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Pattern avoidance for random permutations
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Using techniques from Poisson approximation, we prove explicit error bounds on the number of permutations
that avoid any pattern. Most generally, we bound the total variation distance between the joint distribution of
pattern occurrences and a corresponding joint distribution of independent Bernoulli random variables, which
as a corollary yields a Poisson approximation for the distribution of the number of occurrences of any pattern.
We also investigate occurrences of consecutive patterns in random Mallows permutations, of which uniform
random permutations are a special case. These bounds allow us to estimate the probability that a pattern occurs
any number of times and, in particular, the probability that a random permutation avoids a given pattern.
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1 Introduction
A permutation of [n] = {1, . . . ,n} is a bijection σ : [n]→ [n], i 7→ σ(i) = σi, written σ = σ1 · · · σn. For each
n = 1, 2, . . ., we write Sn to denote the set of permutations of [n]. Given permutations σ = σ1 · · · σn
and τ = τ1 · · · τm, we say that σ avoids τ if there does not exist a subsequence 1 ≤ i1 < · · · < im ≤ n
such that σi1 · · · σim is order-isomorphic to τ, and we say that σ avoids τ consecutively if there is no
j = 1, . . . ,n−m+1 such thatσ jσ j+1 · · · σ j+m−1 is order-isomorphic toτ. Here we study pattern avoidance
probabilities for random permutations from the Mallows distribution, which is of particular interest
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in the fields of statistics and probability but some special cases are insightful for questions in
enumerative and extremal combinatorics.

To demonstrate our approach, let n be any integer larger than or equal to 6. It was shown in [31]
that each fixed pattern τ of length n − 1 is avoided by exactly n! − ( (n − 1)2 + 1 ) permutations in Sn.
In [32], it was shown that for each fixed pattern τ of length N ≡ n− 2, there exists 0 ≤ j ≤ N − 1 such
that exactly

n! −
N4 + 2N3 + N2 + 4N + 4 − 2 j

2
permutations in Sn avoid τ. It is left as an open problem in [36] to perform the same analysis for
patterns of length n − 3. From this, it is natural to ruminate on whether for each pattern τ of length
n −m, one has approximately

n! −
n!

(n −m)!

(
n

n −m

)
(1)

permutations in Sn which avoid it, and how large m can be taken. In this paper, we quantify the
quality of approximation of (1) for counting the number of permutations in Sn which avoid any
given pattern τ of length n−m, 1 ≤ m ≤ n, via Poisson approximation. This approach yields general
results which specialize to the counting problem just described, as well as the analogous problem
for consecutive pattern avoidance.

For classical pattern avoidance, we are able to show a good approximation if for any ε > 0 we
have m ≥ (e e1/e + ε)

√
n, but we suspect the e e1/e constant can be improved with a natural lower

bound of e demonstrated by Lemma 3.4. For consecutive pattern avoidance, we obtain stronger
results, namely, we may take any m ≥ dΓ−1(n) − 1e. (In the above expression, Γ−1(n) is the inverse
of the gamma function, i.e., Γ(t) =

∫
∞

0 xte−xdx, which gives the usual generalization of the factorial
function to all positive real numbers.) The above expression is asymptotically best possible since, in
the limit, taking m equal to the right-hand side yields a Poisson approximation with nonzero rate
parameter for the number of occurrences of a consecutive pattern. The range of values for m follows
by a detailed analysis of the bounds contained in Theorem 3.6 and Theorem 3.7, respectively.

The Mallows permutations we study here is a general class of random permutations whose
distribution is weighted by the number of inversions. An inversion in σ = σ1 · · · σn is a pair (i, j),
i < j, such that σi > σ j. For example, σ = 34125 has four inversions, (1, 3), (1, 4), (2, 3), (2, 4). We
write inv(σ) to denote the set of inversions of σ. With Σn denoting a random permutation of [n], the
Mallows distribution with parameter q ∈ (0,∞) on Sn assigns probability

P{Σn = σ} = Pq
n(σ) = q| inv(σ)|/In(q), σ ∈ Sn, (2)

where In(q) =
∏n

j=1
∑ j−1

i=0 qi is the inversion polynomial and | inv(σ)| is the number of inversions in σ.
Note that q = 1 corresponds to the uniform distribution on Sn, i.e., P{Σn = σ} = 1/n! for all σ ∈ Sn,
and is the critical point at which the Mallows family switches from penalizing inversions, q < 1, to
favoring them, q > 1.

The Mallows distribution [26] was introduced as a one-parameter model for rankings that occur
in statistical analysis. More recently, Mallows permutations have been studied in the context of
the longest increasing subsequence problem [6] and quasi-exchangeable random sequences [17, 18].
For general values of q > 0, we consider the problem of consecutive pattern avoidance for random
Mallows permutations, with Theorem 3.8 establishing explicit error bounds on the entire distribution
of the number of occurrences of patterns in a random permutation. Our main theorems, therefore,
complement prior work by Elizalde & Noy [16], Perarnau [30], and the more recent work by the
current authors & Elizalde [13] on consecutive pattern avoidance, as well as Nakamura [29], who
used functional equations to enumerate sets with a prescribed number of occurrences of a given
pattern.

Our approach also differs from previous work in a few key respects. While most prior work
seeks either exact or asymptotic enumeration of the sets that avoid a given pattern or collection of
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patterns, we use the Chen–Stein Poisson approximation method [11], in particular [2], to bound the
total variation distance between the collection of all dependent indicator random variables indicating
pattern occurrence for a prescribed set of indices, and a joint distribution of independent Bernoulli
random variables with the same marginal distributions. These bounds allow us to approximate any
measurable function of the occurrences, e.g., the number of patterns, locations of patterns, etc., via
the corresponding independent random variables. We also reach a natural limit of the usefulness of
these approximations corresponding to the strength of interactions between occurrences of patterns.

The next section gives a brief historical context of restricted permutations. Section 3 presents the
main results, of which there are two kinds: the first type is a preasymptotic bound given in terms of
quantities which are complicated to compute but as accurate as the method allows; the second type
is a more detailed analysis of the bounds in a form that is better suited to applications. Section 4
presents the Chen–Stein Poisson approximation approach that we utilize throughout the paper. In
Section 5 we apply this method to Mallows permutations. Section 6 contains explicit numerical
examples. Finally, the main technical results are proved in Section 7.

2 Motivation
Restricted permutations fall into two broad classes. The first, more tractable type is of the form
σ(a) , b for a, b ∈ [n], whose study dates to the classical problèmes des rencontres in the early 1700s [14];
see also [5, Chapter 4]. A special case counts the number Dn of derangements of [n], i.e., permutations
of [n] without fixed points, for which we have the asymptotic expression

Dn = n!
n∑

i=0

(−1)i

i!
∼ n!/e as n→∞. (3)

Equation (3) can be stated in probabilistic terms by letting Σn be a uniform random permutation of
[n], i.e., P{Σn = σ} = 1/n! for each σ ∈ Sn, for which we compute

P{Σn is a derangement} = Dn/n! ∼ 1/e as n→∞. (4)

See [3, 34] for more thorough treatments involving the cycle structure of random permutations.
We can also derive the expression in (3) by Poisson approximation. With W denoting the number

of fixed points in a random permutation of [n], we demonstrate in Section 4.2, see also [5, Chapter 4],
that the distribution of W converges in total variation distance to the distribution of an independent
Poisson random variable with expected value 1. In addition to the asymptotic value for the
probability that a random permutation has no fixed points, this approach bounds the absolute error
of probabilities that involve any measurable function of the number of fixed points in a random
permutation.

