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For oriented graphs G and H , a homomorphism f : G → H is locally-injective if, for every v ∈ V (G), it is injective
when restricted to some combination of the in-neighbourhood and out-neighbourhood of v. Two of the possible
definitions of local-injectivity are examined. In each case it is shown that the associated homomorphism problem is
NP-complete when H is a reflexive tournament on three or more vertices with a loop at every vertex, and solvable in
polynomial time when H is a reflexive tournament on two or fewer vertices.
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1 Introduction
Given two graphs G = (VG, EG) and H = (VH , EH), a homomorphism from G to H is a function
f : VG → VH such that for every uv ∈ EG, f(u)f(v) ∈ EH . A homomorphism from G to H is referred
to as an H-colouring of G and the vertices of H are regarded as colours. The graph H is called the target
of the homomorphism. These definitions extend to directed graphs by requiring that the mapping must
preserve the existence as well as the direction of each arc.

A locally-injective homomorphism f fromG toH is a homomorphism fromG toH such that for every
v ∈ V the restriction of f to N(v) (or possibly N [v] = N(v) ∪ {v}) is injective. The complexity of
locally-injective homomorphisms for undirected graphs has been examined by a variety of authors and in
a variety of contexts Chen et al. (2012); Doyon et al. (2010); Fiala and Kratochvı́l (2001, 2002, 2006);
Fiala et al. (2008); Hahn et al. (2002); Rzazewski (2014). Locally-injective homomorphisms of graphs
find application in a range of areas including bio-informatics Brevier et al. (2007); Fagnot et al. (2008);
Fertin et al. (2005) and coding theory Hahn et al. (2002).

Here we consider locally-injective homomorphisms of oriented graphs, that is, directed graphs in which
any two vertices are joined by at most one arc. Given a vertex v, an arc from v to v is called a loop. A
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directed graph with a loop at every vertex is called reflexive; a directed graph with no loops is called
irreflexive. For a vertex v of a directed graph G, let N−(v), respectively N+(v), denote the set of vertices
u such that uv, respectively vu, is an arc of G. Note that if there is a loop at v, then v ∈ N−(v) and
v ∈ N+(v).

To define locally-injective homomorphisms of oriented graphs, one must choose the neighbourhood(s)
on which the homomorphism must be injective. Up to symmetry, there are four natural choices:

1. N−(v).

2. N+(v) and also N−(v).

3. N+(v) ∪N−(v).

4. N+[v] ∪N−[v] = N+(v) ∪N−(v) ∪ {v}.

For irreflexive targets, (2), (3) and (4) are equivalent. Under (4), adjacent vertices must always be
assigned different colours, and hence whether or not the target contains loops is irrelevant. Therefore, we
may assume that targets are irreflexive when considering (4). Then, a locally-injective homomorphism to
an irreflexive target satisfying (4) is equivalent to a locally-injective homomorphism to the same irreflexive
target under either (2) or (3). As such, we need not consider (4) and are left with three distinct cases.

Taking (1) as our injectivity requirement defines in-injective homomorphism; taking (2) defines ios-
injective homomorphism; and taking (3) defines iot-injective homomorphism. Here “ios” and “iot” stand
for “in and out separately” and “in and out together” respectively.

The problem of in-injective homomorphism is examined by MacGillivray, Raspaud, and Swarts in
MacGillivray et al. (2014); MacGillivray and Swarts (2010). They give a dichotomy theorem for the prob-
lem of in-injective homomorphism to reflexive oriented graphs, and one for the problem of in-injective
homomorphism to irreflexive tournaments. The problem of in-injective homomorphism to irreflexive ori-
ented graphs H is shown to be NP-complete when the maximum in-degree of H , ∆−(H), is at least 3,
and solvable in polynomial time when ∆−(H) = 1. For the case ∆−(H) = 2 they show that an instance
of directed graph homomorphism polynomially transforms to an instance of in-injective homomorphism
to a target with maximum in-degree 2. As such the restriction of in-injective homomorphism to targets H
so that ∆−(H) = 2 constitutes a rich class of problems.

The remaining problems, ios-injective homomorphism and iot-injective homomorphism, are considered
by Campbell, Clarke and MacGillivray Campbell (2009); Campbell et al. (2016a,b). In this paper we
extend the results of Campbell, Clarke and MacGillivray to provide dichotomy theorems for the restriction
of the problems of iot-injective homomorphism and ios-injective homomorphism to reflexive tournaments.

Preliminary results are surveyed in Section 2. In Section 3, we show that ios-injective homomorphism
is NP-complete for reflexive tournaments on 4 or more vertices. In Section 4, we show that iot-injective
homomorphism is also NP-complete for reflexive tournaments on 4 or more vertices. We close with a
brief discussion of injective homomorphisms to irreflexive tournaments.

2 Known Results
For a fixed undirected graph H , the problem of determining whether an undirected graph G admits a
homomorphism to H (i.e., the H-colouring problem) admits a well-known dichotomy theorem.
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Theorem 2.1 (Hell and Neŝetr̂il (1990)) Let H be an undirected graph. If H is irreflexive and non-
bipartite, then H-colouring is NP-complete. If H has a loop, or is bipartite, then H-colouring is solvable
in polynomial time.

A dichotomy theorem for the complexity ofH-colouring of directed graphs is given by Bulatov Bulatov
(2017) and Zhuk Zhuk (2017).

For fixed small reflexive tournaments T , Campbell, Clarke and MacGillivray give the following re-
sult for the complexity of ios-injective T -colouring and iot-injective T -colouring, where ios-injective
T -colouring and iot-injective T -colouring are defined analogously to H-colouring.

Theorem 2.2 (Campbell (2009); Campbell et al. (2016a,b)) If T is a reflexive tournament on 2 or fewer
vertices, then ios-injective T -colouring and iot-injective T -colouring are solvable in polynomial time. If
T is a reflexive tournament on 3 vertices, then ios-injective T -colouring and iot-injective T -colouring are
NP-complete.

Fig. 1: The two reflexive tournaments on three vertices: the reflexive three-cycle C3 and the reflexive transitive
tournament on three vertices TT3.

