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A decomposable combinatorial structure consists of simpler objects called components which by them-
selves can not be further decomposed. We focus on the multi-set construction where the component
generating function C(z) is of alg-log type, that is, C(z) behaves like

B
ctd(l—z/p)° (m 17712/;) (1 +o(1))

when z is near the dominant singularity p. We provide asymptotic results about the size of the smallest
components in random combinatorial structures for the cases 0 < a < 1 and any 3, and @ < 0 and 3 = 0.
The particular case « = 0 and 3 = 1, the so-called exp-log class, has been treated in previous papers.
We also provide similar asymptotic estimates for combinatorial objects with a restricted pattern, that is,
when part of its factorization pattern is known. We extend our results to include certain type of integers
partitions.

Keywords: decomposable structures; restricted pattern; labeled and unlabeled structures; generating
functions; alg-log type

To Philippe for all the lectures and friendship.

1 Introduction

A decomposable combinatorial structure consists of simpler objects called components which by
themselves can not be further decomposed. For example, permutations decompose into cycles,
graphs into connected components, and polynomials over finite fields into irreducible factors.

We assume that the component generating function C(z) is of alg-log type, that is, near the
singularity p, C(z) behaves like

B
c+d(l—z/p)* (ln 1—12'/p) (1+o0(1)).
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A precise definition is given in the following sections. We call « the algebraic exponent and (G the
logarithmic exponent.

In the particular important case when a = 0 and = 1, the components are called of logarith-
mic type, and the objects are said to be in the exp-log class. Several results have been proven
for these objects. Flajolet and Soria [6] introduced the exp-log class of combinatorial structures
and studied the behavior of the number of components for structures in this class. Chapter 5 in
Gourdon’s thesis [8] studies the size of the rth largest component for objects of the exp-log type.
The problem of the distribution of the rth smallest component in this class has been studied
by Panario and Richmond [I2]. Arratia, Barbour and Tavaré [I] also studied decomposition of
random combinatorial structures in the exp-log class from a probabilistic standpoint. Finally, the
study of objects in the exp-log class with a restricted pattern combined with information on the
smallest components’ sizes was done by Dong et al. [2, [3].

The class of generic alg-log component generating functions (that is, not for the particular
exp-log case) was introduced by Flajolet and Soria [7] when studying the number of components
in combinatorial structures. Gourdon in Chapter 6 of his thesis [§] (see also [9]) study the size of
the rth largest components for objects of the alg-log type.

In this paper we focus on components of the alg-log type and treat the cases 0 < o < 1 with any
B, and a < 0 and 8 = 0. We carry out the asymptotic analysis using two different approaches:
the first case is treated using singularity analysis; the case o < 0,3 = 0 is done using the saddle
point method (Hayman’s approach).

We now give the structure and main results of this paper. Generating functions are the main
combinatorial technique that we consider. We use exponential generating functions for labeled
objects and ordinary generating functions for unlabeled objects composed using the multi-set
construction. In Section [2] we review the generating functions of labeled and unlabeled decom-
posable structures with a restricted pattern, as well as the definition of components of the alg-log
type. We also provide in that section most of the notation needed for the rest of the paper. In
Section |3] we use similar techniques to Flajolet and Odlyzko [4], and Flajolet and Sedgewick’s
book [B], to prove our main results about number of objects with restricted pattern and algebraic
exponent 0 < a < 1 in the labeled and unlabeled case, respectively (Theorem and Theo-
rem . We also provide the respective probabilities (Corollary and Corollar. We give
the probability that we have a restricted pattern and the rth smallest component size is bigger
than a value k and for both labeled and unlabeled objects (Theorem and Theorem . As
important corollaries, we get the particular cases when there are no restricted patterns (Corol-
lary and Corollary. In Section we use the saddle point method to obtain similar studies
to the ones in the previous section but for negative algebraic exponent (Theoremm Theorem
and Theorem [4.3)). In Section [5] we give examples of our results. Section [6] extends our results of
Section {4 to include certain type of restricted integers partitions. Finally, in Section |7 we state
some open problems for further research.

2 Background

We recall the following definition of restricted pattern from [2].

Definition 2.1 The restricted pattern of an object of size n is a mapping S: J — N, where J
is a set of components’ sizes, N is the set of nonnegative integers, and S(j) is the number of
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components of size j. If we do not have a restricted pattern, J is the empty set. For convenience
we also use the notation
S = H jS(j)

jeJ

We emphasize that we want to count objects such that the components with sizes outside J may
appear any number of times but there are exactly S(j) components of size j for each j € J.

Throughout this paper, we use C(z) to denote the generating function for the components. In
the labeled case, we have C'(2) = > 1+, C’k%‘;. In the unlabeled case we have C(z) = >, Cr2".
We also use C(z; J) to denote the generating function for the components whose sizes are in the
given set J. So C(z;1J) = > ¢, Cj% for the labeled case and C(z;J) = ZjeJCij for the
unlabeled case.

For convenience we shall use the following notation

cNSH)
o HjeJ (]—{) - sun for labeled case,
Hj o (CJ' +SS(§.J))71) for unlabeled case.

We also let m’ = 3, ;jS(j) denote the size of the restricted pattern, and m = n —m' be the
total size of the unrestricted components. The following simple lemma can be found in [2].