The second type of restriction is pattern avoidance, which attracts increasing attention in the modern
probability [6, 19, 20] and modern combinatorics literature [7]. Any sequence of distinct positive
integers w = w1 · · ·wk determines a permutation of [k] by reduction: with {w(1), . . . ,w(k)}< denoting
the set of elements listed in increasing order, we define the map w(i) 7→ i, under which w maps
to a permutation red(w) of [k], called the reduction of w. For example, w = 826315 reduces to
red(w) = 625314. We call any fixed τ ∈ Sm a pattern and say that σ ∈ Sn contains τ if there exists
a subsequence 1 ≤ i1 < · · · < im ≤ m such that red(σi1 · · · σim ) = τ. We say σ ∈ Sn avoids τ if it does
not contain it. We say that σ contains τ consecutively if there exists an index j ∈ [n −m + 1] such that
red(σ jσ j+1 · · · σ j+m−1) = τ; otherwise, we say σ avoids τ consecutively. For any pattern τ, we define

Sn(τ) := {σ ∈ Sn : σ avoids τ} and

Sn(τ) := {σ ∈ Sn : σ avoids τ consecutively}, (5)
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which we extend to any subset A ⊂
⋃

n≥1 Sn by

Sn(A) := {σ ∈ Sn : σ avoids all τ ∈ A} and (6)

Sn(A) := {σ ∈ Sn : σ avoids all τ ∈ A consecutively}.

For the most part, we are interested in sets Sn(τ) containing all permutations that avoid a given
pattern τ, though our approach extends in a straightforward manner for more general sets A.

Much effort has been devoted to exact enumeration of Sn(A) for certain choices of A, see, e.g.,
[1, 4, 15, 23]. But enumerating Sn(τ) is notoriously difficult for patterns of fixed length larger than
3. Knuth [24] initiated interest in pattern avoidance in the study of algorithms by identifying the
231-avoiding permutations as exactly those that can be sorted by a single run through a stack; see
Bona [7, Chapter 8] for further discussion. In fact, it is now well known that the avoidance sets Sn(τ)
for every length-3 pattern τ are enumerated by the Catalan numbers [35, A000108]:

| Sn(τ)| =
(
2n
n

)
/(n + 1), τ ∈ {123, 132, 213, 231, 312, 321}.

Just as in the derangement problem above, enumeration of Sn(A) has an elementary probabilistic
interpretation that motivates much of our paper. With Σn denoting a uniform random permutation
of [n] and A a set of permutations, the probability that Σn avoids A is

P{Σn avoids every τ ∈ A} = | Sn(A)|/n!.

The Stanley-Wilf conjecture as proved in [27] states that | Sn(τ)| grows exponentially with n for
every fixed τ. For example, the Catalan numbers are known to grow asymptotically like 4n/

√

πn3,
yielding the asymptotic avoidance probability

P{Σn avoids 231} =
(
2n
n

)
/(n + 1)! ∼

1

πn2
√

2

(4 e
n

)n

as n→∞.

Such calculations quickly become intractable as n grows large. For example, the sets of 1324-avoiding
permutations have only been enumerated up to n = 31 [21]. Even precise asymptotics for | Sn(1324)|
have not yet been established [8, 9, 12].

3 Main Results
To fix notation throughout the text, we write σ = σ1 · · · σn to denote a generic permutation. For
any subset A ⊆ [n], we write σ|A to denote the restriction of σ to a permutation of A obtained by
removing those elements among σ1, . . . , σn that are not in A. For example, with σ = 867531924 and
A = {1, 3, 5, 7, 9}, we have σ|A = 75319. We write Σn to denote a random permutation of [n].

3.1 Definitions
Throughout the paper, we write L(X) to denote the distribution, or law, of a random variable X and
L(Y | X) to denote the conditional distribution of Y given X. For random variables X and Y, we write
dTV(L(X),L(Y)) to denote the total variation distance between the distributions of X and Y, which is
defined as

dTV(L(X),L(Y)) = supA⊆R |P(X ∈ A) − P(Y ∈ A)| ,

where the sup is taken over Borel measurable subsets of R. In the special case of non-negative
integer-valued random variables, the total variation distance can be computed as

dTV(L(X),L(Y)) =
1
2

∞∑
n=0

|P(X = n) − P(Y = n)|.
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Define the set of all unordered, distinct m-tuples of elements from [n] by

Jm := {{i1, . . . , im} : 1 ≤ i1 < · · · < im ≤ n}, m ∈ [n].

For each α ∈ Jm, let Dα be the set of all m-element subsets of [n] that overlap with α in at least one
element, i.e., Dα := {β ∈ Jm : β ∩ α , ∅}. For example, if α = {1, 5, 8}, then Dc

α = {{ j1, j2, j3} : ji <
{1, 5, 8}, i = 1, 2, 3}.

With Σn denoting a uniform random permutation of [n], α ∈ Jm, and τ a fixed pattern of length
m, we define Xα = Xi1,...,im as the indicator random variable for the event that the reduction of Σn at
positions i1, . . . , im gives the pattern τ, i.e.,

Xi1,...,im := I(red(Σn(i1) · · ·Σn(im)) = τ). (7)

Let X ≡ Xm := (Xα)α∈Jm be the collection of all such indicators and let B ≡ Bm = (Bα)α∈Jm denote a
collection of independent Bernoulli random variables whose marginal distributions satisfy EBα =
EXα for each α ∈ Jm. The random variable

W =
∑

1≤i1<...<im≤n

Xi1,...,im (8)

counts the total number of occurrences of τ in Σn. For any τ ∈ Sm, for each s = 1, . . . ,m− 1 we define
Ls(τ) as the overlap of size s, i.e., the number of permutations σ ∈ S2m−s for which there are indices
1 ≤ i1 < · · · < im ≤ 2m − s and 1 ≤ j1 < · · · < jm ≤ 2m − s such that {i1, . . . , im} and { j1, . . . , jm} have
exactly s elements in common and

red(σi1 · · · σim ) = red(σ j1 · · · σ jm ) = τ.

For consecutive pattern avoidance, we similarly define the set of all m-tuples of the form {i, i +
1, . . . , i + m − 1}, 1 ≤ i ≤ n −m + 1, as

Jm := {{i, i + 1, . . . , i + m − 1} : 1 ≤ i ≤ n −m + 1}, m ∈ [n].

Let X ≡ Xm := (Xα)α∈Jm
, and let B ≡ Bm = (Bα)α∈Jm

denote a collection of independent Bernoulli

random variables whose marginal distributions satisfyEBα = EXα for each α ∈ Jm. For fixed τ ∈ Sm
and Σn a uniform random permutation of n, we define the random variable

W :=
∑

1≤s≤n−m+1

Xs,s+1,...,s+m−1, (9)

which counts the number of consecutive occurrences of τ in Σn. We also define Ls(τ) as the sequential
overlap of size s, i.e., the number of permutations σ ∈ S2m−s for which

red(σ1 · · · σm) = red(σm−s+1 · · · σ2m−s) = τ.

3.2 Main results on pattern avoidance
We begin with several theorems specifically about pattern avoidance, which follow from the
quantitative bounds given in Section 3.3.

Theorem 3.1. Assume n ≥ m ≥ 3 and τ is any pattern of length m. Define

λ =

(
n
m

)
/m!, d1 =

(
n
m

) ((
n
m

)
−

(
n −m

m

))
1

m!2
,

d2 =

m−1∑
s=1

(
n

2m − s

)
2 Ls(τ)

(2m − s)!
, (10)
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and
Dn,m = min(1, λ−1)(d1 + d2).

Then we have
n! e−λ

(
1 − eλDn,m

)
≤ |Sn(τ)| ≤ n! e−λ

(
1 + eλDn,m

)
. (11)

In addition, for any fixed ε ≥ 0, suppose m ≡ m(n) is some increasing, integer-valued function of n such
that m ≥ (e e1/e + ε)

√
n. For any sequence of patterns τn ∈ Sm, we have∣∣∣∣∣ | Sn(τ)|

n!
− e−λ

∣∣∣∣∣ = o(1) as n→∞.