3 Ios-injective homomorphisms
In this section we prove a dichotomy theorem for ios-injective T -colouring, where T is a reflexive tour-
nament. We show that both ios-injective T4-colouring and ios-injective T5-colouring are NP-complete
(see Figures 2 and 3). We then show that any instance of ios-injective T -colouring, where T is a reflexive
tournament on at least 4 vertices, polynomially transforms to an instance of ios-injective T ′-colourings,
where T ′ is T4, T5, C3 or TT3 (see Figures 1, 2 and 3). The dichotomy theorem follows from combining
these results with the result in Theorem 2.2.

We begin with a study of ios-injective T4-colouring. To show ios-injective T4-colouring is NP-complete
we provide a transformation from 3-edge-colouring subcubic graphs. We construct an oriented graph H
from a graph G so that G has a 3-edge-colouring if and only if H admits an ios-injective homomorphism
to T4. The key ingredients in this construction are a pair of oriented graphs, Hx and He, given in Figures
4 and 5, respectively. Figures 6 and 7 give ios-injective T4-colourings of Hx and He, respectively.

Lemma 3.1 In any ios-injective T4-colouring of Hx

1. the vertices 3, 13 and 23 are coloured a; and
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d c

a b

Fig. 2: T4 – the only strongly connected reflexive tournament on four vertices.

d c

e b

a

Fig. 3: T5 – the only reflexive tournament on five vertices where all the vertices have in-degree and out-degree three.

2. vertex 31 is coloured d.

Proof: (1) By symmetry, it suffices to show the claim for vertex 3. Let us first note that the vertices 3 and
7 have out-degree 3 and can therefore only be coloured a or b, as these are the only vertices of out-degree
3 in T4. If vertex 7 is coloured a, then its two in-neighbours, vertices 5 and 6, are coloured d and a. How-
ever, this is impossible as no vertex of out-degree three in T4 has both d and a as out-neighbours. Hence,
vertex 7 is coloured b. If vertex 3 is coloured b, then vertices 5 and 6 would be both in- and out-neighbours
of vertices coloured b. Thus, each of vertices 5 and 6 are coloured b. This is a violation of the injectivity
requirement. Therefore vertex 3 (and by symmetry, the vertices 13 and 23) must be coloured a.

(2) Notice that the square vertices in the Hx (vertices 1, 11 and 21) cannot be coloured a; they each have
an in-neighbour that already has an out-neighbour coloured a. These square vertices have a common
out-neighbour and so must receive distinct colours by the injectivity requirement. As none is coloured a,
these three vertices are coloured b, c and d, in some order. The only vertex that is an out-neighbour of b,
c and d in T4 is d. And so, the common out-neighbour of vertices 1, 11 and 21 (i.e., vertex 31) has colour
d. 2
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Lemma 3.2 Let H ′e be an oriented graph formed from a copy of He and two copies of Hx by identifying
vertex 0 in He with any square vertex in one copy of Hx and identifying vertex 9 in He with any square
vertex in the second copy of Hx. In any ios-injective T4-colouring of H ′e, the vertices 0 and 9 in the
subgraph induced by He have the same colour.

Proof: Let H ′e be constructed as described. Consider an ios-injective T4-colouring of H ′e. We examine
the colours of the vertices in the subgraph induced by the copy ofHe. By Lemma 3.1 and the construction
ofH ′e, vertices 0 and 9 each have an in-neighbour that has an out-neightbour coloured a. By the injectivity
requirement neither vertex 0 or 9 is coloured a. We proceed in cases to show that vertices 0 and 9 receive
the same colour.

Case I: Vertex 0 is coloured b. It cannot be that vertex 1 is coloured d, as vertex 0 has an out-neighbour
coloured d – vertex 31 in a copy ofHx. It cannot be that vertex 1 is coloured c as no 3-cycle of T4 contains
both a vertex coloured b and a vertex coloured c. Thus, vertex 1 must be coloured b. The vertex 2 is both
an in-neighbour and an out-neighbour of vertices coloured b and is therefore coloured b. The vertex 4 is an
in-neighbour of vertex 1, and so cannot be coloured b as vertex 1 already has an in-neighbour coloured b.
The vertex 4 must thus be coloured a. By injectivity, the out-neighbours of vertex 4 must receive distinct
colours that are out-neighbours of a in T4. Therefore vertices 3 and 5 are coloured a and c in some order,
as vertex 1 is coloured b. The only common out-neighbour of a and c in T4 is c. As such, vertex 6 must
be coloured c. By injectivity, each of the in-neighbours of vertex 6 must receive distinct colours that are
in-neighbours of c in T4. And so vertex 7 must be coloured b. As vertex 9 cannot be coloured a and it has
an out-neighbour coloured b, namely vertex 7, we have that vertex 9 must be coloured b. Thus vertices 0
and 9 have the same colour.

Case II: Vertex 0 is coloured c. The out-neighbours of c in T4 are c and d. It cannot be that vertex 1 is
coloured d, as vertex 0 has an out-neighbour coloured d – vertex 31 in a copy of Hx. And so vertex 1 is
coloured c.

The vertex 4 has an out-neighbour coloured c, and so must be coloured a or b or c. Since vertex 0 is
coloured c, vertex 4 cannot be coloured c without violating injectivity. We claim vertex 4 is coloured b.

If vertex 4 is coloured a, then by injectivity, vertices 3 and 5 are coloured a and b, in some order. The
only out-neighbour of a and b in T4 that has in-degree 3 is c. As such vertex 6 is coloured c. The vertex
c in T4 has three in-neighbours – a, b, and c. As vertex 6 has in-neighbours coloured a and b (namely,
vertices 3 and 5), then by injectivity the third in-neighbour of vertex 6 (namely, vertex 7) is coloured c.
In T4, c has two out-neighbours: c and d. Since vertex 7 is coloured c and already has an out-neighbour
coloured c, vertex 8 must be coloured d. The vertex 9 has an in-neighbour coloured d. Only vertices a and
d in T4 have d as an in-neighbour. Therefore vertex 9 is coloured with a or d. However, we have shown
previously that vertex 9 cannot be coloured a. This implies, that vertex 9 is coloured d. However, vertex 9
has an out-neighbour coloured c. Since c is not an out-neighbour of d in T4, we arrive at a contradiction.
Thus vertex 4 is not coloured a. Therefore vertex 4 is coloured b.

