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Using the saddle point method, we obtain from the generating function of the Stirling numbers of the first kind
»
n
j

–
and Cauchy’s integral formula, asymptotic results in central and non-central regions. In the central region, we revisit
the celebrated Goncharov theorem with more precision. In the region j = n − nα, α > 1/2, we analyze the

dependence of
»
n
j

–
on α.
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To Philippe

1 Introduction

Let
[
n
j

]
be the Stirling number of the first kind (unsigned version). Their generating function is given

by

φn(z) =
n−1∏

0

(z + i) =
Γ(z + n)

Γ(z)
, φn(1) = n!.

In the sequel all asymptotics are meant for n→∞.
An asymptotic expansion for j = O(1) is given in Wilf [14], which has been extended to the range

j = O(lnn) by Hwang [6]. The generalized Stirling numbers have been considered by Tsylova [13] and
Chelluri et al. [2]. The q−Stirling numbers are studied in Kyriakoussis and Vamvakari [9].

In Sec.2, we revisit the asymptotic expansions in the central region and in Sec.3, we analyse the non-
central region j = n− nα, α > 1/2. We use Cauchy’s integral formula and the saddle point method.
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2 Central region
Consider the random variable Jn, with probability distribution

P[Jn = j] = Zn(j),

Zn(j) :=

[
n
j

]
n!

.

The mean and variance are given by

M := E(Jn) =
n−1∑

0

1
1 + i

= Hn = ψ(n+ 1) + γ,

σ2 := V(Jn) =
n−1∑

0

i

(1 + i)2
= ψ(1, n+ 1) + ψ(n+ 1)− π2

6
+ γ,

where ψ(x) is the digamma function, ψ(k, x) is the kth polygamma function, and

M ∼ ln(n) + γ +
1

2n
+O

(
1
n2

)
,

σ2 ∼ ln(n)− π2

6
+ γ +

3
2n

+O
(

1
n2

)
.

It is convenient to set

An := ln(n)− π2

6
+ γ = ln

(
neγ−π

2/6
)
,

and to consider all our next asymptotics (n → ∞) as functions of An. Of course, all asymptotics can be
reformulated in terms of ln(n).

We have

M ∼ An +
π2

6
+O

(
1
n

)
,

σ2 ∼ An +O
(

1
n

)
.

A celebretated central limit theorem of Goncharov says that

Jn ∼ N (M,σ) ,

whereN is the Gaussian distribution, with a rate of convergenceO(1/
√

ln(n)). This can also be deduced
from the Quasi-Power theorem of Hwang [7],[8].

In this Section, we want to obtain a more precise local limit theorem for Jn in terms of x := Jn−M
σ and

An. Actually, we obtain the following theorem, where we use Bn :=
√
An to simplify the expressions.
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Theorem 2.1

Zn(j) ∼ 1√
2πBn

e−x
2/2·

·
[
1 +

x3/6− x/2
Bn

+
3x2/8− x4/6− 1/12 + x6/72

B2
n

+
−π2x3/18 + 37x5/240− 355x3/144 + x/8− x7/48 + x9/1296 + π2x/6− ζ(3)x+ ζ(3)x3/3

B3
n

+ . . .

]
.

Proof: By Cauchy’s theorem,

Zn(j) =
1

2πi

∫
Ω

φn(z)
zj+1n!

dz

=
1

2πi

∫
Ω

eS(z)dz,

where Ω is inside the analyticity domain of the integrand and encircles the origin and

S(z) = S1(z) + S2(z), S1(z) =
n−1∑
i=0

ln(z + i))− ln(n!), S2(z) = −(j + 1) ln(z).

We will use the Saddle point method (for a good introduction to this method, see Flajolet and Sedgewick
[3], ch.V III). Set

S(i) :=
diS

dzi
.

These derivatives can be expressed in terms of ψ(k, z + n) and ψ(k, z).
First we must find the solution of

S(1)(z̃) = 0 (1)

with smallest module.
Set z̃ := z∗ − ε, where z∗ = limn→∞ z̃. Here, it is easy to check that z∗ = 1. Set j = M + xσ, x

fixed and Bn :=
√
An.

This leads, to first order (keeping only the ε term in (1)), to

ε :=
−x
Bn

+
x2 − 1
B2
n

+ . . .+
1
n

(
3x

4B3
n

+ . . .

)
+O

(
1

n2B4
n

)
.