Lemma 2.1 Let S: J — N be a given restricted pattern and F(z;S) be the generating function
of structures with the restricted pattern S. For the labeled case, we have

F(z8) = 2™ exp (C(z) — C(z; J)) . (1)

For the unlabeled case, we have

F(28) = .%2™ exp Z ) 7]{;0(216; J) . (2)

k>1

We observe that F(z,0) = F(z).
In the following we give the definition of component generating function of the alg-log type.

Definition 2.2 Let
A,(v,0) ={z:|z| < p(1+v),z#p,|Arg(z — p)| > 60}

for some constants p >0, v >0, and 0 < 0 < 7/2 (see figure). We say that C(z) is of alg-log
type at singularity p with algebraic exponent o and logarithmic exponent 3, if C(z) is analytic in
A,(v,0), and for some constants ¢ and d,

B
Cz)=c+d1—2z/p)* <ln > (1+0(1)), (3)

1—z/p

as z — pin Ap(v,0).
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&=

Fig. 1: A(v,0)

3 Alg-log components with positive algebraic exponent

In this section we treat the case 0 < < 1 and any (3. We split the study in restricted patterns
in the labeled case, restricted patterns in the unlabeled case and rth smallest component sizes.

3.1 Labeled case
Since 0 < o < 1, we have from and

B
F(z,0) = e + de®(1 — z/p) <1n 1—12:/;)) (1+0(1)),

as z — p in A,(v,0). It follows from and Flajolet and Odlyzko’s transfer theorem [4] that

Cp d

o Fg T ) (4)
and e
2"1F(230) ~ gy ). (5)

Theorem 3.1 Assume 0 < a <1, j =max{j:j € J}=0(m/Inm), and

> ()’ = o(m' = (Inm)?1).
jeJ

Then, as m — oo,

") F (2 8) ~ de = p~™m ="} (nm)? exp (~C(p3 J))

I'(-a)
where the asymptotics is uniform in all S.

Proof:
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We shall use the Cauchy integration formula. We choose a contour similar to the one in [4].
Let v = 1 U~ U~3 U~4 be positively oriented, where

1 o= {z: |z=1=1/m,0 < Arg(z — 1) < 2w — 0},

v = {z: 1/m<|z—1] < Elnm/m,Arg(z — 1) = 0},

v3 = {z: |z|=14+3lnm/m,0 < Arg(z — 1) < 2w — 6},

vo = {z: 1/m<|z—1 < Elnm/m,Arg(z — 1) = 21 — 0},
where the real number E satisfies

1+ Eln—meie =1+ 3lnm/m.
m
Then we have 1
IEE ) = 0 e S) = o o | e ()

where
f(z) = 27" exp(Clpz) — Clpz; J)).

Since |z| <14 3Inm/m and j = O(m/Inm), we have
, 1 Y
|29 < (1 +3I;T> =1+ 0(jlnm/m) = O(1).

We have from

Zc = 0(1). (7)
jeJ
Hence, when |z| <14 3lnm/m,
(pz)’
jze;l ; Pj! = 0(1) (8)

Applying and Taylor expansion, on the contour v, we obtain

1 B
f(z) = 27 Dexp[c+d(1—2)° <ln - z)

jeJ

J
= exp|lc— ZC’p z(m+1)
jed

1 B
X exp d(l—z)"‘(lnl_z> (14 0(1 —|—ZC’ 1—ZJ

je€J

= exp|ec— ZC pJ z—(m+D) (14 g(z,J)+0(g*(2,J))) , (9)
jed
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where

8
o 1
g(z,J) =d(1 - 2) (lnl—z) (14 0(1 +ZC .l—zJ

jeJ

In the last line, we can expand the exponential function because of (@, and 0 < a < 1.
Substituting @ for f(z) in @ we obtain

i Ja/fmmu+m4ﬂ+mf@ﬂ»w

[2"|F(2;8) = p ™S exp C—ZC | 2

JjeJ

=p "Sexp|c— ZC’

jed

xi, (/ z_(m+1)dz+/z_(m+1)g(z, J)dz+/z_(m+1)0(g2(z, J))dz)
2mi \Jy 2! gl

explc—>. 044
=p ( el j]'> (/ Z= (M g (z, J)d2+/2_(m+1)0(92(z7 J))d2>,
2 v

211

where the term fﬂ/ 2z~ (m+Ddz in the second line is 0.

In the following, we first discuss the integral f,y z=(m+Dg(2, J)dz. Then, we show that the
second integral fv 2= (MADO(g?(2,J))dz is negligible compared with fv 2= (MmN g (2, J)dz.
Case L.a: Estimation of fﬁ/ 2= MADg(2, J)dz on vy Uy Uyt

Let z =1+ . From the definition of 1, 72, and ~4, we notice that w = O(Inm). Since

:@+%y:1+mwwm

applying (4) and >, ; (h;f;)ﬁ =o(m'~*(Inm)’~1), we get

Zc (1-27) ZC ( ) O(Z)Zjoj?j

JjeJ jeJ jeJ

- 0 %Z(h}j)ﬂ :O((h;nyz)ﬂ).

«
jeJ J

Hence,

9(2,J) d(—%)a(ln (Z))ﬁ(1+o(1))+jezjcj?f(1zj)
_ dnm)® e o)), (10)

ma
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where the o(1) is uniform as m — oo for w on the contour v; U ~ya U 4.
Let v/ = 44 + 4 + 4 where

v = {w:|w| =1,0 < Arg(w) < 27 — 6},
vy = {w:1< |w| < Elnm,Arg(w) = 6},
vy = {w:1<|w| < Elnm,Arg(w) = 27 — 0}.