Since vertex 4 is coloured b, vertices 3 and 5 are coloured b and d, in some order. The only common
out-neighbour of b and d in T4 is d. Therefore vertex 6 is coloured d. Hence, by injectivity, vertex 7 is
coloured c. Since vertex 7 has an out-neighbour coloured d, vertex 8, another out-neighbour of vertex 7
must be coloured c. Since 9 has both an in-neighbour and an out-neighbour coloured c, vertex 9 must be
coloured c. Thus vertices 0 and 9 have the same colour.

Case III: Vertex 0 is coloured d. It cannot be that vertex 1 is coloured d, as vertex 0 has an out-neighbour
coloured d – vertex 31 in a copy of Hx. Vertex d has two out-neighbours in T4: a and d. Therefore vertex
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Fig. 6: Colouring the copies of He in Theorem 3.3.

1 is coloured a.
The vertex 4 has out-degree 3 and an out-neighbour coloured a. Vertex a is the only vertex in T4 to have

out-degree 3 and have a as an out-neighbour. Therefore vertex 4 is coloured a. By injectivity the vertices
3 and 5, the remaining out-neighbours of vertex 4, are coloured b and c. The vertex 7 cannot be coloured
d since 9 already has an out-neighbour coloured d – vertex 37 in a copy of Hx. Moreover, vertex 7 is an
in-neighbour of 6, which already has in-neighbours coloured c and b. Hence, vertex 7 must be coloured
a. In T4 the only in-neighbours of a are a and d. Thus vertex 9 is coloured a or d. Since vertex 9 has an
out-neighbour coloured d, it cannot be coloured a. Therefore vertex 9 is coloured d, as required. 2

Theorem 3.3 The problem of ios-injective T4-colouring is NP-complete.

Proof: The transformation is from 3-edge-colouring subcubic graphs Holyer (1981).
Let G be a graph with maximum degree at most 3 and let G̃ be an arbitrary orientation of G. We create

an oriented graph H from G̃ as follows. For every x ∈ V (G) we add Hx, a copy of the oriented graph
given in Figure 4, to H . For every arc e ∈ E(G̃) we add He, a copy of the oriented graph given in Figure
5, to H . To complete the construction of H , for each arc e = uv ∈ E(G̃) we identify vertex 0 in He with
one of the three square vertices (i.e., vertices 1, 11, or 21) in Hu and identify vertex 9 in He with one of
the three square vertices in Hv . We identify these vertices in such a way that each square vertex in a copy
of Hx is identified with at most one square vertex from a copy of He. We note that this is always possible
as vertices in G have degree at most three.

We claim G has a 3-edge-colouring if and only if H has an ios-injective T4-colouring. Suppose an
ios-injective T4-colouring of H is given. This ios-injective T4-colouring induces a 3-edge-colouring of
G: the colour of an edge in e ∈ E(G) is given by colour of vertices 0 and 9 in corresponding copy of He

contained in H . By Lemma 3.2, this colour is well-defined. By Lemma 3.1, vertex 31 in each copy of He

is coloured d. Therefore, each of the edges incident with any vertex of G receive different colours and no
more than 3 colours, namely b, c, and d, are used on the edges of G.

Suppose a 3-edge-colouring of G, f : E(G) → {b, c, d} is given. For each e ∈ E(G) we colour He

using one of the ios-injective T4-colourings given in Figure 6. We choose the colouring of each copy of
He so that vertices 0 and 9 in that copy are assigned the colour f(e). To complete the proof, we show that
such a colouring can be extended to all copies of Hx contained in H .

Recall for each copy of Hx, the vertices 1, 11 and 21 can be respectively identified with either vertex
0 or vertex 9 in some copy of He. Since f is a 3-edge-colouring of G, for each x ∈ V (G), each of the
vertices 1, 11 and 21 in Hx are coloured with distinct colours from the set {b, c, d} when we colour each
copy of He using Figure 6.
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By symmetry of Hx, we may assume without loss of generality that vertices 1, 11 and 21 are respec-
tively coloured b, c and d in each copy of Hx. The ios-injective T4-colouring given in Figure 7 extends
a pre-colouring of the vertices 1, 11 and 21 with colours b, c, and d, respectively, to an ios-injective T4-
colouring ofHx. ThereforeG has a 3-edge-colouring if and only ifH admits an ios-injective T4-colouring

Since the construction of H can be carried out in polynomial time, ios-injective T4-colouring is NP-
complete 2
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Fig. 7: Colouring the copies of Hx in Theorem 3.3.

We give a similar argument for T5 (see Figure 3). The transformation is from ios-injectiveC3-colouring,
which is NP-complete by Theorem 2.2. We construct an oriented graph J from a graphG so thatG admits
an ios-injective homomorphism to C3 if and only if J admits an ios-injective homomorphism to T5. The
key ingredient in this construction is the oriented graph Jv , given in Figure 8.

For each n > 0 we construct an oriented graph Jn from n copies of Jv , say Jv0 , Jv1 , . . . ,
Jvn−1 , by letting vertices 17, 18 and 19 of Jvi be in-neighbours of vertex 0 in Jvi+1 (mod n) for all
0 ≤ i ≤ n− 1.

Lemma 3.4 For any positive integer n, in an oriented ios-injective T5-colouring of Jn each of the vertices
labelled 0 (respectively, 4, 8, 12 and 16) receives the same colour.

Proof: Since T5 is vertex-transitive, assume without loss of generality that vertex 0 in Jv0 receives colour
a. If 0 is coloured a, then the vertices 1, 2 and 3 must be coloured a, b and c in some order, these vertices
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Fig. 8: Jv .

are the only out-neighbours of a in T5. Since vertex c is the only common out-neighbour of vertices a, b
and c in T5 we have that vertex 4 is coloured c. Since the automorphism of T5 that maps a to c also maps
c to e, we conclude by a similar argument that vertex 8 is coloured e. Similarly we conclude that vertex
12 is coloured b and vertex 16 is coloured d.