This shows that, asymptotically, ε is given by a series of powers of n−1, where each coefficient is given
by a series of powers of B−1

n . To obtain more precision, we set again j = M + xσ, expand in powers of
n−1, and equate each coefficient to 0. . This leads to (here and in the following, we provide only a few
terms but Maple knows more)

ε =
−x
Bn
− 1
B2
n

+
0
B3
n

+ . . .+
1
n

(
3x

4B3
n

+
x2 + 3/2
B4
n

+ . . .

)
+O

(
1

n2B4
n

)
.
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We have, with z̃ := z∗ − ε = 1− ε,

Zn(j) =
1

2πi

∫
Ω

exp
[
S(z̃) + S(2)(z̃)(z − z̃)2/2! +

∞∑
l=3

S(l)(z̃)(z − z̃)l/l!
]
dz.

Note that the linear term vanishes. Set z = z̃ + iτ . This gives

Zn(j) =
1

2π
exp[S(z̃)]

∫ ∞
−∞

exp
[
S(2)(z̃)(iτ)2/2! +

∞∑
l=3

S(l)(z̃)(iτ)l/l!
]
dτ. (2)

The justification of the integration procedure is given in the Appendix. Let us first analyze S(z̃). We
obtain

S(z̃) = −x2/2 +
x3/6− x
Bn

+
−x4/12 + x2/2− 1/2

B2
n

+
−x3/3 + x5/20 + x/2− π2x3/18 + ζ(3)x3/3

B3
n

+ . . .+O
(

1
nB3

n

)
.

Also,

S(2)(z̃) = B2
n −Bnx− 1 + x2 + . . . ,

S(3)(z̃) = −2B2
n + 4Bnx− π2/3 + 2ζ(3)− 6x2 + 4 + . . . ,

S(4)(z̃) = 6B2
n − 18Bnx+ 36x2 − 18 + π2 − π4/15 + . . . ,

S(l)(z̃) = O
(
B2
n

)
, l ≥ 5.

We need these many terms in the following. Note that, with z = z̃eiθ, this leads to

S(2)(z̃)
(z − z̃)2

2
∼ −1

2
ln(n)θ2. (3)

We can now compute (2), for instance by using the classical trick of setting

S(2)(z̃)(iτ)2/2! +
∞∑
l=3

S(l)(z̃)(iτ)l/l! = −u2/2.

Computing τ as a truncated series in u, this gives, by inversion,

τ =
[
u(1 + x/(2Bn) + . . .) + u2(i/(3Bn) + . . .) + u3(−1/(36B2

n) + . . .)
]
/Bn + . . .

Setting dτ = dτ
dudu, expanding w.r.t. Bn and integrating on [u = −∞..∞], this gives

1√
2πBn

[
1 +

x

2Bn
+

5/12− x2/8
B2
n

+
x(8π2 − 10− 93x2 − 48ζ(3))

48B3
n

+ . . .

]
.
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Finally (2) leads to

Zn(j) ∼ 1√
2πBn

e−x
2/2·

· exp
[
x3/6− x
Bn

+
−x4/12 + x2/2− 1/2

B2
n

+
−x3/3 + x5/20 + x/2− π2x3/18 + ζ(3)x3/3

B3
n

+ . . .

]
·

·
[
1 +

x

2Bn
+

5/12− x2/8
B2
n

+
x(8π2 − 10− 93x2 − 48ζ(3))

48B3
n

+ . . .

]
,

or

Zn(j) ∼ R1,

R1 =
1√

2πBn
e−x

2/2·

·
[
1 +

x3/6− x/2
Bn

+
3x2/8− x4/6− 1/12 + x6/72

B2
n

+
−π2x3/18 + 37x5/240− 355x3/144 + x/8− x7/48 + x9/1296 + π2x/6− ζ(3)x+ ζ(3)x3/3

B3
n

+ . . .

]
.

2

For n = 3000, a comparison between Zn(j) and 1√
2πσ

exp
[
−
(
j−M
σ

)2
/

2
]

is given in Figure 1.
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Of course, only few values of j are significant and also the quality of the Gaussian is low, all asymptotic
expressions depend actually on powers of A−1

n , but An is not large.