Remark 3.2. There are several noteworthy aspects to Theorem 3.1.

1. The expression for λ equals the expected number of occurrences of τ in a uniform random permutation
of [n], and thus is the same for all patterns of length m.

2. The expression for d1 cannot be improved using our approach.

3. We are not aware of any efficient means to calculate the values Ls(τ) in general. For a simple and
explicit upper bound, applicable for all patterns τ of length m, we have used

d2 ≤

(
n
m

) m−1∑
s=1

(
n −m
m − s

)(
m
s

)
s!

m!2
, (12)

but we suspect that this bound can be improved.

It is tempting to conjecture that Theorem 3.1 holds even when λ tends to some fixed positive
constant, but we suspect this is not possible, as we now demonstrate.

Lemma 3.3 ([28]). Fix any t > 0 and let λ =
(n

m
)
/m!. Then λ→ t as n→∞ provided

m ∼ e
√

n −
1
4

log(n) −
1
2

log(2πt) −
1
4

e2
−

1
2

as n→∞. (13)

Lemma 3.4. Suppose n, m, and n −m tend to infinity and d1 is as defined in Theorem 3.1. Then we have

d1 ∼ λ
2
(
1 − e−m2/n

)
.

In particular, for any ε > 0 and m ≥ (e + ε)
√

n, we have d1 → 0, and for m ∼ e
√

n − 1
4 log(n), we have

d1 → c ∈ (0,∞).

It follows that a necessary condition for d1 to tend to zero is that

m & e
√

n −
(1

4
− ε

)
log(n) for any ε > 0, (14)

where the notation a & b means that both a ≥ b and a ∼ b. It is also well known, see [22, 25],
that the typical size of the longest increasing subsequence of a random permutation of size n is
asymptotically of order 2

√
n, and so one cannot have a Poisson limit theorem which applies to the

increasing pattern 12 . . .m with m < 2
√

n. It is interesting to investigate the behavior in the gap, i.e.,
for m ∼ c

√
n with any 2 < c < e, and we leave this as an open problem.

We also have an analogous theorem for consecutive patterns.
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Theorem 3.5. Assume n ≥ m ≥ 3 and τ is any pattern of length m. Define

λ =
n −m

m!
, d1 =

2mn − 3m2 + m
m!2

, d2 =

m−1∑
s=1

(n − 2m + s) 2 Ls(τ)
(2m − s)!

,

and
Dn,m = min(1, 1/λ)(d1 + d2).

Then we have

n! e−λ
(
1 − eλ Dn,m

)
≤ |Sn(τ)| ≤ n! e−λ

(
1 + eλ Dn,m

)
. (15)

In addition, fix any t > 0, and define M(t,n) :=
⌊ log(n/t)

log log(n/t)−log log log(n/t) −
1
2

⌋
. Let m ≡ m(n) be some

increasing, integer-valued function of n such that m ≥ M(t,n). For any sequence of patterns τn ∈ Sm, we
have Dn,m → 0, and thus ∣∣∣∣∣∣ | Sn(τ)|

n!
− e−λ

∣∣∣∣∣∣ = o(1) as n→∞.

Furthermore, define Tn(τ, k) as the number of permutations in Sn where pattern τ occurs exactly k times, and
take m(n) = M(t,n). For any sequence of patterns τn ∈ Sm, we have

∞∑
k=0

∣∣∣∣∣∣Tn(τ, k)
n!

−
tk

k!
et

∣∣∣∣∣∣ = o(1) as n→∞.

In Section 3.4, we present an analogous result for permutations chosen according to the Mallows(q)
distribution.

3.3 Main results on uniform permutations
Theorems 3.1 and 3.5 provide an asymptotic analysis for sequences of patterns which also grow in
size. It is too much to expect a general asymptotic formula for any fixed pattern—we have already
noted the difficulty of nailing down the asymptotic growth of 1324-avoiding sets—but Poisson
approximation, see Section 4, provides a general approach for obtaining preasymptotic bounds on
various quantities when all sizes are fixed.

Theorem 3.6. Assume n ≥ m ≥ 3 and τ is any pattern of length m. Recalling the definition of Xα in (7), we
let X = (Xα)α∈Jm be the collection of all such variables and B = (Bα)α∈Jm be an independent Bernoulli process
with marginal distributions satisfying EBα = EXα for all α ∈ Jm. We have

dTV(L(X),L(B)) ≤ 4Dn,m +
2λ
m!
, (16)

where Dn,m and λ are as defined in Theorem 3.1. Furthermore, with W defined as in (8), and for Y a Poisson
random variable with mean λ = EW, we have

dTV(L(W),L(Y)) ≤ 2Dn,m.

Theorem 3.7. Assume n ≥ m ≥ 3 and τ is any pattern of length m. Recall the definitions of X, B, and W
given in Section 3.1. We have

dTV

(
L

(
X
)
),L

(
B
))
≤ 4Dn,m +

2λ
m!
, (17)

where Dn,m and λ are as defined in Theorem 3.5. Let Y denote a Poisson random variable with parameter λ.
We have

dTV

(
L

(
W

)
,L

(
Y
))
≤ 2Dn,m.
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3.4 Main results on Mallows permutations
In Section 5, we discuss several special properties of the Mallows distribution that are useful for
studying consecutive pattern avoidance. Using these properties, we obtain analogous bounds to
those in Theorems 3.6 and 3.7.

Recall the definition of the restriction Σn|A of Σn to a subset A ⊆ [n], as defined at the beginning
of Section 3. Also recall Jm denotes the set of subsets of size m whose elements are consecutive in
{1, 2, . . . ,n}.
Theorem 3.8. Fix q > 0 and let Σn ∼ Mallows(q) as defined in (2). For any m ≥ 2, fix any patterm τm of
size m. For any α ∈ Jm, let

Xα = I(red(Σn|α) = τm)

and W =
∑
α∈Jm

Xα, and let Y be an independent Poisson random variable with expected value λ = EW.
Then

dTV(L(W),L(Y)) ≤ 2(b1 + b2),

where

λ = (n −m)
q| inv(τm)|

Im(q)
, b1 =

(2mn − 3m2 + m) q2| inv(τm)|

Im(q)2 , b2 =

m−1∑
s=1

(n − 2m + s)
∑

ρ∈Ls(τm)

q| inv(ρ)|

I2m−s(q)
,

where Im(q) is as defined following (2).
Asymptotic formulas and Poisson limit theorems for general Mallows permutations depend on

the interplay between the parameters n, m, | inv(τ)|, and q. In particular, we need the expected
number of occurrences to converge to a constant λ ∈ (0,∞). In the case of consecutive pattern
avoidance, the expected number of occurrences of a pattern τ ∈ Sn in Σn ∼Mallows(q) is

λ = (n −m)q| inv(τ)|/Im(q),

which, for m fixed, produces non-trivial limiting behavior whenever

q ∼ n−1/| inv(τ)| or q ∼ n1/((m
2)−| inv(τ)|) as n→∞.

We can also allow m to vary and keep q fixed so that

| inv(τ)| ∼ − log(n)/ log(q) or | inv(τ)| ∼ − log(n)/ log(q) + m2/2 as n→∞.

Combined with Theorem 3.8, these observations yield Theorem 3.9 below.