Since vertex 16 is coloured d in Jv0 , vertices 17, 18, 19 are coloured, in some order, a, e, d, as these are
the only out-neighbours of d in T5. The only common out-neighbour of a, e and d in T5 is a. Therefore
vertex 0 in Jv1 is coloured a. Repeating this argument, we conclude that vertices 4, 8, 12 and 16 in Jv2
receive colours c, e, b and d, respectively. Continuing in this fashion gives that in an oriented ios-injective
T5-colouring of Jn each of the vertices labeled 0 (respectively, 4, 8, 12 and 16) receive the same colour.
2

Theorem 3.5 The problem of ios-injective T5-colouring is NP-complete.

Proof: The transformation is from ios-injective C3-colouring (See Theorem 2.2).
Let G be a graph with vertex set {v0, v1, . . . , v|V (G)|−1}. Let νG = |V (G)|. We construct J from G by

first adding a copy of JνG to G and then, for each 1 ≤ i ≤ νG, adding an arc from vertex 11 in Jvi to vi.
We show that J has an ios-injective T5-colouring if and only if G has an ios-injective C3-colouring.
Consider an ios-injective T5-colouring of J . Since T5 is vertex-transitive we can assume without loss

of generality that vertex 8 in each copy of Jv is coloured a. Therefore in each Jvi , vertices 9, 10 and 11
are coloured, in some order, with colours a, b, c, and vertex 12 is coloured c.

We claim that vi is coloured with b, d or e for all 0 ≤ i ≤ νG − 1. If vi has colour a, then vertex
11 in Jvi has both an in-neighbour and an out-neighbour coloured a and is therefore coloured a. Thus,
vertex 7 in Jvi also has both an in-neighbour and an out-neighbour coloured a and must be coloured a.
Since vertex 11 already has an out-neighbour coloured a, this contradicts the injectivity requirement. If
vi has colour c, then vertex 11 in Jvi has two out-neighbours coloured c, a violation of the injectivity
requirement. Therefore vi is coloured with one of b, d or e for each 0 ≤ i ≤ νG − 1. Since vertices b, d
and e of T5 induce a copy of C3 in T5, restricting an ios-injective T5-colouring of J to the vertices of G
yields an ios-injective C3-colouring of G.
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Let β be an ios-injective C3-colouring of G using colours b, d and e. We extend such a colouring
to be an ios-injective T5-colouring of J by assigning the vertices of each Jvi colours based upon β(vi)
as shown in Figure 9. This colouring satisfies the injectivity requirement, as each vertex vi has only
neighbours coloured b, d and e in G, and its additional neighbour in Jvi , vertex 11, has colour a or c.
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Fig. 9: Colouring the vertices of Jvi using the colour of vi.

Therefore J has an ios-injective T5-colouring if and only if G has an ios-injective C3-colouring. Since
J can be constructed in polynomial time, ios-injective T5-colouring is NP-complete. 2

We now present a reduction to instances of ios-injective T -colouring for when T has a vertex v of
out-degree at least four. This reduction allows us to polynomially transform an instance of ios-injective
T -colouring to an instance of ios-injective T ′-colouring, where T ′ is T4, T5, C3 or TT3.

Lemma 3.6 If T is a reflexive tournament on n vertices with a vertex v of out-degree at least four, then
ios-injective homomorphism to T ′ polynomially transforms to ios-injective homomorphism to T , where
T ′ is the tournament induced by the strict out-neighbourhood of v.
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vi
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G

Ti Ti+1

Fig. 10: The construction of H in Lemma 3.6.

Proof: Let T be a reflexive tournament on n vertices with a vertex v of out-degree at least four. Let G be
an oriented graph with vertex set {w0, w1, . . . , w|V (G)|−1}. Let νG = |V (G)|. We construct H from G
by adding to G

• vertices x0, x1, . . . , xνG−1.

• an arc from xi to wi for all 0 ≤ i ≤ νG − 1.

• νG irreflexive copies of T , labeled Ti, for 0 ≤ i ≤ νG − 1.

Let vi ∈ Ti be the vertex corresponding to v ∈ V (T ). We complete our construction by adding the arcs
vixi and xivi+1 (mod νG) for all i. See Figure 10.

Claim 1: In an ios-injective T -colouring of H no two vertices of Ti have the same colour. Since T
has a vertex of out-degree at least four we observe that T has at least 4 vertices. Let φ be an ios-injective
T -colouring of H . Suppose there exist x, y ∈ Ti so that φ(x) = φ(y) = c, and let z be a third vertex of
Ti. By injectivity, x and y cannot be either both in-neighbours or both out-neighbours of z, and therefore
z has an in-neighbour and an out-neighbour coloured c. This is only possible if φ(z) = c. Let w be
a fourth vertex of Ti. Since x, y and z are all neighbours of w, w has either two in-neighbours or two
out-neighbours of the same colour, which is impossible in an ios-injective T -colouring. This proves the
claim.

Claim 2: In an ios-injective T -colouring of H , every vertex in the set

{x0, x1, . . . , xνG−1} ∪ {v0, v1, . . . , vνG−1}

receives the same colour. By the previous claim all the colours of T are used exactly once in each Ti.
Therefore the only possible colour for an out-neighbour or an in-neighbour of vi outside of Ti is φ(vi).
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Therefore for each i, we have φ(vi) = φ(xi) = φ(xi+1 (mod νG)). Therefore every vertex in the set
{x0, x1, . . . , xνG−1} ∪ {v0, v1, . . . , vνG−1} receives the same colour. Since each vertex in Ti maps to a
unique vertex in T , if φ(vi) 6= v then there is an automorphism of T that maps φ(vi) to v. As such, we
may assume without loss of generality that φ(vi) = v for all 0 ≤ i ≤ νG − 1.

Let T ′ be the reflexive sub-tournament of T induced by the strict out-neighbourhood of v. Note that T ′

is a reflexive tournament on at least 3 vertices and T ′ is a proper subgraph of T .
We show that H has an ios-injective T -colouring if and only if G has an ios-injective T ′-colouring.
Let φ be an ios-injective T -colouring of H . By our previous claim, each xi has an in-neighbour and

an out-neighbour with colour v, namely vi ∈ V (Ti) and vi−1 ∈ V (Ti−1). Therefore φ(wi) is an out-
neighbour of v in T . That is, φ(wi) ∈ V (T ′). Therefore the restriction of φ to the vertices of G yields an
ios-injective T ′-colouring of G.