A comparison ofZn(j)
/[

1√
2πσ

exp
[
−
(
j−M
σ

)2
/

2
]]

withZn(j)/R1, with 2 terms inR1, is given

in Figure 2.
The precision of R1 is of order 10−2. Using 3 terms in R1 leads to a less good result: An is not

large enough to take advantage of the A−3/2
n term: An = 6.94 here, we deal with asymptotic series, not

necessarily convergent ones. More terms can be computed in R1 (which is almost automatic with Maple).

3 Large deviation, j = n− nα, 1 > α > 1/2

The case j = O(n) is analyzed in Timashev [12]. But he obtains a series of powers of n−1, determined by
a power series of a certain function that depends on the solution of a given non-linear differential equation
of the first order. The coefficients obey some linear recurrence relations in the complex plane. The case
j = n − c, c constant, is considered in Grünberg [5]. As previous work for the case j = n − nα, let
us mention Bender [1], Temme [11], Moser and Wyman [10] (see also the comments by Odlyzko in [4],
p.1182). They all use, explicitly or not, the Saddle point method. For α < 1/2, Moser and Wyman (6.9)
give an explicit asymptotic expression. For α > 1/2, they first compute in (4.52) the numerical solution
zn of S′(zn) = 0 and give in (4.51) an asymptotic expression. This is rather precise: for n = 50, this
gives a precision of order 10−4. [1] and [11] also compute numerically zn.

However, all these results do not shed light on the dependence of [zj ]φ(z) on nα. This is what we want
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to explicit in this Section. It appears that the range α > 1/2 is more delicate than the other range.
Recall that

φn(z) =
n−1∏

0

(z + i) =
Γ(z + n)

Γ(z)
.

We have

Gn(z) :=
Γ(z + n)
Γ(z)zj+1

= exp[S(z)],

with

S(z) = S1(z) + S2(z), S1(z) =
n−1∑

0

ln(z + i), S2(z) = −(j + 1) ln(z).

We first compute z̃ such that
S′(z̃) = 0. (4)

We have
S′(z) = ψ(z + n)− ψ(z)− j + 1

z
.

Similarly (we need these expressions later on)

S(2)(z) = ψ(1, z + n)− ψ(1, z) +
j + 1
z2

,

S(k)(z) = ψ(k − 1, z + n)− ψ(k − 1, z) + (−1)k(k − 1)!
j + 1
zk

.

Some experiments with some values for α (α = 5/8 is a good choice) show that z̃ must be a combination
of x = nα and y = n1−α and x � y � 1. Note that both x and y are large. We will derive series of
powers of x−1, where each coefficient is a series of powers of y−1. We obtain the following theorem

Theorem 3.1

[zj ]φn(z) ∼ 1√
2π

y2
√
x

2
exp

[
x

[
1− ln(2) + 2 ln(y) + ln(x)− 2

3y
− 2

9y2
− 44

405y3
− 26

405y4
+

40
27y5

+
179968
18225y6

+
4727552
127575y7

+
3436796
32805y8

+
5492621728
22143375y9

+ . . .

]
+ ln(2)− 2 ln(y)− ln(x)

]
·

·
[
1− 3

3y
− 1

18y2
− 1

30y3
+

17207
3240y4

+ . . .+
1
x

(
− 1

12
+

1
36y
− 35

216y2
+

15029
3240y3

+ . . .

)
+

1
x2

(
1

288
− 1

864y
+

3527
5184y2

+ . . .

)
+O

(
1
x3

)]
.

Proof: Let us summarize the different steps of the proof. First we compute z̃ and S(z̃) as S(z̃) = T1T2,
where T1 is the dominant term and T2 is a series of powers of x−1, where each coefficient is a series of
powers of y−1. We expand T3 := eT2 . Next the integration procedure leads to y2√x

2 T4, where T4 is again

a series of powers of x−1, where each coefficient is a series of powers of y−1. We set T5 := 1√
2π

y2√x
2 eT1 .

Finally, we obtain
[zj ]φn(z) ∼ T5T3T4. (5)
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The first terms in the asymptotics of z̃ are easy to compute: set z̃ = nβ. Equation (4) leads to

ψ(n(1 + β))− ψ(nβ) =
1
β
− 1
yβ

+
1
nβ

.

But ψ(n) ∼ ln(n). So we have

ln
(

1 +
1
β

)
∼ 1
β
− 1
yβ

+
1
nβ

,

or
1
β
− 1

2β2
∼ 1
β
− 1
yβ
,

or β ∼ y
2 .