Then

1 / —(m+1)
— z g(z,J)dz
2mi Y1Ur2U7s

_ 1 / d(lnm)ﬁ(_w)a(Ho(l))(H%)f(mmdw

2mim

ma
1 d(Inm)? _
= —w)%e (1 1))d
i |, ()% (1 o(1))
d(lnm)”? - (lnm)” -
= WX/Y,(U)) (& dw+0 WL,(W) € dw .
Applying the Gamma function we obtain

= 27Dz J)dz ~

2mi Y1Uy2U7a

(Inm)?® d
T T (11)

Case Lb: Estimation of f7 2= (MmN g (2, J)dz on vs:

Let 2 = (14 3Inm/m)e® where § < t < 27 — 6. Using and the definition of alg-log type,
we obtain

lg(z, J)| = O(1).
We also have
|2~ = |(1 4 3Inm/m)~ "D = O(1/m?). (12)
Therefore,
1
L —(m+1) = -3
2mi /73 : 9(z, J)dz = O(m™). (13)

Since we have 0 < « < 1, the integral on -3 is negligible compared with the integral on ~; UysU~4.
Case IL.a: Estimation of [ 2~ (™+*DO(g?(2,J))dz on 71 Uya Uy
Let z =1+ . From (10),

d?(Inm)??

m2a

9 (2. J) = (—w)**(1 + o(1)).

Using arguments similar to those used to derive , we have

Inm)??
/ 2=tV g2(5 J)dz = O (%) .
Y1Uy2Uvs m
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Case IL.b: Estimation of fv 2= (Mm*VO(g?(2, J))dz on ~3:
In this case we get

/ S 20 T)dz = O(m™),
Y3

which is negligible compared with the integral on 3 U ~ys U 4.
Since 0 < o < 1, it is clear that the integral

exp (c— Eje]cj%>

—m —(m+1) Nd
is the dominant part in [2"]F(z; S). 0
Throughout this paper, a random structure is always chosen uniformly at random from a given
"F(z;S) . .
family of structures. Hence P(S,n) = [[Z]]F((ZQ)) is the probability that a random decomposable
2" F(z;

combinatorial structure of size n has a restricted pattern S. Using the previous theorem and
we immediately obtain the following corollary.

Corollary 3.1 Consider labeled decomposable combinatorial structures whose component gener-
ating function is of alg-log type with an algebraic exponent 0 < o < 1. Suppose

j =max{j;j € J} = O(m/Inm),

and

j(X

nj)?
Z ( ,]) =o0 (mlfa(lnm)ﬁfl) .
JjeJ

We have, as m — oo,

1+a /In b 1 . D i
P~ ()" (5n) I iy (Cor' 1) 00

m

For a restricted pattern of small size, we have the following independence result.

Corollary 3.2 Suppose, in addition to the conditions in Corollary[3.1], the restricted pattern
S = H jS(j)
jEJ

also satisfies 3 ;¢ ; 1S(j) = o(n), that is, m ~ n. We have, as n — oo,

a(s 1 NS L0

,n) ~ ] , )~ 7' o7 . J e “.

P(S,n) ||P([ SU)} ) [1 G (€ 31)59) e=Co0 13
jeJ ’

jedJ
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3.2 Unlabeled case

In the unlabeled case, the generating function of decomposable combinatorial structures is

C(22 C(z3
F(z) = F(2,0) = exp (C’(z)+(2z)—|—(;)—|—~-~).

As usual, for the unlabeled case, we assume 0 < p < 1. Therefore, C(QZQ) + C(?fS) +--- has a

radius of convergence bigger than p. As z — p, we have
F(z,0) = exp (C(z) +10) (1 + o(1)). (14)

where (o)

_ P
ro = Z k .
k>2

It is easy to see that F(z,0) is also of alg-log type. Flajolet and Odlyzko’s transfer theorem [4]
entails

Cp~ (o) p " %(Inn)?, (15)
and
n . dec-i—ro —-n, —1l—«a 8
()P0 ~ fgge " ()’ (16)

Theorem 3.2 Suppose j = max{j:j € J} = O(m/Inm) and

Then, as m — oo,

[2"]F(2;8) ~ de“tTo m~* t(Inm)’p~™ H (1- pj)cj .

I'(—a) iy

Proof: The proof is similar to the labeled case so we only sketch the differences. We use the
same contour as in Theorem [3.1] but now

z)k )k
f(z):%exp Z%_ZM

Zmt k
E>1 E>1

Using and (9)), for z € v, we get

exp (O(pz> n C((gZ)Q) n C((/;’Z)g) Jr)

= e“exp(C(pz)) (1 +0(1))

= e“oexp (d(l —2)° <1n .

B
> (1+ 0(1))) (1+0(1)). (17)
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The remaining of the proof follows in the same way as in Theorem by noting

exp ijk/k = (1 —pj)il.

k>1

O
Using the previous theorem and we immediately obtain the following corollary.