Theorem 3.9. Let m ≡ m(n) be a non-decreasing integer-valued sequence, τn ∈ Sm be a sequence of patterns,
and q ≡ q(n) be a sequence of parameters. For each n ≥ 1, let Σn be a random permutation from the Mallows
distribution (2) with parameter q(n), with Xq and Bq defined analogously. For any measurable function
h : {0, 1}n−m+1

→ R and Borel set A ⊆ R , we have

P(h(Xq) ∈ A) = P(h(Bq) ∈ A) + o(1),

provided either

q(n) ≤ n−1/ inv(τm(n)) for almost all n ≥ 1,

q(n) ≥ n1/((m(n)
2 )−| inv(τm(n))|) for almost all n ≥ 1,

| inv(τm(n))| ≤ − log(n)/ log(q(n)) for almost all n ≥ 1 and q < 1 or

| inv(τm(n))| ≥ − log(n)/ log(q(n)) + m(n)2/2 for almost all n ≥ 1 and q > 1.

In Section 5.3.2, we demonstrate Theorem 3.8 for all patterns of length 3. In Section 6.2, we compute
the bounds in Theorem 3.8 for the specific patterns 2341 and 23451 and we plot the estimated pattern
avoidance probabilities in the appropriate asymptotic regime for q from Theorem 3.9.
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3.5 Classical pattern avoidance for Mallows permutations
We conclude this section by commenting that our approach is silent about classical pattern avoidance
in Mallows permutations. The reason for this limitation is readily seen by noting the interplay
between the Arratia–Goldstein–Gordon Theorem (Theorem 4.2) and the homogeneity properties of
the Mallows distribution, or lack thereof, highlighted in Section 5.2 below. Briefly, for any pattern
τ ∈ Sm and any 1 ≤ i1 < . . . < im ≤ n, the probability that τ occurs in positions i1, . . . , im of a uniform
random permutation of [n] is 1/m!, regardless of the choice of indices i1, . . . , im. This property is
crucial to computing the constants b1 and b2 in our application of Theorem 4.2, and allows us to
obtain quantitative bounds when permutations are assumed to be drawn uniformly at random.

The same property does not hold for Mallows permutations. Instead, Mallows permutations
only satisfy the weaker property of consecutive homogeneity, by which the probability that a pattern
τ occurs in consecutive locations j, j + 1, . . . , j + m − 1 is the same regardless of j; see Section 5.2.
We know of no general formula for computing the probability that a given pattern appears in non-
consecutive locations of a Mallows permutation. Without such a formula, we have no systematic
way to extend our results in this direction, and so we leave this as an open problem.

4 Poisson approximation
4.1 Chen–Stein method
Stein’s method is an approach to proving the central limit theorem that was adapted by Chen to
Poisson convergence [11]. The advantage of this method is that it provides guaranteed error bounds
on the total variation distance between the distribution of a sum of possibly dependent random
variables and the distribution of an independent Poisson random variable with the same mean.

Theorem 4.1 (Chen [11]). Suppose X1,X2, . . . ,Xn are indicator random variables with expectations
p1, p2, . . . , pn, respectively, and let W =

∑n
i=1 Xi. Let Y denote an independent Poisson random vari-

able with expectation λ =
∑n

i=1 pi. Suppose, for each i ≥ 1, a random variable Vi can be constructed on the
same probability space as W such that

L(1 + Vi) = L(W | Xi = 1).

Then

dTV(L(W),L(Y)) ≤
1 − e−λ

λ

n∑
i=1

piE |W − Vi|. (18)

4.2 Fixed points example
To see how Theorem 18 can be applied, let e(n) denote the number of fixed-point free permutations
of [n]. With Σn a uniform permutation of [n], we define indicator random variables

Xi = I( i is a fixed point of Σn ), i = 1, . . . ,n.

(Note that these random variables are not independent.) We then define the sum

W =

n∑
i=1

Xi

so that P(W = 0) = e(n)/n! and λ = EW =
∑n

i=1
1
n = 1, the expected number of fixed points. Even

before we proceed with the bound, we obtain the heuristic estimate of n! e−1 for e(n), just as in (3).
To apply Theorem 4.1, we need to construct an explicit coupling of W and 1 + Vi on the same

probability space. This is done for more general restrictions in [5], but we shall write out the full
calculation on fixed points to illustrate the basic premise.
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We take 1 + Vi to be the random sum W conditioned on Xi = 1. For a random permutation σ,
suppose σ(i) = j, for some j ∈ [n]. The coupling is: swap elements i and j. The resulting permutation
has the same marginal distribution as a random permutation conditioned to have a fixed point
at i. In fact, |W − Vi| ∈ {0, 1, 2} for each i since we modify at most 2 elements, and the elements
not involved in the swap cancel out (i.e., any fixed points occurring on indices other than these
swapping positions remain unchanged). Let us denote the random variables after the coupling by
X′1,X

′

2, . . . ,X
′
n; that is, L(X′j) = L(X j | Xi = 1), so that 1 + Vi =

∑n
j=1 X′j. We have

|W − Vi| =

∣∣∣∣∣∣∣Xi +
∑
k,i

(Xk − X′k)

∣∣∣∣∣∣∣ = |Xi + XJI(J = σ(i), J , i)| =


0, σ(i) , i, i not in a 2-cycle,
1, σ(i) = i,
2, i in a 2-cycle.

The probability that two given elements i and j are part of a 2-cycle is precisely 1/(n(n − 1)), and the
probability that i is part of a 1-cycle is 1/n. Thus,

E |W − Vi| =
1
n

+
2
n

=
3
n
,

and equation (18) becomes

dTV(L(W),L(Y)) ≤ (1 − e−1)
n∑

i=1

1
n

3
n

=
3(1 − e−1)

n
.

For all n ≥ 1, we have

|P(W = 0) − P(Y = 0)| =
∣∣∣∣∣ e(n)

n!
− e−1

∣∣∣∣∣ ≤ supi |P(W = i) − P(Y = i)| ≤ dTV(W,Y) ≤
3(1 − e−1)

n
.

Rearranging yields

n!e−1
− 3(n − 1)!(1 − e−1) ≤ e(n) ≤ n!e−1 + 3(n − 1)!(1 − e−1).

Note that this is a guaranteed error bound that holds for all n ≥ 1, and as a corollary we get
e(n) = n!e−1(1 + o(n−1)).

The error bounds derived from the Chen–Stein method can be improved in special cases, e.g., e(n)
above can be obtained exactly by rounding n!/e to the nearest integer for all n ≥ 1, but the appeal of
Poisson approximation is that it applies more generally.

4.3 The Arratia–Goldstein–Gordon Theorem
Arratia, Goldstein, & Gordon [2] provide another approach to Poisson approximation that is
sometimes more practical for Poisson approximation.
Theorem 4.2 (Arratia, Goldstein, & Gordon [2]). Let I be a countable set of indices and, for each α ∈ I, let
Xα be an indicator random variable. Let X = (Xα)α∈I denote a collection of (possibly dependent) Bernoulli
random variables and let B = (Bα)α∈I denote a collection of independent Bernoulli random variables with
marginal distributions which satisfy EBα = EXα for all α ∈ I. Define pα := EXα = P(Xα = 1) > 0 and
pαβ := EXαXβ. Also define W :=

∑
α∈I Xα and λ := EW =

∑
α∈I pα. For each α ∈ I, define sets Dα ⊂ I and

the quantities

b1 :=
∑
α∈I

∑
β∈Dα

pαpβ,

b2 :=
∑
α∈I

∑
α,β∈Dα

pαβ, and (19)

b3 :=
∑
α∈I

E |E {Xα − pα | σ(Xβ : β < Dα)}|,
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where σ(Xβ : β < Dα) denotes the smallest σ-algebra containing Xβ. We have

dTV(L(X),L(B)) ≤ 2(2b1 + 2b2 + b3) + 2
∑
α∈I

p2
α.