More generally, we have

β =
y

2

[
1 +

a1

y
+
a2

y2
+
a3

y3
+ . . .+

1
x

(
1 +

b1
y

+
b2
y2

+ . . .

)
+

1
x2

(
1 +

c1
y

+
c2
y2

+ . . .

)
+O

(
1
x3

)]
.

Note that 1
y3 can be of the same order than 1

x , see below.
By bootstrapping, we obtain (we give the first terms)

z̃ =
ny

2

[
1− 4

3y
+

2
9y2

+
8

135y3
+

8
405y4

+
16

1701y5
+

232
45525y6

+
64

18225y7
+ . . .

+
1
x

[
1− 1

y
+

4
9y2
− 16

135y3
+ . . .

]
+

1
x2

[
1− 1

y
+

0
y2

+ . . .

]
+

1
x3

[1 + . . .]

+O
(

1
x4

)]
. (6)

Note that the choice of dominant terms in the bracket of (6) depends on α. For instance, for α = 3/4, the
dominant terms (in decreasing order) are

1,
1
y
,

1
y2
,

{
1
x
,

1
y3

}
,

{
1
xy
,

1
y4

}
,

{
1
xy2

,
1
y5

}
,

{
1
x2
,

1
xy3

,
1
y6

}
, . . .

Now we must compute S(z̃) and its asymptotics. First we compute ln(z̃ + i), take the asymptotics wrt
x, sum on i, and again take the asymptotics wrt x (recall that n = xy). this leads to

S1(z̃) = x

[
(− ln(2) + 2 ln(y) + ln(x))y − 1

3
+

4
405y2

+
2

405y3
+ . . .

]
+ y − 2

3
− 2

3y
− 49

135y2
+ . . .

+
1
x

(
y

2
+

1
6y

+ . . .

)
+

1
x2

(y
3

+ . . .
)

+O
( y
x3

)
.
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Here we provide only a few terms but Maple knows more. Next

S2(z̃) = x

[
(ln(2)− 2 ln(y)− ln(x))y +

4
3
− ln(2) + 2 ln(y) + ln(x)− 2

3y
− 94

405y2
+ . . .

]
− y +

2
3

+ ln(2)− 2 ln(y)− ln(x) +
1
y

+
94

135y2
+ . . .

+
1
x

(
y

2
+

1
6y

+ . . .

)
+

1
x2

(y
3

+ . . .
)

+O
( y
x3

)
.

So, finally

S(z̃) = S1(z̃) + S2(z̃) ∼ x
[
1− ln(2) + 2 ln(y) + ln(x)− 2

3y
+ . . .

]
+ ln(2)− 2 ln(y)− ln(x) +

1
3y

+
1

3y2
+ . . .

+
1
x

(
−1

2
+

1
3y
− 1

2y2
+ . . .

)
+

1
x2

(
−1

6
+

19
18y2

. . .

)
+O

(
1
x3

)
.

Now we split S(z̃) into two parts:

T1 = x

[
1− ln(2) + 2 ln(y) + ln(x)− 2

3y
+ . . .

]
+ ln(2)− 2 ln(y)− ln(x),

T2 =
1
3y

+
1

3y2
+ . . .

+
1
x

(
−1

2
+

1
3y
− 1

2y2
+ . . .

)
+

1
x2

(
−1

6
− 17

18y2
. . .

)
+O

(
1
x3

)
.

Note that the dominant term of T1 is given by

T1 ∼ (2− α)nα ln(n). (7)
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We obtain
exp(S(z̃)) = eT1eT2 = eT1T3,

with

T3 = eT2 = 1 +
1
3y

+
7

18y2
+

89
270y3

+
18263
3240y4

+
98009
3240y5

+
9517337
97200y6

+
491504273
2041200y7

+ . . .

+
1
x

(
−1

2
+

1
6y
− 7

12y2
+

2311
540y3

+
112469
6480y4

+
5137
144y5

+ . . .

)
+

1
x2

(
− 1

24
− 13

72y
− 557

932y2
+ . . .

)
+O

(
1
x3

)
.

Here we have given all terms compatible with the expansion (6). Also, with more precision,

T1 = x

[
1− ln(2) + 2 ln(y) + ln(x)− 2

3y
− 2

9y2
− 44

405y3
− 26

405y4
+

40
27y5

+
179968
18225y6

+
4727552
127575y7

+
3436796
32805y8

+
5492621728
22143375y9

+ . . .