Corollary 3.3 Consider unlabeled decomposable combinatorial structures whose component gen-
erating funct}'on is of the alg-log type with an algebraic exponent 0 < o < 1. For j = max{j;j €
J}, suppose j = O(m/Inm) and

nj)?
Z 7(1 i) =0 (mlfa(lnm)ﬁfl) .
jeJ J

We have, as m — oo,
nyFe (Inm )\’ (Ch+SG) =1\ Sso) 7)<
P(sn) ~ () (hln) H,< S(j) )p S

As in the labeled case, we have the following independence result for small patterns.

Corollary 3.4 Suppose, in addition to the conditions in Corollary[3.3, the restricted pattern

S = H jS(j)

JjeJ

also satisfies ZjerS(j) = o(n), that is, m ~ n. We have, as n — oo,

P(S,n) ~ EP ([jS(j)} ,n) N 1}] (Cj +55;§j)) - 1)pj5(j) (1 _ pj)cj -

3.3 The rth smallest component size

Let X,[f] denote the size of the rth smallest component in a random structure of size n, and let
XT[LT](S ) denote the size of the rth smallest component in a random structure of size n having a
restricted pattern S.

The focus of this section is to derive asymptotic expressions for P(Xy[:} (S) > k) and P(Xr[:] >
k). For convenience, we define the set Ny = {1,2,...,k} where k is a positive integer and
d(k) = > cinn, S(j). We only need to consider d(k) < r since P(X,ET](S) > k) = 0 when
d(k) >r.

The following simple lemma will be required later.

Lemma 3.1 Let a and b be real constants such that 0 < a < 1. Then

(nj 1
7@ 1—a

E'7(Ink)®, as k— oo.

Jj=1
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1 b
Proof: Let k' = |e %J + 1. It is easy to check that (I;if) is a decreasing function for x > k'.
Hence .
k k b b
(Inx)® ln k)b lnj (Inx) (In k")
/,, e Z e (18)

Setting z = ef, we have

k b Ink
/ Lnx) de = / the(l=a)t gy
./ x¢ In k'

Ink b Ink
- / tbfle(lfa)tdt
mk L~k

1
= 1—1#*“(111 k)’ 4+ O™ *(Ink)*™Y), ask — oo.
—a

1
e(lfa)ittb
1—a

Now Lemma immediately follows from . 0

3.3.1 Labeled case

Theorem 3.3 Let S: J — N be a restricted pattern with j = O(m/Inm) and
Z] (Inj)? —o(mlf‘)‘(lnm)ﬁfl).
jedJ

Assume r — d(k) = O(Inm) and k = o(m(In m)ﬁ) As m — oo, we have

r—1—d(k
i(p; N,
P(X[(S) > k) ~ P(S,n)exp(~C(p; N \ J)) > 9;&4LLQ,
j=0 !

where P(S,n) is given in Corollary[3.1}

Proof: Define the augmented pattern S*: J* +— N where J* = J U N, and S*(j) = S(j) as
j € J, and, for j € N\ J, S*(j) is specified below. We note that each structure with restricted
pattern S and the rth smallest component with size greater than k corresponds to structures
with an augmented pattern S* such that

Y. ST <r—1-dk). (19)
JENR\J
Hence we have
P(XIN(S) > k) =) " P(S*,n), (20)

where the sum is over all the augmented patterns S* satisfying .
Let m* =n — 3 .c ;un, 75 (j). Since k = o(m/Inm) and

> §(j) <r—1—d(k) = O(lnm),

FJENK\J
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we have m* ~ m. Hence,
(i)1+0¢ Inm*\? (E)Pra Inm\”
m* Inn m Inn ) °

Applying k = o (m(ln m)ﬁ> and Lemma we get

08
Z (In7) zo(ml_a(lnm)ﬁ_l).

e’
jene Y

Therefore, each augmented pattern S* satisfies the requirements of Corollary It follows from
that

P(xI1(8) > k)
CS*(j)

n \1+a Inm*\” . .
Z(%) : <1hm> P exp (=Clp; JUNE) ] W

JEJUN

Cf*(j)pjs*(j)

<n)1+a <1nm) " exp (=Clp; J) = Cloi Ne \ TN D | 1 (GO GIS*(j)!

m Inn
JENR\J
CJS*(j)pjs*(j)
~ P(S,n)exp (=C(p; Ni \ J)) Z H W ) (21)
JENR\J
where all the sums are over S* satisfying . It follows from the multinomial formula

Yi+Yat o +Yi) = > ( ’ )Ylez‘”---Yka’“
. \a1,02,...,0%
aitag+-tap=j

oy Hya-,

ai+as+--+ap=ji=1

that
r—1—d

P(X[(S) > k) ~ P(S;n)exp(=Clps Ne \ ) D

Jj=0

k .
® i (p; N\ )
7! '

O
The following corollary treats the special case when there is no restricted pattern. The corre-

sponding problem for the exp-log class was treated in [12].
Corollary 3.5 Let r = O(lun) and k = o ( (Inn)a-1 a ) Asn — oo, we have

r—1

CI(p; Ni)
XL > k) ~ exp(~C(p: i) 3 SN
7=0
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3.3.2 Unlabeled case

In the unlabeled case, we require the singularity point 0 < p < 1 which is not a required condition
in the labeled case.