Let β be an ios-injective T ′-colouring of G. For all 0 ≤ i ≤ νG − 1 and all u ∈ V (T ). Let ui ∈ V (Ti)
be the vertex corresponding to u ∈ V (T ).

We extend β to be an ios-injective T -colouring of H as follows:

• β(xi) = β(vi) = v for all 0 ≤ i ≤ νG − 1; and

• for all ui ∈ Ti, let β(ui) = u.

Hence, ios-injective T ′-colouring of G can be polynomially transformed to ios-injective T -colouring
of H . 2

If T is a reflexive tournament with a vertex of in-degree at least 4, a similar argument holds. We modify
the construction by reversing the arc between xi and wi in the construction of H .

Lemma 3.7 If T is a reflexive tournament on n vertices with a vertex v of in-degree at least four, then
ios-injective homomorphism to T ′ polynomially transforms to ios-injective homomorphism to T , where
T ′ is the tournament induced by the strict in-neighbourhood of v.

Our results compile to give a dichotomy theorem.

Theorem 3.8 Let T be a reflexive tournament. If T has at least 3 vertices, then the problem of deciding
whether a given oriented graph G has an ios-injective homomorphism to T is NP-complete. If T has 1 or
2 vertices, then the problem is solvable in polynomial time.

Proof: If T is a reflexive tournament on no more than three vertices, the result follows by Theorem 2.2.
Suppose then that T has four or more vertices. If T = T4, or if T = T5, then the result follows from
Theorem 3.3 or Theorem 3.5. Up to isomorphism, there are 16 distinct reflexive tournaments on 4 or
5 vertices. By inspection, tournaments T4 and T5 respectively are the only reflexive tournaments on 4
and 5 vertices respectively with no vertex of out-degree or in-degree four. Since the average out-degree
of a reflexive tournament on n > 5 vertices is n−1

2 + 1 > 3, every reflexive tournament on at least six
vertices has a vertex with out-degree at least four. Therefore if T has at least four vertices, T 6= T4 and
T 6= T5, then T has a vertex with either in-degree or out-degree at least four. By repeated application of
Lemma 3.6 and Lemma 3.7 an instance of ios-injective homomorphism to T polynomially transforms to
instance of either ios-injective homomorphism to T4, ios-injective homomorphism to T5 or ios-injective
homomorphism to a target on 3 vertices. 2



Complexity of locally-injective homomorphisms to tournaments 13

4 Iot-injective homomorphisms
In this section we prove a dichotomy theorem for iot-injective T -colouring, where T is a reflexive tour-
nament. We employ similar methods as in Section 3. We first show that both iot-injective T4-colouring
and iot-injective T5-colouring are NP-complete. We then provide a reduction to instances of iot-injective
T -colouring to either iot-injective T4-colouring, iot-injective T5-colouring, or a case covered by Theorem
2.2. Combining these results yields the desired dichotomy theorem.

We begin with a study of iot-injective T4-colouring. To show iot-injective T4-colouring is NP-complete
we provide a transformation from 3-edge-colouring. We construct an oriented graph F from a graph G
so that G has a 3-edge-colouring if and only if F admits an iot-injective homomorphism to T4. The key
ingredients in this construction are the pair of oriented graphs Fx and Fe, shown in Figure 11.

5 6

4

01 2

3

11

12

9

10 8

7 3 4 1

25

0

6

Fig. 11: Fx and Fe, respectively.

Lemma 4.1 In any iot-injective T4-colouring of Fx, vertex 0 is coloured b and vertex 4 is coloured a.

Proof: Consider some iot-injective T4-colouring of F . Vertex 0 of Fx has out-degree 3. Since each vertex
of T4 has at most three out-neighbours (including itself), vertex 0 must have the same colour as one of
its out-neighbours. To satisfy the injectivity constraint, if a colour appears on an out-neighbour of vertex
0, that colour cannot appear on an in-neighbour of vertex 0. Therefore vertex 4 does not have the same
colour as vertex 0. Both vertices 4 and 0 have out-degree 3, and there is an arc from 4 to 0. Vertex a in
T4 is the only vertex to have out-degree 3 and have a strict out-neighbour with out-degree 3. Therefore
vertex 4 is coloured a and vertex 0 is coloured b. 2

Lemma 4.2 In any iot-injective T4-colouring of Fe, vertex 7 is coloured a and vertex 9 is coloured b.

This proof of this lemma follows similarly to the proof of Lemma 4.1. As such, it is omitted.

Lemma 4.3 Let F ′e be the oriented graph formed from a copy of Fe and two copies of Fx by identifying
vertex 0 in the copy of Fe with any square vertex in one copy of Fx and identifying vertex 6 in the copy of
Fe with any square vertex in the second copy of Fx. In any iot-injective T4-colouring of F ′e, the vertices
0 and 6 in the subgraph induced by Fe have the same colour, and are coloured with one of b, c or d.
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Proof: Let F ′e be constructed as described. Consider an iot-injective T4-colouring of F ′e. We examine the
colours of the vertices in the subgraph induced by the copy of Fe. By Lemma 4.1 and the construction of
F ′e, vertices 0 and 6 in Fe have an in-neighbour coloured b – vertex 0 in a copy of Fx. Since b is not an
in-neighbour of a in T4, vertex 0 in the copy of Fe must receive one of the colours b, c, or d. We proceed
in cases based on the possible colour of vertex 0 in copy of Fe.

Case I: Vertex 0 is coloured b. Since vertex 0 already has a neighbour coloured b (vertex 0 in a copy of
Fx), vertex 3, an in-neighbour of vertex 0 in Fe, cannot be coloured b. Since b ∈ V (T4) has only a and b
as in-neighbours, we have that vertex 3 is coloured a. By Lemma 4.2 vertex 3 has a neighbour coloured
a – namely vertex 7. By the injectivity constraint, this colour cannot appear on any other neighbour of
vertex 3. As such, vertices 2 and 4 are coloured d and c respectively. The only common out-neighbour of
d and c in T4 is d. Therefore vertex 5 has colour d. In T4 vertex d has three in-neighbours – b, c and d.
Since c and d both appear on an in-neighbour of vertex 5, we have that vertex 6 is coloured with b.