]
+ ln(2)− 2 ln(y)− ln(x).

Now we must consider S(k)(z̃). By direct expansion, this gives the following expressions (again we
provide only the first few terms). We must use up to six derivatives to get a sufficient precision (of order
x−2) in the Saddle integrals.

S(2)(z̃) =
1
x

[
4
y4

+
16
3y5

+ . . .

]
+

1
x2

[
−12
y4
− 40

3y5
+ . . .

]
+

1
x3

[
12
y4

+
8
y5

+ . . .

]
+

1
x4

[
−4
y4

+ . . .

]
+O

(
1

x5y4

)
, (8)

Note that, with z = z̃eiθ, this leads to

S(2)(z̃)
(z − z̃)2

2
∼ −1

2
nαθ2. (9)
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S(3)(z̃) =
1
x2

[
−32
y6

+ . . .

]
+

1
x3

[
128
y6

+ . . .

]
+

1
x4

[
−192
y6

+ . . .

]
+

1
x5

[
128
y6

+ . . .

]
+O

(
1

x6y6

)
,

S(4)(z̃) =
1
x3

[
288
y8

+ . . .

]
+

1
x4

[
−1440

y8
+ . . .

]
+

1
x5

[
2880
y8

+ . . .

]
+

1
x6

[
−2880

y8
+ . . .

]
+O

(
1

x7y8

)
,

S(5)(z̃) =
1
x4

[
−3072
y10

+ . . .

]
+

1
x5

[
18432
y10

+ . . .

]
+O

(
1

x6y10

)
,

S(6)(z̃) =
1
x5

[
38400
y12

+ . . .

]
+

1
x6

[
268800
y12

+ . . .

]
+O

(
1

x7y12

)
.

We proceed now as in Section 2. Again, the justification of the integration procedure is given in the
Appendix. This leads to

τ =
y2
√
x

2

[
ua1 +

u2a2

x1/2
+
u3a3

x
+
u4a4

x3/2
+
u5a5

x2
+O

(
u6

x5/2

)]
.
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Fig. 7: The quotient of the expression (8) and S(2)(z̃), as function of j, n = 500. Restricted range, α ≤ .84

We give only a1:

a1 = 1− 2
3y
− 2

9y2
+ . . .+

1
x

(
3
2
− 4

3y
+ . . .

)
+

1
x2

(
15
8
− 7

4y
+ . . .

)
+O

(
1
x3

)
.

This leads to
1√
2π

∫ ∞
−∞

e−u
2/2τ ′(u)du =

y2
√
x

2
T4,

with

T4 = 1− 2
3y
− 2

9y2
+. . .+

1
x

(
5
12
− 11

18y
+ . . .

)
+

1
x2

(
73
288
− 133

432y
+ . . .

)
+

1
x3

(
721
576

+ . . .

)
+O

(
1
x4

)
.

Set

T5 :=
1√
2π

y2
√
x

2
eT1 .

This leads to
[zj ]φn(z) ∼ T5T3T4. (10)

We can of course combine T3 and T4:

T6 := T3T4 = 1− 3
3y
− 1

18y2
− 1

30y3
+

17207
3240y4

+ . . .+
1
x

(
− 1

12
+

1
36y
− 35

216y2
+

15029
3240y3

+ . . .

)
+

1
x2

(
1

288
− 1

864y
+

3527
5184y2

+ . . .

)
+O

(
1
x3

)
.

2
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Fig. 8: The quotient [zj ]φn(z)/T8, two terms in T4, as function of j, n = 500
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Fig. 9: The quotient [zj ]φn(z)/T8, three terms in T4, as function of j, n = 500
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Let us consider the precision of our asymptotics.
The quality of asymptotic (6) is given in Figure 3 and 4, for n = 500, and x ∈ [

√
n, n0.9] (first range)

so that y ∈ [n0.1,
√
n]. For some values of j = n − x, we show z̃/zn, where, as mentioned, zn is the

numerical solution of S′(zn) = 0. In the full range j ∈ [n−n0.9, n−
√
n], the precision is of order 10−5,

in a restricted range, the precision is of order 10−6.
Also a comparison ofGn(z̃) andGn(zn) is given in Figure 5, showing again a precision of order 10−6.
To check the quality of asymptotic (6), we give in Figure 6 the comparison between the expression (8)

and S(2)(z̃). The precision is of of order 10−2.
In a restricted range, given in Figure 7, the precision is of order 10−4. α ≤ 0.84 in this range.
We have made several experiments with (10), with n up to 500. The result is unsatisfactory, only values

of x of order
√
n give reasonable results. Also using eT2 instead of T3 does not improve the precision.