Theorem 3.4 Let S: J — N be a restricted pattern with j = O(m/Inm) and

08
Z 7(1 7) =0 (ml_o‘(lnm)g_l) )

o
jeJ J

Assume r — d(k) = O(lnm) and k = o (m(lnm)ﬁ) As m — oo, we have

C(p's N \ J)

P(XN(S) > k) ~ P(Sn)exp |- ;

>1

r—1—d(k) 2
, C(p*; N \ J

> [Fexp (zC(p;Nk \J)+ 22% + - ) ,

7=0

where P(S,n) is given in Corollary[3.3

Proof: Let S* and m be as defined as in the proof of Theorem [3.3] For the same reason as in
the labeled case, we have

P(XJ(S) > k) = P(S*,n),
where the sum is over all augmented patterns S* satisfying .
Also we have
(i)lﬂl Inm*\"” (E)HQ Inm\”
m* Inn m Inn )’

and each augmented pattern S* satisfies the requirements of Corollary So we can apply
Corollary [3.9] to obtain

P(X[I(S) > k)

n

~ Z (%)”0‘ <ITDTZ*)ﬂ H (Cj +Ss:(%) - 1)(1 )G g

JEJUN,
SIRCCXON | (CEVOLD SIS B G Pt
JENK\J FENK\J

where, as before, the sum is over all S* satisfying .

Using
PO Ci+0—-1\ ,
(1—p'2) G ——E ( ’ )pzzl,

£>0
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we get
r—1—d(k)
C; +S iS*( w P \—
S I (CSere - S e I a- e
JENE\J u=0 JENR\J
r—1—d(k) r—1—d(k)
= Z “lexp Z Ciln(l1—p'2) | = Z [2"] exp Z Z Cip iz /i
u=0 JEN\J u=0 121 jENR\J
r—1—d(k) 2 2
C(p*; N;) — C(p*; J NN,
= Z [2"] exp (z(C(p; Ni) — C(p; J N Ny)) + 22 (0% Ni) 5 (p ) +) .
u=0

To complete the proof we only need to notice that

L C(p" N\ J)
[T (- ey [~y CENAS)

FENK\J >1

The case when there is no restricted pattern gives the following simple result.

Corollary 3.6 Let r =O(lun) and k = o ( (Inn)a-1 a ) Asn — oo, we have

CltiN | 5 ( C(p?s i)
PXIT > k) ~vexp [ =) K2 Aexp | 2C(p; Ny,) + 22— ... ).
( ) ~ exp 321 jzo[ Jexp | 2C(p; Ni) 5

3.3.3 Expectation of the rth smallest component size

In this section, we discuss the expectation of the rth smallest component with a given restricted
pattern. We use d to denote the total number of components in the given restricted pattern,

namely d = > jesS0). Ur < d, it is clear that P(X[T](S) > k) =0 when Y, ;n, S() >
Hence we have .
i1
EX1(8) = Y PXI(S) > k),
k=0

where il is the size of the rth component in the pattern S.

Theorem 3.5 Let S: J — N be a restricted pattern satisfying j = o (m(ln m)ﬁ) and
In j)?
57 B o (e mm) ).
jes
When r = d + 1, we have in the labeled case

E(XI(S)) ~ P(S,n)mexp(—c+ C(p; J));
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and in the unlabeled case we get, forro =3, ~, C(p*)/k,

BE(X[(S)) ~ P(S,n)ymexp(—c—ro) [ [ (1 = p?) .
jeJ

Proof: To estimate the first moment, we use the well-known expression

E(XN(S)) = P(X[(S) > k).
k>0
We only prove our theorem in the labeled case since the proof is very similar in the unlabeled
case.
Let us begin with a special case: there is only one component in addition to the components
of the pattern. Namely, we have d+1 components in total. Thus, the size of the only component
not in the pattern is m. The probability that an object has exactly d+1 components is

S C /M _ S p~ ™ (Inm)Pm=1=%(d + 0(1))/T(~a)

[2"F(z)  ecp7(Inn)n=17(d + o(1))/T'(-a)
ny+e (Inm\”

yp"—me—C(E) ’ (lhm> (1+0(1))

~ P(S,n)e”“exp(C(p; J)).

P (Xy[;iﬂ](s) _ m) _

Let us now consider small k. Setting ¢ = max (j +1, {m(ln m)ﬁD7 then d(t) = d, J C Ny,
and C(p; Ny \ J) = C(p; N¢) — C(p; J). Applying Theorem we obtain
P(X[(S) > 1) ~ P(S,n) exp(—c + C(p: J).
Clearly, for any k < m, we always have
P(XTH(S) > k) > P(X[H(S) = m) = P(S,n)e™ exp(C(p; J)).
Thus, uniformly for t < k < m, we have
P(XEHI(8) > k) ~ P(S,n)e exp(C(p: ])).

Hence, noting that t = o (m(ln m)ﬁ>7 we get

EXU(S) = Y PS>k = 3 PXENS) > k) + Y PxEI(S) > k)
k>0 t<k<m 0<k<t
= mP(S,n)exp(—c+ C(p;J))(1+ 0o(1)) + O (tP(S,n))
~ mP(S,n)exp(—c+ C(p;

O
In the empty pattern case, let X,[Lr ! be the size of the rth smallest component of a random
(1]
n

decomposable combinatorial structure of size n. The expectation of Xy ' immediately follows

from Theorem [3.5



212 L. Dong, Z. Gao, D. Panario and B. Richmond

Corollary 3.7 We have in the labeled case

In the unlabeled case, we have

E(Xy ~ pememo,

4 Algebraic components with negative algebraic exponent

In this section, we assume that the component generating function has the following special form
C(z)=d(1—2z/p) P +c+o0(l) as z— p in the open disk |z| < p,

where ¢,d, and p are constants with p,d > 0, and C(z) is analytic in the open disc |z| < p. We
use —p, p > 0, instead of « to avoid confusion.