Case II: Vertex 0 is coloured c. Vertex c in T4 has three in-neighbours: a, b and c. Since vertex 0 has
an in-neighbour coloured b, namely vertex 0 in a copy of Fx, vertex 3 in Fe must have either colour a or
colour c.

Assume vertex 3 is coloured c. In this case, the injectivity constraint implies that vertex 1 is not coloured
c. Since c and d are the only out-neighbours of c in T4, vertex 1 must be coloured d. Vertex 2, an in-
neighbour of vertex 3, is coloured with one of a, b or c, the in-neighbours of c in T4. By Lemma 4.2 vertex
3 has a neighbour coloured a – vertex 7. By assumption vertex 0 has colour c. Therefore by injectivity,
vertex 2 has colour b. This is a contradiction, as the arc between vertex 1 and vertex 2 does not have the
same direction as the arc between vertex c and vertex b in T4. Therefore vertex 3 is coloured a.

In T4, the in-neighbours of a are a and d, and the out-neighbours of a are a, b and c. Since vertex 7
is coloured a, no other neighbour of vertex 3 can be coloured a. Therefore vertex 2, an in-neighbour of
vertex 3, must have colour d. Since vertex 0 is coloured c, vertex 4, an out-neighbour of vertex 3 must
have colour b. Vertex 5, a common in-neighbour of vertices 2 and 4, must be coloured with a common
in-neighbour of d and b in T4. The only such vertex in T4 is d. Therefore vertex 5 has colour d.

Vertex d in T4 has three in-neighbours: b, c and d. Since vertex 2 is coloured d and vertex 4 is coloured
b, we have that vertex 6 is coloured c, as required.

Case III: Vertex 0 is coloured d. Recall by Lemma 4.2 that vertex 3 has a neighbour coloured a – vertex
7. Since vertex 0 is coloured d, vertex 3 is coloured with a vertex that is an out-neighbour of a and an
in-neighbour of d in T4. The only such vertices are b and c. However, vertex 0 has a neighbour coloured
b (vertex 0 in a copy of Fx). Therefore vertex 3 has colour c. Vertex 4 must have a colour that is an
out-neighbour of c in T4. The only such colours are c and d. Since vertex 0, an out-neighbour of vertex
3, is coloured d, we have that vertex 4 has colour c. Vertex 2 must have a colour that is an in-neighbour
of c in T4. The only such colours a, b and c. Vertex 7, an in-neighbour of vertex 3, has colour a. Vertex
4, a neighbour of vertex 3, has colour c. Therefore by injectivity vertex 2 has colour b. Vertex 5 must
be coloured with a common out-neighbour of b and c in T4. The only such colours are c and d. Since
vertex 3, an out-neighbour of vertex 2, has colour c, we have by injectivity that vertex 5 has colour d.
The in-neighbours of vertex 5 must be coloured with the in-neighbours of d in T4. Vertex d has three in-
neighbours in T4 – b, c and d. Since vertex 2 has colour b and vertex 4 has colour c, we have by injectivity
that vertex 6 has colour d. 2

Theorem 4.4 The problem of iot-injective T4-colouring is NP-complete.
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a c

a

bb c

d

Fig. 12: Colouring Fx.

Proof: The transformation is from 3-edge-colouring subcubic graphs Holyer (1981).
Let G be a graph with maximum degree at most 3 and let G̃ be an arbitrary orientation of G. We create

an oriented graph F from G̃ as follows. For every v ∈ V (G) we add Fv , a copy of the oriented graph Fx
given in Figure 11, to F . For every arc uv ∈ E(G̃) we add Fuv , a copy of the oriented graph Fe given
in Figure 11, to F . To complete the construction of F , for each arc uv ∈ E(G̃) we identify vertex 0 in
Fuv with one of the three square vertices (i.e., vertices 1, 2, or 3) in Fu and identify vertex 6 in Fuv with
one of the three square vertices in Fv . We identify these vertices in such a way that each square vertex in
a copy of Fx is identified with at most one square vertex from a copy of Fe. We note that this is always
possible as vertices in G have degree at most three.

We claim that G has a 3-edge-colouring if and only if F has an iot-injective T4-colouring.
Suppose an iot-injective T4-colouring of F is given. This iot-injective T4-colouring induces a 3-edge-

colouring ofG: the colour of an edge in uv ∈ E(G) is given by colour of vertices 0 and 6 in corresponding
copy of Fuv contained in F . By Lemma 4.3 this colour is well-defined, and is one of b, c, or d. Recall for
each copy of Fx, the vertices 1,2 and 3 are respectively each identified with either vertex 0 or vertex 6 in
some copy of Fe. By Lemma 4.1, vertices 1, 2 and 3 in a copy of Fx cannot be coloured a. By injectivity,
vertices 1, 2 and 3 in a copy of Fx all are assigned different colours. Therefore each of the edges incident
with any vertex receives different colours and no more than 3 colours, namely b, c, and d, are used on the
edges of G. Therefore G has a 3-edge-colouring.

Suppose a 3-edge-colouring of G, f : E(G)→ {b, c, d} is given. For each uv ∈ E(G) we colour Fuv
using one of the iot-injective T4-colourings given in Figure 13. We choose the colouring of Fuv so that
vertices 0 and 6 are assigned the colour f(uv). To complete the proof, we show that such colouring can
be extended to all copies of Fx contained in F .

Recall for each copy of Fx, the vertices 1, 2 and 3 are respectively each identified with either vertex
0 or vertex 6 in some copy of Fe. Since f is a 3-edge-colouring of G, for each x ∈ V (G), each of the
vertices 1, 2 and 3 in Fx are coloured with distinct colours from the set {b, c, d} when we colour each
copy of Fe using Figure 13.