Furthermore, let Y denote an independent Poisson random variable with mean λ = EW. We have

dTV(L(W),L(Y)) ≤ 2(b1 + b2 + b3),

and also

|P(W = 0) − P(Y = 0)| ≤ (b1 + b2 + b3)
1 − e−λ

λ
.

In our applications, we are able to define sets Dα, α ∈ I, so that b3 = 0 always holds; whence,
the calculations of the bounds in our theorems require only calculations involving first and second
(unconditioned) moments. For uniform random permutations this is straightforward, but establish-
ing the analogous properties for consecutive patterns under random Mallows permutations is less
obvious.

5 Consecutive pattern avoidance of Mallows permutations
For any permutation σ = σ1 · · · σn, we define its reversal by σr = σn · · · σ1. By the definition of the
Mallows distribution in (2), it is apparent that Pq

n(σ) = P1/q
n (σr) for all σ ∈ Sn, and so we can focus on

the case 0 < q ≤ 1 in our analysis.

5.1 Sequential construction
The Mallows distribution (2) enjoys several nice properties that are amenable to the study of pattern
avoidance. These properties are readily observed by the following sequential constructions, both
of which are well known and have been leveraged in previous studies of the Mallows distribution;
see, for example, [6, 17]. While the properties below are well known, we are not aware of their
appearance in relation to pattern avoidance. We provide proofs for completeness.

For q > 0, we say that random variable X has the truncated Geometric(q) distribution on [n],written
as X ∼ Geometric(n, q), when the point probabilities of X are given by

Pn,q(X = k) = qk−1/(1 + · · · + qn−1), k = 1, . . . ,n. (20)

A Mallows permutation can be generated from the truncated Geometric distribution in two ways,
which we call the ordering and bumping constructions.

For the ordering construction, we generate X1,X2, . . . independently, with each Xn distributed as
Geometric(n, 1/q). To initialize, we have Σ1 = 1, the only permutation of [1]. Given Σn = σ1 · · · σn
and Xn+1 = k, we define

Σn+1 = σ1 · · · σk−1(n + 1)σk · · · σn.

For every n = 1, 2, . . ., it is apparent that Σn is a Mallows(q) permutation because the probability that
element n + 1 appears in position k of Σn+1 is

P(Σn+1(k) = n + 1) = Pn+1,1/q(X = k) = Pn+1,q(X = n + 1 − k) = qn+1−k/(1 + q + · · · + qn).

Since X1, . . . ,Xn are chosen independently and each event {Σn = σ} corresponds to exactly one
sequence X1, . . . ,Xn, we observe

P(Σn = σ) = q| inv(σ)|/In(q), σ ∈ Sn,

as in (2).
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Definition 5.1 (Mallows process). A collection (Σn)n≥1 generated by the ordering construction for fixed
q > 0 is called a Mallows(q) process.

For the bumping construction, we generate X1,X2, . . . independently with each Xn distributed as
Geometric(n, 1/q) as before, and again we initialize with Σ1 = 1. Given Σn = σ1 · · · σn and Xn+1 = k,
we obtain Σn+1 by appending k to the end of Σn and “bumping” all elements of Σn that are greater
or equal to k. More formally, the permutation Σn and the variable Xn+1 give rise to the updated
permutation Σ′1 · · ·Σ

′
nXn+1, where

Σ′j =

{
Σ j + 1, Σ j ≥ Xn+1,

Σ j, otherwise.

For example, if Σ5 = 24135 and X6 = 3, then Σ6 = 251463. Again, the resulting distribution of Σn is
Mallows(q) because Xn+1 = k introduces exactly n + 1 − k new inversions in Σn+1 and X1,X2, . . . are
generated independently.

5.2 Properties of Mallows permutations
Throughout this section, we let (Σn)n≥1 be a family of random permutations so that each Σn is a
permutation of [n]. We say that (Σn)n≥1 is consistent if for all 1 ≤ m ≤ n

P(Σn|[m] = σ) = P(Σm = σ), σ ∈ Sm . (21)

It is immediate from the ordering construction that the Mallows process (Σn)n≥1 is consistent for
every q > 0.

Recall the reduction map described in Section 1. We call (Σn)n≥1 homogeneous if for all 1 ≤ m ≤ n
and every subsequence 1 ≤ i1 < · · · < im ≤ n

P(red(Σn(i1) · · ·Σn(im)) = σ) = P(Σm = σ), σ ∈ Sm . (22)

We call (Σn)n≥1 consecutively homogeneous if (22) holds only for consecutive subsequences i1, i1 +
1, . . . , i1 + m − 1.

Lemma 5.2. The Mallows(q) process is consecutively homogeneous for all q > 0 and homogeneous for q = 1.

Proof: The q = 1 case corresponds to the uniform distribution, which is well known to be homoge-
neous. For arbitrary q > 0, consider the event {red(Σn( j) · · ·Σn( j + m − 1)) = σ} for some σ ∈ Sn. By
the ordering construction, we can first generate Σm = Σm(1) · · ·Σm(m) from the Mallows(1/q) distri-
bution on [m]. We then obtain Σm+ j−1 from Σm using the bumping construction for Mallows(1/q)
distribution. Thus, we have Σm+ j−1 ∼ Mallows(1/q) and its reversal Σr

m+ j−1 ∼ Mallows(q) with
red(Σr

m+ j−1( j) · · ·Σr
m+ j−1(m + j − 1)) = Σm(m) · · ·Σm(1) ∼ Mallows(q). Finally, we obtain Σn by aug-

menting Σr
m+ j−1 according to the bumping construction, so that

red(Σn( j) · · ·Σn(m + j − 1)) = red(Σr
m+ j−1( j) · · ·Σr

m+ j−1(m + j − 1)) = Σm(m) · · ·Σm(1) ∼Mallows(q).

This completes the proof. �

We say that Σn is dissociated if Σn|A and Σn|B are independent for all non-overlapping subsets
A,B ⊆ [n]. If, instead, Σn|A and Σn|B are independent only when A and B are disjoint and each
consists of consecutive indices, then we call Σn weakly dissociated.

Lemma 5.3. For all n ≥ 1, the Mallows(q) distribution on Sn is weakly dissociated for all q > 0 and
dissociated for q = 1.
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Proof: For i′ > i ≥ 1 and m,m′ ≥ 0 satisfying i+m−1 < i′ and i′+m′−1 ≤ n, let A = {i, i+1, . . . , i+m−1}
and B = {i′, i′ + 1, . . . , i′ + m′ − 1}. For any n ≥ 1, we can construct a Mallows(q) permutation of [n] by
first generating Σi+m−1, for which we know that red(Σi+m−1(i) · · ·Σi+m−1(i + m − 1)) ∼ Mallows(q) by
Lemma 5.2. We then construct Σn from Σi+m−1 by the bumping construction. Since bumping does
not affect the reduction of any part of Σn(1) · · ·Σn(i + m − 1), we have

P(red(Σn(i) · · ·Σn(i + m − 1)) = σ | red(Σn(i′) · · ·Σn(i′ + m′ − 1)) = σ′} =)
= P(red(Σi+m−1(i) · · ·Σi+m−1(i + m − 1)) = σ | red(Σn(i′) · · ·Σn(i′ + m′ − 1)) = σ′)
= P(Σm(1) · · ·Σm(m) = σ),

proving that Σn is weakly dissociated. Dissociation of the uniform distribution (q = 1) is well known
and so we omit its proof. The proof is complete. �

Together, the above properties facilitate study of consecutive pattern avoidance for Mallows
permutations with arbitrary q > 0. For example, the pattern 231 has probability q2/(1 + 2q + 2q2 + q3)
to occur in any stretch of three consecutive positions of a Mallows(q) permutation. Since there are
n− 2 consecutive patterns of length 3 in a permutation of [n], the expected number of occurrences is
(n − 2)q2/(1 + 2q + 2q2 + q3). For large n and small q, this expected value behaves asymptotically as
nq2, so that taking q ∼ 1/

√
n gives an expected number on the order of a constant. When q is large,

the expected number of occurrences behaves as nq−1 for large n, and taking q ∼ n gives an expected
number on the order of a constant.