Let h(z) = d(1 — z)~P. The asymptotic behavior of [z"]exp(h(z)) has been studied by
Wright [16] and Hayman [I0]. Hayman showed that exp(h(z)) is admissible in |z| < 1. Al-
though their results cannot be applied directly to our generating functions involving a restricted
pattern, the same saddle point method does apply as well. We note that the contour used here
is substantially different from that used in the previous section where the exponent is positive.
The contour here is a circle inside the unit disk.

Let j = max{j : j € J}. Throughout this section we assume

j=o (m%) LY =0 (mif"(zil)) , and 37 =o0 (m%) . (22)
JjeJ jeJ
We note that, when p > 1, the third condition implies the first condition.

4.1 Labeled case
We consider labeled structures in this section. Let R = R(m) be defined by

RW(R)=m, 0 < R< 1. (23)

Theorem 4.1 Suppose the pattern S satisfies Condition @ and let R be defined in . Then

as m — 00,

5(5) __pt2
1 1 ; s 2(p+1)
2P (2 9) ~ ———= | [] o5 <C'J> e=Cir /i) (Rp)~™ <m> cC(Rp)
2mp(p+1)d \ jo; ST\ ! pd

Proof: We first note that by

17 5) = I (9) " rmEmewin) - cosn t o). @1
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Using the Cauchy integral formula, we obtain

[z exp(h(z) — C(pz; J) + ¢ + o(1))
= SR [ e (h(RE) — C(Rpe; 0) — im + e+ of1)) . 25)

—T

It follows from and Lagrange inversion that

e () () () o (()7) e

As in [I0], we define
m m
b(R) = R (R) + R*h"(R) ~ p(p + 1)d <dp> .
Let

6= mfﬁfﬁ,
For ¢ < |6] <, we have
11— Re®®| = (1+ R2—2Rcos0) "> > (1+ R2 — 2Rcos6) "> = |1 — R .
Hence, we have
1= Re| ™" < |1 — Re®| " = |1 — 2Rcos 6 + R?| /2.
Using the Taylor expansion for cosd we obtain

[1-Re”| P <(1-R)™- 23(1 — R)P726% 1 O(5%).

‘We observe that

p

d\ P _ 2 _sp D

(1 —R)_p_252 ~ (p m~ PH 8D = AmBeID
m

for some positive constant A. Therefore, we have
exp(A(Re®))| < exp (h(R) — AmT# ), (27)

as m — oo, uniformly for 6 < |0] < 7.
For |0] < §, we have

h(Rew) = d(1—R)"P+ipdR(1 — R)_p_19 — %R)GQ +0 ((1 _ R)—p—393)
(1= R)P 4 ipdR(1 — Rt — g2 gy,

2
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We now break the integral into the following two parts:

0
I = / exp (h(Re™) — C(Rpe; J) — imb + ¢ + o(1)) db),
-0
and

I, = / exp (h(Re™) — C(Rpe™; J) — imb + ¢ + o(1)) db.
|01=6

Using with « = —p, by and , and for |0| < §, we have

tRpe 1) = 32 5 aye = 32 S (1 ) <pd) "o (m_f@))] (1+0(j0))

jed 7’ jed ! m
= C(p;J)+ Z jC’jj'M 0 (m_ﬁ> =C(p;J)+ O (m_ﬁ> ij =C(p;J) + o(1).
jed ’ jeJ

Hence, under Condition , we have

’ o B o
L = /§exp<d(1—R) - 0 —C'(p,J)+c+0(1)>d9

27
— C(Rp) — C(p;J)).
We now show that I5 is negligible compared with I;. From (27)), we have

1 = O (exp(C{Ep) — AmTHD + (s 1) = o0 (exP(C(R’J; (;zf (i ”) ,

where we used the fact

Clp3J) = O (Zj’”) = 0((j)") = o (mew ) .

J<i
Now Theorem follows from and . 0

When )
n—m=o (nﬁ 1) ,
it follows from that

since
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Hence we also have
exp(C(R(m)p)) ~ exp(C(R(n)p)),
and the following corollary holds.
Corollary 4.1 Suppose, in addition to the condition (@, the restricted pattern

Hjs(j)

jeJ

also satisfies

S iS() =o <n1/<p+1)) .

jeJ

Then, as n — oo,

)~ 1P ([9] n) ~ TL 57 (o 13" exp (=Co 1)

jed

4.2 Unlabeled case

As before we assume p < 1 for the unlabeled case. Using essentially the same argument as for
the labeled case, we obtain the following theorem and corollary.

Theorem 4.2 Suppose the pattern S satisfies Condition @ and let R be defined in . Then

as m — oo,

pt2

1 , N1 ; R

[2"]F(2;8) ~ ——r H (CJ +:(i7) >e_ i7" | (Rp)™™ (n;) eC P+
2rp(p+ 1)d \ ;) () p

where 1o =3 5, C(p*)/k.