By symmetry of Fx, we may assume without loss of generality that vertices 1, 2 and 3 are respectively
coloured b, c and d in each copy of Fx. The iot-injective T4-colouring given in Figure 12 extends a pre-
colouring of the vertices 1, 2 and 3 with colours b, c, and d, respectively, to an iot-injective T4-colouring
of Fx. Therefore F has an iot-injective T4-colouring.
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Fig. 13: Colouring the Fe for associated edge colours of b, c, and d.

Since the construction of F can be carried out in polynomial time, iot-injective T4-colouring is NP-
complete. 2

We provide a similar argument for iot-injective T5-colouring. The transformation is from iot-injective
C3-colouring Campbell et al. (2016a). We construct an oriented graphD from a graphG so thatG admits
an iot-injective homomorphism to C3 if and only if D admits an iot-injective homomorphism to T5. The
key ingredient in the construction is the oriented graph, Dv , given in Figure 14.
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Fig. 14: Dv .
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For each n > 0 let Dn be the oriented graph constructed from n disjoint copies of Dv , say Dv0 , Dv1 ,
. . . , Dvn−1

, by letting vertex 8 of Dvi be an in-neighbour of vertex 0 in Dvi+1 (mod n) for all 0 ≤ i ≤
n− 1.

Lemma 4.5 For any positive integer n, up to automorphism, in an oriented iot-injective T5-colouring of
Dn each of the vertices labeled 0 receive the colour d, each of the vertices labeled 4 receive the colour a,
and each of the vertices labeled 8 receive the colour c.

Proof: Since T5 is vertex-transitive, assume without loss of generality that vertex 0 inDv0 receives colour
d in some iot-injective T5-colouring of Dn. Observe that vertex 4 has three out-neighbours. Since each
vertex of T5 has at most three out-neighbours (including itself), vertex 4 must have the same colour as one
of its out-neighbours. To satisfy the injectivity constraint, no in-neighbour of vertex 4 has the same colour
as vertex 4. Further, vertex 4 has two in-neighbours, vertices 1 and 2, that are out-neighbours of a vertex
coloured d. Only vertices a and b in T5 have two in-neighbours that are out-neighbours of d. Therefore
vertex 4 has colour a or b.

If vertex 4 has colour b, then vertices 1 and 2 are coloured with the vertices of T5 that are out-neighbours
of d and in-neighbours of b. The only such vertices in T5 that satisfy these criteria are a and e. Therefore
vertices 1 and 2 are coloured with a and e, in some order. Vertex d has three out-neighbours in T5 –
a, d and e. Since vertices 1 and 2 are coloured with a and e, in some order, the third out-neighbour of
vertex 0, vertex 3, is coloured with d. Vertex b in T5 has three out-neighbours – b, c and d. Therefore the
out-neighbours of vertex 4, vertices 5, 6 and 7, are coloured, in some order, with these colours. Vertices
b, c and d in T5 have only d as a common out-neighbour. Therefore the common out-neighbour of vertices
5, 6 and 7, vertex 8, is coloured d. This is a contradiction, as now vertex 9 has two vertices coloured d in
its neighbourhood. Therefore vertex 4 has colour a.

Vertex a in T5 has three out-neighbours – a, b and c. Thus the out-neighbours of vertex 4 are coloured
with a, b and c, in some order. The only common out-neighbour of a, b and c in T5 is c. Therefore vertex
8 has colour c. This implies that vertex 9 in Dv0 and 0 in Dv1 have colours from the set {c, d, e}, the
out-neighbours of c in T5. Since vertex 8 has a neighbour coloured c, neither vertex 0 in Dv1 nor 9 (in
Dv0 ) can have this colour. Further, since vertex 3 has a neighbour coloured d, vertex 9 has cannot be
coloured d. Thus vertex 9 in Dv0 has colour e and vertex 0 in Dv1 has colour d.

Repeating this argument implies that every vertex labeled 0 has colour d. 2

Theorem 4.6 The problem of iot-injective T5-colouring is NP-complete.

Proof:
The transformation is from iot-injective C3-colouring (See Theorem 2.2).
Let G be an oriented graph with vertex set {v0, v1, . . . , v|V (G)|−1}. Let νG = |V (G)|. We construct D

from G by first adding a copy of DνG to G and then, for each 1 ≤ i ≤ νG, adding an arc from vertex 5 in
Dvi to vi.

We show that D has an iot-injective T5-colouring if and only if G has an iot-injective C3-colouring.
Consider φ, an iot-injective T5-colouring of D. Since T5 is vertex-transitive we may assume that vertex

0 in Dv0 has colour d. By Lemma 4.5, for all 0 ≤ i ≤ νG − 1, the vertex in Dvi labeled 0 has colour d,
the vertex labeled 4 has colour a and the vertex labeled 8 has colour c. By the injectivity requirement, the
neighbours of the vertex labeled 5 in each copy of Dv have distinct colours. Since the vertices 4 and 8
have colours a and c, respectively, only colours b, d or e can appear at vi, for all 0 ≤ i ≤ νG − 1. Since
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b, d, and e induce a copy of C3 in T5, we conclude that the restriction of φ to the vertices of G is indeed
an iot-injective C3-colouring.

Let β be an iot-injective C3-colouring of G using colours b, d and e. We extend such a colouring to
be an ios-injective T5-colouring of D by assigning the vertices of each Dvi colours based upon β(vi)
as shown in Figure 15. This colouring satisfies the injectivity requirement, as each vertex vi has only
neighbours coloured b, d and e in G, and its additional neighbour in Dvi , vertex 5, has colour a or c.
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Fig. 15: Colouring the vertices of Dvi using the colour of vi.

Therefore D has an iot-injective T5-colouring if and only if G has an iot-injective C3-colouring. As D
can be constructed in polynomial time, iot-injective T5-colouring is NP-complete. 2

We now present a reduction to instances of iot-injective T -colouring for when T has a vertex v of
out-degree at least four. This reduction allows us to polynomially transform an instance of iot-injective
T -colouring to an instance of iot-injective T ′-colouring, where T ′ is T4, T5, C3 or TT3.