5.3 Poisson convergence theorems
Theorems 3.8 and 3.9 follow by combining the above properties of Mallows permutations with
Theorem 4.2. The calculations and resulting bounds for the general Mallows measure follow the
same program as the uniform case, with the key distinction that we only consider consecutive patterns
for the general Mallows distribution; see Section 3.5. Unlike the uniform setting, the bounds for
the Mallows distribution depend non-trivially on the parameter q and the structure of τ. It is more
fruitful to illustrate this dependence with specific examples than to regurgitate the same proof for
Mallows permutations.

5.3.1 Monotonic patterns under Mallows distribution
Consider the set of permutations that avoid the pattern 123. There are no inversions, and the size
of the pattern is 3; thus, the probability of seeing this pattern in any given set of three consecutive
indices of a Mallows(q) permutation is 1/I3(q). We also need to consider second moments, i.e., the
probability of seeing two 123 patterns. By Lemma 5.3 we need only consider overlapping sets of
indices. There are two cases, either two indices overlap or one does. If two indices overlap and the
first three and last three both reduce to pattern 123, then the segment must reduce to 1234. Similarly,
if one index overlaps, then the segment must reduce to 12345.

The results below extend this argument to monotonic patterns.
Lemma 5.4. Fix q > 0 and let Σn ∼ Mallows(q). For each m ≥ 1, let τm denote the pattern 12 · · ·m. For
each α ∈ Jm, define

Xα = I(red(Σn|α) = τm).
(Recall that Σn|α denotes the restriction of Σn to the subset of indices α.) For a random permutation generated
using the Mallows measure, we have

EXα =
1

Im(q)
, α ∈ Jm,

and for α, β ∈ Jm, α , β, we have

EXαXβ =

 1
Im(q)2 , if α, β have no overlapping elements

1
I2m−s(q) , if α, β have exactly s overlapping elements, s = 1, 2, . . . ,m − 1.
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Proof: The expression for EXαXβ when α and β do not overlap is a consequence of the weak
dissociation property of Mallows permutations (Lemma 5.3), whereby

EXαXβ = EXαEXβ = P(red(Σn|α) = τm)2 = (1/Im(q))2.

When α and β overlap in s elements, the event {Xα = Xβ = 1} requires that both Σn|α and Σn|β reduce
to the increasing permutation, which can occur only if Σn|α∪β reduces to the increasing permutation
of 2m − s. �

Proposition 5.5. Fix q > 0 and let Σn ∼ Mallows(q). For any m ≥ 2, let τm be the increasing pattern
12 · · ·m. For any α ∈ Jm, let

Xα = I(red(Σn|α) = τm).

Let W =
∑
α∈Jm

Xα and let Y be an independent Poisson random variable with expected value λ = EW. Then

dTV(L(W),L(Y)) ≤ 2(b1 + b2),

where

λ =
n −m
Im(q)

, b1 =
n1

Im(q)2 , b2 = n2

m−1∑
s=1

1
I2m−s(q)

,

and n1 and n2 are given by

n1 = 2mn − 3m2 + m and

n2 = 3m − 3m2
− 2n + 2mn. (23)

Proof: When 2m − 1 ≤ n, we have n1 = 2
∑m

s=1(n − 2m + s) = 2mn − 3m2 + m, and similarly
n2 = 2

∑m−1
s=1 (n − 2m + s) = 3m − 3m2

− 2n + 2mn. The factor of 2 is from exchanging the role of α, β.
When 2m − 1 > n, the stated expressions for n1 and n2 are still valid upper bounds, but they can be
improved. �

It is straightforward to state the complementary result about the decreasing pattern m · · · 21.

Proposition 5.6. Fix q > 0 and let Σn ∼ Mallows(q). For any m ≥ 2, let ηm be the decreasing pattern
m · · · 21. For any α ∈ Jm, let

Xα = I(red(Σn|α) = ηm)

and W =
∑
α∈Jm

Xα, and allow Y to denote an independent Poisson random variable with expected value
λ = EW. Then

dTV(L(W),L(Y)) ≤ 2(b1 + b2),

where

λ = (n −m)
q(m

2)

Im(q)
, b1 =

n1 q(m
2)

Im(q)2 , b2 = n2

m−1∑
s=1

q(2m−s
2 )

I2m−s(q)
,

and n1 and n2 are given by

n1 = 2mn − 3m2 + m and

n2 = 3m − 3m2
− 2n + 2mn.
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5.3.2 Other patterns of length 3
We now demonstrate the dependence of the total variation bound on q for the small patterns 132, 213,
231, and 312. In this section, we again recall that Jm denotes the set of all m-tuples with consecutive
elements in {1, 2, . . . ,n}, and for a given α ∈ J3, Xα denotes the indicator random variable defined in
(7).

For τ = 132, we have EXα = q/I3(q), and there can be no consecutive occurrences of τ that overlap
with two indices. The only possible ways to have one overlapping index are the patterns 13254,
15243, and 14253. In these cases, we have

λ =
(n − 3) q

I3(q)
and

EXαXβ =
1

I5(q)
×


q2, 13254,
q3, 14253,
q4, 15243.

Letting W =
∑
α∈J3
EXα and defining Y as an independent Poisson random variable with expectation

λ = EW = (n − 3) q/I3(q), the total variation distance bound is given by

dTV(L(W),L(Y)) ≤ 2
(
(3n − 13)

q2

I3(q)2 + 2(n − 5)
q2 + q3 + q4

I5(q)

)
.

The 2(n−5) term comes from the two sets of triplets {1, 2, 3} and {2, 3, 4} for which the overlapping pair
can only occur to the right of the elements, and similarly from the two sets of triplets {n− 2,n− 1,n}
and {n− 3,n− 2,n− 1} for which the overlapping pair can only occur to the left of the elements, and
finally the (n − 4 − 3) triplets in between for which the overlapping pairs are both to the left and the
right; hence 2 + 2(n − 7) + 2 = 2(n − 5). Similarly, the 3n − 13 comes from 2 · 2 + 3(n − 7) + 2 · 2. For
fixed t > 0, we have λ→ t and dTV(L(W),L(Y)) = O(n−1), provided q ∼ t n−1 or q ∼ t n1/2.

For τ = 213, we similarly have

λ =
(n − 3) q

I3(q)
,

EXαXβ =
1

I5(q)
×


q2, 21435,
q3, 31425,
q4, 32415,

and

dTV(L(W),L(Y)) ≤ 2
(
(3n − 13)

q2

I3(q)2 + 2(n − 5)
q2 + q3 + q4

I5(q)

)
,

which for q ∼ t n−1 or q ∼ t n1/2 implies λ→ t and dTV(L(W),L(Y)) = O(n−1).
For τ = 231:

λ =
(n − 3) q2

I3(q)
,

EXαXβ =
1

I5(q)
×


q6, 34251,
q7, 35241,
q8, 45231,

and

dTV(L(W),L(Y)) ≤ 2
(
(3n − 13)

q4

I3(q)2 + 2(n − 5)
q6 + q7 + q8

I5(q)

)
,



16 Harry Crane, Stephen DeSalvo

n j lower n!
100 36 6.85456 × 10157 9.3326 × 10157

1000 133 3.4433 × 102567 4.6045 × 102567

10000 442 8.3847 × 1035658 2.8463 × 1035659

100000 14353 9.9451 × 1065657058 1.2024 × 1065657059

Tab. 1: Bounds on | Sn(τ)| for τ ∈ S j, for different values of n and j.