Actually, only very large values of n lead to good precision. So we turn to another formulation: instead
of using eT1T3 for eS(z̃), we plug directly z̃ into Gn(z), ie we set

T7 = Gn(z̃),

leading to

[zj ]φn(z) ∼ 1√
2π

y2
√
x

2
T7T4 =: T8 say.

For n = 500, using two and three terms in T4, we give in Figures 8 and 9, the quotient [zj ]φn(z)/T8.
The precision is of order 10−5.

4 Conclusion
Using an almost mechanized program in Maple, we have obtained some asymptotic expressions for Stir-
ling numbers in central and non-central regions. We intend to use these techniques in other non-central
ranges.
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A Appendix. Justification of the integration procedure
A.1 The central region
We proceed as in Flajolet and Sedgewick [3], ch.V III . We can choose here z̃ = 1. This leads, with z = eiθ , to

S(z) ∼ S0(z) +O
“p

ln(n)θ
”

+ constant term,
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with

S0(z) =

n−1X
k=0

ln[eiθ + k]−Hniθ

∼
n−1X
k=0

1

1 + k
[eiθ − 1]− 1

2

n−1X
k=0

»
1

1 + k
[eiθ − 1

–2
−Hniθ +O(θ3)

∼ Hn[eiθ − 1− iθ] +O(θ2).

Set
h(θ) := eiθ − 1− iθ.

We have

h(θ) ∼ −θ
2

2
,

which conforms to (3).
The function h(θ) is the same as in [3], Ex.V III.3, which proves the validity of our integration procedure: we use

here Hn ∼ ln(n) instead of n. The complete asymptotic expansion is justified as in [3], Ex.V III.4.

A.2 The non-central region
We choose here z̃ = ny

2
= n2−α

2
:= δ, say . We have

1

2
< α < 1,

nα =
n2

2δ
,

n2 � δ � n� nα.

Set z = δeiθ , this leads, with Euler-Maclaurin formula, with the first correction (the other corrections are negligible), to

S(z) ∼
n−1X
k=0

ln
h
δeiθ + k

i
− (n− nα)iθ − (n− nα) ln(δ)

∼ ln
h
n+ δeiθ

i h
n+ δeiθ

i
− n− δeiθ ln

h
δeiθ

i
−
»
n− n2

2δ

–
(iθ + ln(δ))− 1

2
ln
h
n+ δeiθ

i
+

1

2
ln
h
δeiθ

i
.

Set now n = ρδ, ρ = 2nα−1 � 1 and expand wrt ρ. This gives

S(z) ∼ ρ
»
−1

2
e−iθ

–
+ ρ2

»
δ
1 + iθeiθ

2eiθ
+

1

4
e−2iθ +

1

2
δ ln(δ)

–
+ ρ3

»
− δ

6
e−2iθ − 1

6
e−3iθ

–
+O(δρ4).
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Note that the dominant constant contribution is given by 1
2
ρ2δ ln(δ) = (2 − α)nα ln(n), which conforms to (7).

The first term gives a variable part O(ρ). The second term gives a variable part 2nαh(θ) +O(ρ2), with

h(θ) :=
1 + iθeiθ

2eiθ
.

The third term give O(n2α−1) � nα. Note that 2nαh(θ) ∼ − 1
2
nαθ2, which conforms to (9). The function˛̨̨

eh(θ)
˛̨̨

= ecos(θ)/2 is unimodal with peak at 0 and h(0) = 1/2. Let us introduce a splitting value θ0 such that

nαθ20 → ∞, nαθ30 → 0, n → ∞. For instance, we choose θ0 = nβ , β = − 5α
12

. By unimodality property of the
cosine, the tail integral

K(1)
n :=

Z 2π−θ0

θ0

e2n
α(h(θ)−1/2)dθ

is such that ˛̨̨
K(1)
n

˛̨̨
= O

“
en
α[cos(θ0)−1]

”
= O

“
e−Cn

α/6
”

for some C > 0. The tail integral is exponentially small.
As h(θ) ∼ − θ

2

4
, the central approximation and the tail completion are immediate.
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