Corollary 4.2 Suppose, in addition to Condition (@, the restricted pattern

Hjs(j)

JjeJ

also satisfies

Z]S(J) -0 (nl/(P+1)) .

jeJ
Then, as n — oo,

~TP ([ SU)} n) I1 (Cj +S‘5;(J?)') - 1)pj5<j> (1 )%

JjeJ jeJ
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4.3 Smallest component size

Let XT[LT} denote the size of the rth smallest component in a random structure of size n. The
following theorem is analogous to Theorem and Theorem Its proof is identical to the
proofs of Theorem [3.3] and Theorem [3.4] and is omitted.

Theorem 4.3 Let r be a constant, k < n¢ for some small positive constant ¢ < 1/(p + 1) such
that J = Ny, satisfies Condition (23). Let R = R(n) be defined by

pdR(1 — R)™P~! =n,
Then, for labeled case

r—1

P (XI) > k) ~ exp(=Clp: Ni)) 3 € (0 Ni)

and for unlabeled case

P (X,[f] > k) ~exp | =Y 70(/)[2 ) Tz_:[zj] exp (ZJ: C(pZ;évk)Z£> :

>1 §=0
where the asymptotics is uniform for all k satisfying the given condition, as n — oo.

The above expressions for P (X, s k) are the same as the ones in Corollaries and [3 .
We note that
Clps Ni) = [F](1 = 2) 7~ ~ kP /D(p+ 1) as &k — oo.
Thus
P (X,[{J > k) = O(exp(—kP/?)) for k — 0o and k < n°.
With a similar argument in the unlabeled case, this immediately implies the following.

Corollary 4.3 Let r be any fized positive integer. For labeled structures we have

r—1
E(X[IT) ~ Zexp p;Nk))ch(P§Nk)/ﬂ-
k>0 Jj=0

In particular,

E(XM) ~ > exp(—C(p; Ni)).
k>0

For unlabeled structures we have
Clp's Ni) | = L. C(p's Ni)2!
[r] _ Z\F 5Tk A\ k)
B0 ~ e 30 SN ) S (30 SN
k>0 0>1 j=0 =1
In particular,

Xf)~ Tesp -3 S

k>0 £>1



Asymptotics of Smallest Component: Alg-Log Type 217

5 Examples
We now give some examples.

Example 5.1 (Cayley Trees) A Cayley tree is a non-planar rooted labeled tree.
Let C(z) be the exponential generating function of Cayley trees. It is well known [5] that

C(2) = zexp(C(2)), Cr =n""1, C(2) =1 —+/2(1 —ez) + O(1 — e2).
Thus C(2) is of alg-log type with p=1/e, a =1/2, =0, d = —/2 and ¢ = 1.

First, let us consider a restricted pattern
S = [2°¢%], where s =|y/n], t = |Inn].

By Corollary[3.4, we have
1 1 s _
P(S,n) ~ 30 (C’teft/t!)gexp (=Cre™t /1)) a (Ce™2/21) exp (—Coe™?/2!) .

Noting that

1
Co/20 =1 and Che tJt ~ ——173/2 ast — o0,
2/ e "/ o

we obtain that the probability of a Cayley forest having s = |/n| trees of size 2 and 3 trees of
size t = |lnn| is given by

1 1
P(S,n) ~ 6(27r)_3/2(1n n)_g/Qge_% exp (—e ?).

If in addition to the restricted pattern S we want information related to the 5th (r = 5) smallest
component size, we get by Theorems[3.3

4—d(k) . j
P(XPN(S) > k) ~ P(S,n) exp(—C(p; Ne \ ) Y (C(”Nj’j\‘])) for k=0 (n(lnn)"?).
3=0 '

We note here d(k) = 0 when k < 2 and d(k) > s when k > 2. Thus P(XLS](S) > k) = 0 when
k>2, and

P (X}fl (S) > 1) ~ P(S,n)exp(~1/e) Y ‘37]

j=0
Finally, by Corollary[3.7, the expected size of the smallest subtree is
E(XIy ~

n
n e

Example 5.2 (Fragmented permutations) Fragmented permutations are defined in Section II1.4.2
of [5] as the combinatorial class # = SET(SEQ>1(%")). They correspond to unordered collec-
tions of permutations. The generating function of fragmented permutations is given by F(z) =
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z
1—=

exp ( ) The coefficients in this exponential generating function form the sequence A000262

in Sloane’s Encyclopedia of Integer Sequences that counts sets of lists.
The component generating function for fragmented permutations is then

C(z) = = -1,

and so it is of alg-log type with a« = —1, p=1,d =1 and ¢ = —1. It follows from Theorem [4.1]
(also see Example VIIL.7 of [5]) that

F, e~ 1/22Vn

[2"F(2) = ) ~ W7

and that the saddle point is

1 1
-1 — 4+ — —3/2y,
R T+ g T O

Let us consider fragmented permutations with the restricted pattern
S = [2°¢%], where s = (n'/4], t = |Inn].

Then Corollary[4.1] gives that the probability a random fragmented permutation has this restricted
pattern S is

P(Sm) ~ 53 (Coft) exp (<G /1) - (Ca/21)" exp (~Ca/21)

Noting C; = j!, we obtain
11,
P(S7 n) ~ 6;6 .

We also have, using Corollary [4.3}
RTINSy

e—1"
k>0

6 Extensions to integer partitions

Although our theorems do not cover unlabeled structures with p = 1, similar arguments lead to
the same type of results for some unlabeled structures with p = 1. We illustrate this with integer
partitions.