n j lower n!
100 6 3.98735 × 10157 9.33262 × 10157

1000 7 5.77948 × 102566 4.02387 × 102567

10000 9 2.49966 × 1035659 2.84626 × 1035659

100000 10 2.48004 × 10456573 2.82423 × 10456573

1000000 11 7.34802 × 105565708 8.26393 × 105565708

Tab. 2: Bounds on | Sn(τ)| for τ ∈ S j, for different values of n and j.

which for q ∼ t1/2n−1/2 or q ∼ n t1/2 implies λ→ t and dTV(L(W),L(Y)) = O(n−1).
And finally for τ = 312:

λ =
(n − 3) q2

I3(q)
,

EXαXβ =
1

I5(q)
×


q6, 51423,
q7, 52413,
q8, 53412,

and

dTV(L(W),L(Y)) ≤ 2
(
(3n − 13)

q4

I3(q)2 + 2(n − 5)
q6 + q7 + q8

I5(q)

)
,

which for q ∼ t1/2 n−1/2 or q ∼ n t1/2 implies λ→ t and dTV(L(W),L(Y)) = O(n−1).

6 Numerical examples
6.1 Numerical values
Using Theorem 3.6, we can estimate | Sn(τ)| for different sizes of patterns τ. Table 1 shows the
lower bound thresholds for several values of n and patterns of size j. Similarly, using Theorem 3.7,
we estimate | Sn(τ)| in Table 2. In the case of n = 1000 and j = 133, we have more specifically
3.4433 × 102567

≤ |Sn(τ)| ≤ 4.0239 × 102567.

6.2 Detailed illustration for the patterns 2341 and 23451
Propositions 5.5 and 5.6 give an expression for the total variation bound between the number of
occurrences of the increasing and decreasing patterns and an independent Poisson random variable.
In principle, these bounds can be computed exactly for any pattern by way of the Arratia–Goldstein–
Gordon theorem (Theorem 4.2), and so we need only compute the quantities b1, b2, and b3 as in
Theorem 4.2.

By Lemma 5.3, all Mallows(q) permutations are weakly dissociated and, therefore, b3 ≡ 0 for all
patterns in the case of consecutive pattern avoidance. For any pattern τ, homogeneity of the Mallows
measure implies pα = q| inv(τ)|/Im(q) for all α, and so b1 is easy to compute. The only complication
involves the consideration of overlapping patterns in the calculation of b2. We cannot prove anything
more general than Arratia–Goldstein–Gordon for arbitrary patterns; instead, we compute these
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permutation no. inversions permutation no. inversions
3452671 9 3462571 10
3472561 11 3562471 11
3572461 12 4562371 12
4572361 13 3672451 13
4672351 14 5672341 15

Tab. 3: List of all permutations that have pattern 2341 in overlapping positions along with the number of
inversions.

permutation no. inversions permutation no. inversions permutation no. inversions
345627891 12 347825691 16 456923781 18
345726891 13 347925681 17 467823591 19
345826791 14 348925671 18 467923581 20
345926781 15 357824691 17 468923571 21
346725891 14 357924681 18 567823491 20
346825791 15 358924671 19 567923481 21
346924781 16 367824591 18 568923471 22
356724891 15 367924581 19 378924561 21
356824781 16 368924571 20 478923561 22
356924781 17 457823691 18 578923461 23
456723891 16 457923681 19 678923451 24
456823791 17 458923671 20

Tab. 4: List of all permutations that have pattern 23451 in overlapping positions along with the number of
inversions.

bounds in the special cases of τ = 2341 and τ = 23451. Figure 1 shows the performance of these
bounds at the critical values q ∼ n−1/3 and q ∼ n1/3 for τ = 2341, and q ∼ n−1/4 and q ∼ n1/6 for
τ = 23451.

6.2.1 The pattern 2341
For τ = 2341, we have pα = q3/I4(q) and b1 = (n − 4)q3/I4(q). The structure of τ only permits overlap
with the first or last position. Table 3 lists all permutations that have pattern 2341 in the first 4 and
last 4 positions. These are the only permutations that contribute to b2 in the bound of Theorem 4.2.
We assume n ≥ 7. For positions 5, . . . ,n − 5, each of these overlapping patterns can occur twice;
otherwise, the patterns occur only once for a total of 2(n − 8) + 8 = 2n − 8 possibilities. There are
6(n − 8) + 2(5 + 4 + 3) = 6n − 24 overlapping patterns α and β that contribute to b1. Thus,

λ = (n − 4)q3/I4(q),

b1 = (6n − 24)q6/I4(q)2, and

b2 = (2n − 8)q9(1 + q + 2q2 + 2q3 + 2q4 + q5 + q6)/I7(q),

giving the bounds

e−λ − (b1 + b2)
1 − e−λ

λ
≤ P(W = 0) ≤ e−λ + (b1 + b2)

1 − e−λ

λ
.

6.2.2 The pattern 23451
For τ = 23451, we have pα = q4/I5(q) and b1 = (n− 5)q4/I5(q). The structure of τ only permits overlap
with the first or last position. Table 4 lists all permutations that have pattern 23451 in the first 5
and last 5 positions. These are the only permutations that contribute to b2 in the bound of Theorem
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4.2. We assume n ≥ 9. For positions 5, . . . ,n − 5, each of these overlapping patterns can occur twice;
otherwise, the patterns occur only once for a total of 2(n − 10) + 10 = 2n − 10 possibilities. There are
8(n − 10) + 2(7 + 6 + 5 + 4) = 8n − 36 overlapping patterns α and β that contribute to b1. Thus,

λ = (n − 5)q4/I5(q),

b1 = (8n − 36)q8/I5(q)2, and

b2 = (2n − 10)q12(1 + q + 2q2 + 3q3 + 4q4 + 4q5 + 5q6 + 4q7 + 4q8 + 3q9 + 2q10 + q11 + q12)/I9(q),

producing the bounds

e−λ − (b1 + b2)
1 − e−λ

λ
≤ P(W = 0) ≤ e−λ + (b1 + b2)

1 − e−λ

λ
.

7 Proofs
7.1 Bounds on pα and pαβ
We first prove several lemmas, from which the theorems follow. By the homogeneity property of
uniform permutations we have

pα = EXα = 1/m! for all α ∈ Jm.

To calculate the Poisson rate λ, we use linearity of expectation: there are
(n

m
)

possible m-tuples of
elements in [n], and so the expected number of subsets of m elements that reduce to the pattern
k1k2 · · · km is

λ = |Jm| pα =

(
n
m

)
/m!.

Next, we consider the joint expectation pαβ = EXαXβ. In these calculations, recall the notation for
d1, d2 and d1, d2 from Theorems 3.1 and 3.5, respectively.

Lemma 7.1. Fix α, β ∈ Jm and let s = 1, . . . ,m − 1 denote the number of elements that α, β have in common.
For any such pair α, β, we have

pαβ ≤
s!

m!2
. (24)

Proof: First we condition on Xα, which contributes a factor of 1/m!. By conditioning on Xα, we
assume that the s common elements are in their proper order with respect to Xβ. It may so happen
that, conditional on Xα, no such event can occur, which justifies the inequality.

Consider first s = m − 1, i.e., condition on m − 1 of the entries being in their proper order.
Assuming that it is possible to realize both events simultaneously, the remaining element has
probability 1/m of appearing in its correct order. For general s, conditional on s entries being in their
proper order, the probability that the remaining m − s elements appear in their proper order is then
((s + 1)(s + 2) · · ·m)−1. �

7.2 Proof of Theorem 3.6
We have the following lemma.

Lemma 7.2. For Dα defined as in Section 3.1 and b3 as in Theorem 4.2, we have b3 = 0 for all patterns τ.

