21)

Note that the conditions imposed on the weight distribution in Lemma 3.3 are Pr(𝑊𝑖 > 𝑥) = 𝑂(𝑥−𝛾)
for some 𝛾 > 1. Then it may be helpful to write 1 − 𝐹 (4𝑗) = 𝑂(4−𝛾𝑗) ≤ 𝐷4−𝛾𝑗 , with the constant 𝐷
given by 𝐷 = max𝑗 4𝛾𝑗(1 − 𝐹 (4𝑗)). In that case,

𝑠2 ≤ 1 + ln
(︁

72𝜋
(︁

1 + 3

∞∑︁
𝑗=0

4𝑗𝐷4−𝛾𝑗
)︁)︁

= 1 + ln
(︁

72𝜋
(︁

1 + 3𝐷

∞∑︁
𝑗=0

4(1−𝛾)𝑗
)︁)︁

= 1 + ln
(︁

72𝜋
(︁

1 +
3𝐷

1 − 41−𝛾

)︁)︁
.
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Now the lower and upper bounds on 𝜒(𝐺𝑛), respectively,

ln𝑛

ln ln𝑛

(︁
1 +

ln ln ln𝑛 + 𝑠1
ln ln𝑛

)︁
≤ 𝜒(𝐺𝑛)

and
𝜒(𝐺𝑛) ≤ ln𝑛

ln ln𝑛

(︁
1 +

ln ln ln𝑛 + 𝑠2
ln ln𝑛

)︁
,

give us the size of the gap 𝐶 ln𝑛/(ln ln𝑛)2.
Finally, the constant 𝐶, specified in the abstract, is 𝐶 = 𝑠2 − 𝑠1, where 𝑠1 and 𝑠2 are as above.

4.4 Examples of Bounds
Here we compare lower and upper bounds for the following two weight distributions: (i) exponential and
(ii) power-law.

(i) Exponential weight distribution: 𝑓(𝑤) = 𝑒−𝑤, for 𝑤 ≥ 0, and thus 𝐹 (𝑤) = 1 − 𝑒−𝑤.

Since sup𝑤0≥0 𝑤0(1 − 𝐹 (𝑤0)) = 1/𝑒 is attained at 𝑤0 = 1, then Eq. (20) yields

𝑠1 = ln(𝜋/2) ≈ 0.4516.

On the other hand, Eq. (21) yields

𝑠2 ≤ 1 + ln
(︁

72𝜋
(︁

1 + 3

∞∑︁
𝑗=0

4𝑗 exp(−4𝑗)
)︁)︁

≈ 7.2644,

giving 𝐶 < 6.82.

(ii) Power-law weight distribution: 𝑓(𝑤) = 𝑤−𝛽 , for 𝑤 ≥ 1, and thus 𝐹 (𝑤) = 1 − 1/𝑤𝛽−1.

Since sup𝑤0≥1 𝑤0(1 − 𝐹 (𝑤0)) = sup𝑤0≥1 1/𝑤𝛽−2
0 = 1, attained at 𝑤0 = 1 and for 𝛽 ≥ 2, then

Eq. (20) yields

𝑠1 = 1 + ln(𝜋/2) ≈ 1.4516,

while Eq. (21) becomes

𝑠2 ≤ 1 + ln
(︁

72𝜋
(︁

1 + 3

∞∑︁
𝑗=0

4𝑗(2−𝛽)
)︁)︁

= 1 + ln
(︁

72𝜋
(︁

1 +
3

1 − 42−𝛽

)︁)︁
≈ 6.4214 + ln

(︁
1 +

3

1 − 42−𝛽

)︁
.

If for instance 𝛽 = 3, this last bound is ≈ 8.0308, giving 𝐶 < 6.58.
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5 Conclusion
In this work, we have derived the chromatic number and proposed a coloring algorithm on GTG, for
the case of 𝜃𝑛 = Θ(𝑛), that is, when the mean degree is constant. We are naturally interested into the
values of the chromatic number for denser and sparser GTGs. A particularly interesting case would be
to show the chromatic number around the connectivity regime. The connectivity threshold for GTGs has
been derived to be 𝜃𝑛 = Θ(𝑛/ ln𝑛), Bradonjić et al. (2007). However, the methods that we have used
in this work rely heavily on the techniques that apply for RGGs of equivalent degree and the analysis of
the chromatic number of the RGG is much more involved in this range than in the range we have studied
in this work. For instance, in McDiarmid and Müller it has been shown that if the expected degree of
the RGG is 𝑡 ln𝑛 for some constant 𝑡 > 0, then the ratio of the chromatic number to the clique number
has a limit, which can be expressed as some complicated function of 𝑡. One of the surprising findings
of McDiarmid and Müller has been the existence of a constant 𝑡0 > 0 such that this ratio tends to 1 for
expected degrees ≤ 𝑡0 ln𝑛 and it is strictly bigger than one if the expected degree is at least (𝑡0 + 𝜀) ln𝑛,
for any 𝜀 > 0.

It is unlikely that the crude upper bound on the chromatic number, which we have used in this work
(that is, our 𝑀 ), would be anywhere near sharp when the expected degree is logarithmic. Therefore, we
expect that substantial new tools will be needed to tackle the chromatic number of the GTG in this regime.
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