Lemma 4.7 If T is a reflexive tournament on n vertices with a vertex v of out-degree at least four, then
iot-injective homomorphism to T ′ polynomially transforms to iot-injective homomorphism to T , where T ′

is the tournament induced by the strict out-neighbourhood of v.

Proof: Let T be a reflexive tournament on n vertices with a fixed vertex v of out-degree four or more. Let
T ? be the graph obtained by removing from T all the arcs with their tail at v.

Let G be an oriented graph with vertex set {w0, w1, . . . , w|V (G)|−1}. Let νG = |V (G)|. We construct
C from G by adding to G



Complexity of locally-injective homomorphisms to tournaments 19

• νG disjoint irreflexive copies of T : T0, T1, . . . , TνG−1;

• νG disjoint irreflexive copies of T ? : T ?0 , T
?
1 , . . . , T

?
νG−1;

• and for all u ∈ V (T ) where u 6= v, an arc from the vertex corresponding to u in T ?i−1 to the vertex
corresponding to u in Ti, for all 0 ≤ i ≤ νG − 1

Let vi and v?i be the vertices corresponding to v in Ti and T ?i , respectively. We complete the construc-
tion of C by adding an arc from vi to v?i for all 0 ≤ i ≤ νG − 1. See Figure 16

vi v⋆i

wi

Ti Ti+1T ⋆
iT ⋆

i−1

G

Fig. 16: The construction of C in Lemma 4.7.

Claim 1: In an iot-injective T -colouring of C, no two vertices of Ti have the same colour. If two
vertices of Ti are assigned the same colour, then a common neighbour of such vertices in Ti has a pair
of neighbours with the same colour. This is a violation of the injectivity requirement. Therefore no two
vertices of Ti are assigned the same colour.

Claim 2: In an iot-injective T -colouring of C, vi and v?i have the same colour. Since vi has n neigh-
bours, in any iot-injectve T -colouring of C, vi is assigned the same colour as one of its neighbours. By
the previous claim, the neighbour of vi that has the same colour as vi must be v?i .

Claim 3: In an iot-injective T -colouring ofC, vi and vi+1 have the same colour. We show that vi+1 has
the same colour as v?i . If v has out-degree n in T , then by construction vi and vi+1 each have out-degree
n in C. Since no two out-neighbours of any vertex can receive the same colour, and since there can be at
most one vertex of out-degree n in T , it must be that vi and vi+1 have colour v. Suppose then that v has at
least one in-neighbour distinct from itself, say y, in T . Let y?i be the vertex corresponding to y in T ?i . Let
ui+1 be a vertex in Ti+1 \ {vi+1}, and let u?i be the vertex of T ?i which has ui+1 as an out-neighbour. By
the first claim, no two vertices in Ti+1 share a colour, and since ui+1 has n−1 neighbours in Ti+1, it must
be that ui+1 and u?i share a colour. This implies that no two vertices of T ?i \ {v?i } have the same colour,



20 Stefan Bard, Thomas Bellitto, Christopher Duffy, Gary MacGillivray, Feiran Yang

and the colours used to colour T ?i \ {v?i } are the same colours as those used to colour Ti+1 \ {vi+1}. The
vertex y?i has v?i as an out-neighbour, and each colour except the colour of vi+1 is used to colour a vertex
distinct from v?i which is a neighbour of y?i . Therefore, v?i must have the same colour as vi+1. The result
now follows from the previous claim.

Let T ′ be the reflexive sub-tournament of T induced by the strict out-neighbourhood of v. We show G
has an iot-injective T ′-colouring if and only if C has an iot-injective T -colouring.

Consider an iot-injective T -colouring of C, φ. By the claims above, φ(v?i ) = φ(vi) = φ(vj) = φ(v?j )
for all 1 ≤ i, j ≤ νG − 1. Since each vertex in Ti is assigned a distinct colour from T and T ∼= Ti, if
φ(vi) 6= v, then there is an automorphism of T that maps v to φ(v1). As such we may assume, without
loss of generality that φ(vi) = v for all 1 ≤ i ≤ νG − 1. Since wi is an out-neighbour of v?i for each
1 ≤ i,≤ νG − 1 we have that φ(wi) is contained in the out-neighbourhood of v for all 1 ≤ i ≤ νG − 1.
That is, φ(wi) ∈ V (T ′) for all 1 ≤ i ≤ νG − 1. Therefore the restriction of φ to G is an iot-injective
homomorphism to T ′.

Consider now an iot-injective T ′-colouring of G, β. We extend β to be an iot-injective T -colouring of
C as follows. For each z ∈ V (T ) let zi and z?i be the corresponding vertices in Ti and T ?i , respectively.
We extend β so that β(zi) = β(z?i ) = z. It is easily verified that β is an iot-injective T -colouring of C. 2

The construction of C can be modified to give the corresponding result for reflexive tournaments T
with a vertex of in-degree at least four.

Lemma 4.8 If T is a reflexive tournament on n vertices with a vertex v of in-degree at least four, then
iot-injective homomorphism to T ′ polynomially transforms to iot-injective homomorphism to T , where T ′

is the tournament induced by the strict in-neighbourhood of v.

Similar to the case of ios-injective colouring, our results compile to give a dichotomy theorem.

Theorem 4.9 Let T be a reflexive tournament. If T has at least 3 vertices, then the problem of deciding
whether a given oriented graph G has an iot-injective homomorphism to T is NP-complete. If T has 1 or
2 vertices, then the problem is solvable in polynomial time.

5 A note on irreflexive-injective homomorphisms
No dichotomy theorem has emerged yet for iot-injective homomorphism, and hence ios-injective homo-
morphism, to irreflexive tournaments. The results of Campbell et al. (2016a); Campbell (2009) tell us that
the problem is not only solvable in polynomial time for the irreflexive tournaments on two vertices or less
but also for the irreflexive tournaments on three vertices. Preliminary work suggests that the problem is
solvable in polynomial time on two of the irreflexive tournaments on four vertices but NP-complete on the
remaining two, and on many irreflexive tournaments on more vertices (including at least ten of the twelve
irreflexive tournaments on five vertices). The problem has not been proven solvable in polynomial time
on any irreflexive tournament on five vertices or more.
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