Proof: This follows from the dissociated property of uniform permutations (Lemma 5.3). We
interpret the conditioning on σ(Xβ : β < Dα) as the σ-algebra containing all possible information
about just the order of a particular set of three elements. Since these three elements do not overlap
any of the elements in α, knowing only their order does not affect Xα because uniform permutations
are dissociated. �
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Remark 7.3. Note that the conditioning in the expression for b3 is not the σ-algebra containing all information
about the elements indexed by each tuple. If it were, then knowing their particular location would have an
impact. However, simply knowing their order does not reveal any more information about Xα.

Lemma 7.4. For each α ∈ Jm,

|Dα| =

(
n
m

)
−

(
n −m

m

)
.

(Note that the value of Dα does not depend on α.)

Proof: Fix any α, β ∈ Jm and let s = 1, . . . ,m denote the number of elements that α, β have in common.
(This includes the case α = β.) For each s = 1, 2, . . . ,m, we select any s elements out of the m for the
two sets of indices α, β to have in common, then we select the remaining m − s elements from the
n −m remaining elements that are not in α. That is,

|Dα| =

m∑
s=1

(
n −m
m − s

)(
m
s

)
=

(
n
m

)
−

(
n −m

m

)
, for all α ∈ Jm.

�

Lemma 7.5. We have

d1 =

(
n
m

) ((
n
m

)
−

(
n −m

m

))
/m!2.

Proof: Follows immediately from Lemma 7.4 and Lemma 7.1. �

The expression given for d2 in Equation (10) in the statement of Theorem 3.6 is straightforward,
although it contains the overlap quantities Ls(τ), which can vary wildly for different patterns τ, and
for which we are unaware of any general explicit or asymptotic expression. We calculate explicit
upper bounds for d2 in Lemma 7.6.

7.3 Proof of Theorem 3.7 and Theorem 3.8
Theorem 3.7 follows from Theorem 3.8 using q = 1 and the fact that In(1) = n!. Theorem 3.8 is a
straightforward generalization of Proposition 5.5.

7.4 Proof of Theorem 3.1 and Theorem 3.5
To prove Theorem 3.1 it is sufficient that the bounds for d1 and d2 in Theorem 3.6 converge to 0 as
n→∞. For d2, the asymptotic analysis is not so straightforward, which is why we instead use the
inequality in Equation (24).

Lemma 7.6. We have

d2 ≤

(n
m
)

m!2

m−1∑
s=1

(
n −m
m − s

)(
m
s

)
s! ≤

e2( 1
12−

3
13 )

(2π)2

(
e2(n −m)

j2

)m 1
m

e2
√

n−m log(m).

Whence, for any ε ≥ 0, taking m ≥ (e e1/e + ε)
√

n gives d2 → 0.

Proof: We count the number of pairs (α, β), α ∈ Jm and β ∈ Dα with exactly s shared elements. We
may first choose any 2m− s locations among the n possible choices for the patterns to occur. Of those
2m − s locations, we can choose any m of them for the elements of α. Then, of those m locations, any
s can also be shared with β. Thus, for a given s ∈ {1, 2, . . . ,m − 1}, there are(

n
2m − s

)(
2m − s

m

)(
m
s

)
=

(
n
m

)(
n −m
m − s

)(
m
s

)
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terms in the sum. Using equation (24), we have

d2 ≤

(n
m
)

m!2

m−1∑
s=1

(
n −m
m − s

)(
m
s

)
s! =

(n
m
)

m!

m−1∑
s=1

(n−m
m−s

)
(m − s)!

.

In order to handle the sum, we first recall the quantitative bounds of Robbins [33], i.e.,

e
1

12n+1 <
n!

(n/e)n
√

2πn
< e

1
12n , for all n ≥ 1.

Again we emphasize that this inequality holds for all n ≥ 1, which allows us to provide the simpler
bound of

d2 ≤ λ exp
(( 1

12
−

3
13

)) m−1∑
s=1

(
e2(n −m)
(m − s)2

)m−s e−
(m−s)2

n−m

2π(m − s)
.

The term
(

e2(n−m)
(m−s)2

)m−s
is maximized when m − s =

√
n −m; whence

d2 ≤
λ

2π
exp

(( 1
12
−

3
13

)) (
e2
)√n−m

m−1∑
s=1

e−s2/(n−m)

s
≤
λ

2π
exp

(( 1
12
−

3
13

))
e2
√

n−m log(m).

Note next that

λ ≤

(
e2 n
m2

)m e−
m2
n

2πm
,

so that for η > 0 and m ∼ (e + η)
√

n, we have

λ ≤
(
1 +

η

e

)2m e−(e+η)2

2πm

and

d2 ≤

((
1 +

η

e

) (
e

1
e+η

))2m log m
2πm

≤

 e1/e

1 +
η
e

2m
log m
2πm

.

Letting η = e(e1/e
− 1) + ε for any ε ≥ 0, we conclude that taking m ≥ (e e1/e + ε)

√
n implies d2 → 0. �

We now compute an explicit upper bound for d2 which establishes Theorem 3.5.

Lemma 7.7.

d2 ≤

m−1∑
s=1

(n − 2m + s)
s!

(m)!2
∼

n
m!

1
m
.

Taking any fixed positive t, m ≥ Γ(−1)(n/t) − 1 and m ∼ Γ(−1)(n/t) − 1, we have d2 ≤
t
m → 0 as n tends to

infinity.

Proof: It is easy to see that
m−1∑
s=1

s!
m!

=
1
m

(
1 + O(m−1)

)
,

and also
m−1∑
s=1

s s!
m!

= O(1).
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Using equation (24), the result immediately follows. �

For a more explicit form of the growth of m, we define ψ(x) = Γ′(x)/Γ(x), the digamma function,
as the logarithmic derivative of the gamma function, and denote by k0 the smallest positive root of
ψ(x), i.e., k0 = 1.46163 . . .. Also, let c = e−1

√
2π−Γ(k0) = 0.036534 . . . and denote by W(x) the Lambert

W function, i.e., the solution to x = W(x)eW(x). Finally, let L(x) := log((x + c)/2π).

Lemma 7.8 ([10]). As x tends to infinity, we have

Γ(−1)(x) ∼
L(x)

W(L(x)/e)
+

1
2
∼

log(x)
log log(x) − log log log(x)

.

Lemma 7.9. Suppose t > 0 is some fixed constant and m = dΓ(−1)(n/t) − 1e. Then

λ =
n −m

m!
→ t.

Remark 7.10. We must be slightly careful when specifying the length of the pattern m in Lemma 7.9, since
in general Γ(−1)(n/t) − 1 will not be an integer. However, as long as m always exceeds this value, which we
have ensured by setting it equal to the smallest integer exceeding it, then the asymptotic expressions still hold.
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Fig. 1: Plot of pattern avoidance probabilities of Mallows(q) distribution for: (top left) pattern τ = 2341 with
q = n−1/3; (top right) pattern τ = 23451 with q = n−1/4; (bottom left) pattern τ = 2341 with q = n1/3; and (bottom
right) pattern τ = 23451 with q = n1/6. The dashed lines represent the upper and lower error bounds from the
Arratia–Goldstein–Gordon theorem, and the solid line represent their average, i.e., the heuristic approximation.
In all panels, the horizontal axis is on the logarithmic scale with base 10. Note that the dashed lines overlap
with the solid line in the two figures on the right, indicating that the error bounds are tightly concentrated
about the estimated probability.
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Fig. 2: Plot of lower and upper bounds on pattern avoidance probabilities of uniform distribution (q = 1) for
τ = 2341 (left) and τ = 23451 (right).
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