Let A = {ay,as,...} be a set of positive integers. We suppose that if any finite subset of A
is deleted then the remaining sequence has ged equal to one. We let p4(n) be the number of
solutions of

n:lla1+l2a2—|—--~+lmam, lz Z 0.

Call each such representation a partition of n. There are I; + o + - - - + [,, components of this
partition.
We require that the following limit exists

Ina;

lim

j—oo lnj '
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The asymptotic behaviour of p4(n) has been studied by Richmond [I3] under the above as-
sumptions. Define r = r(n) to be the unique solution (the saddle point condition) to

2 : aj
n eraj — 1 ( )

Jj=1

Let

a’e’

As(n) = Az = Z m-

Jj=z1

The following result is contained in Theorem 1.1 of [13]
pa(n) = (27TA2)71/2 exp | rn — Z (In(1—e"%)) | (14 0(r)). (29)
j=1

In the following we consider a pattern

S = H jS(j)

jeJ
such that

=o', =o' and  3jS()=o(n'?), (30)

jed jed

where |J| denotes the number of elements in the set J.

As in previous sections, let m = n — 3 . ;jS;. Let A = {1,2,..} \ J. Then pa(m) is the
number of partitions of n with the pattern S.

We require now the following formulas about inverse Mellin transform (see, for example, Ap-
pendix B of [5]. We also note that the last two formulas can be obtained from the first one by
integration and differentiation, respectively, with respect to r. )

1 o+io0o

Zew'j_l = omi /| rIT()C(H)¢( - 1)dt
j>1 o—100
o+1i00
-2 (- = gim T+ 1)t
j>1 o—ioco
2077 o+ico
Z(ejﬂ+l)2 - ﬁ o r ()¢t —1)¢(t — 2)dt

j=>1
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It follows from the residue theorem (or use correspondence (47) in Appendix B of [B]) that

YA = @O 067,
Jj=1
_Zln (1—3*”) = 7"*1<(2)-|-<(0)1n(1/7n)_’_C/(O)_’_O(l)7
Zﬁ = 22 +0(r ).

Thus condition becomes

Car J J J
n—Z]S(]) = Zerj_lzzlerj_l_zjerj_l

jed jeA Jz
@)+ O T O = Y

jeJ

Using

Y = S a o),

JjeJ JjeJ

and , we obtain
n=C_2)r 2+t (n*1/4> .

Thus

Lo ele)
r = %(1—&—0(71_1/2)).

Finally, substituting the above expressions into Equation and noting m = n + o(nl/ ),
¢(2) = 7?/6, ¢(0) = —1/2, and ¢’(0) = — In /27, we obtain

pa(m) ~p(m) [] %

jed

where

o)~ o (57

is the total number of partitions of n.
Hence the probability that a random partition of n has the restricted pattern .S is

pa(m) mj
p(n) 11 Von

jeJ
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The product on j in the above formula shows the contribution of each part in the restricted
pattern is asymptotically independent of each other. This is in agreement with Corollary by
noting here p =1 and C; =1 for all j.

Although we consider here in detail only the case a; = j, our results extend, for any positive
integer k, to a; = 3%, to a; = Ff where F} is the jth Fibonacci number (where one needs an
alternate condition stated in [13]), and to a; = pé?, where p; denotes the jth prime number (these
assumptions are satisfied since p; ~ jlnj by the prime number theorem). Of course, conditions
stated in need to be adjusted accordingly.

7 Conclusions

In this paper, we focus on the multi-set construction of decomposable structures with a given
restricted pattern where the component generating function are of special alg-log type. We
estimate P(XLT] > k) for labeled and unlabeled structures. We remark that for all ranges of o
and [ consider in this paper, P (X,ET] > k) has the same expression among labeled structures; the
same result is true among unlabeled structures.

Let Y,, be the number of components in a random structure of size n. When the component
generating function C(z) is of logarithmic type, it is well known [0, [7] that Y;, is asymptotically
normal with mean and variance proportional to Inn. Also E(X,[Z"]) is proportional to (Inn)" [12].

We note that, for the labeled case,

[2"]C*(2) /k!

P =k =m0y

When C(z) is of alg-log type with algebraic exponent 0 < o < 1, we have, from and Flajolet-
Odlyzko’s transfer theorem, that

kck—1d 1
“n =0 (ln ).
F(704)p n (Inn)

[£"]C*(2) ~

Hence
P(Y, =Fk)~c e ¢/(k - 1),

which is a shifted Poisson distribution with constant mean and variance. Similar results hold for
unlabeled structures. We have also shown in this case E (Xl,l]) is proportional to n.

When C(z) is of alg-log type with algebraic exponent & = —p < 0, it follows from [16] [17]
that E(Y;,) is proportional to n?/(P+1) . We have also shown in this paper that for this algebraic
exponent E(Xr[f]) is a constant. For integer partitions, it is also known that the expected number
of parts in a random partition of n is proportional to n'/? [I4]. Although integer partitions do
not fit into our general framework for unlabeled structures because the radius of convergence is
not less than 1, we have shown, using the result of [I3], that similar results also hold for integer
partitions with a restricted pattern.

Further work. So far we have covered the cases 0 < a < 1 and any 3; « = 0 and § = 1;
and a < 0 and 8 = 0. It seems possible to extend these results to other ranges of « and 3. In
addition, it may be possible to relax the conditions on the restricted pattern S.
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