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A sigma partitioning of a graph G is a partition of the vertices into sets P1, . . . , Pk such that for every two adjacent

vertices u and v there is an index i such that u and v have different numbers of neighbors in Pi. The sigma number

of a graph G, denoted by σ(G), is the minimum number k such that G has a sigma partitioning P1, . . . , Pk. Also,

a lucky labeling of a graph G is a function ℓ : V (G) → N, such that for every two adjacent vertices v and u of G,
∑

w∼v
ℓ(w) 6=

∑
w∼u

ℓ(w) (x ∼ y means that x and y are adjacent). The lucky number of G, denoted by η(G), is

the minimum number k such that G has a lucky labeling ℓ : V (G) → Nk. It was conjectured in [Inform. Process.

Lett., 112(4):109–112, 2012] that it is NP-complete to decide whether η(G) = 2 for a given 3-regular graph G. In

this work, we prove this conjecture. Among other results, we give an upper bound of five for the sigma number of a

uniformly random graph.

Keywords: Sigma partitioning; Lucky labeling; Additive coloring; Sigma chromatic number; Computational Com-

plexity; Planar Not-All-Equal 3-SAT; Planar Not-All-Equal 3-SAT Type 2.

1 Introduction

Throughout the paper we denote {1, 2, . . . , k} by Nk. In 2004, Karoński et al. introduced a new coloring

of a graph which is generated via edge labeling [19]. Let f : E(G) → N be a labeling of the edges of a

graph G by positive integers such that for every two adjacent vertices v and u, Sum(v) 6= Sum(u), where

Sum(v) denotes the sum of labels of all edges incident with v. It was conjectured in [19] that three integer

labels N3 are sufficient for every connected graph, except K2. Currently the best bound is five [18].

Regarding the computational complexity of this concept, Dudek and Wajc [13] proved that determining

whether a given graph has a labeling of the edges from N2 that induces a proper vertex coloring is NP-

complete. Recently, it was shown that for a given 3-regular graph G deciding whether G has a labeling

for the edges from {a, b}, (a 6= b) that induces a proper vertex coloring is NP-complete [9].

Lucky labeling and sigma partitioning are two vertex versions of this problem, which were introduced

recently by Czerwiński et al. [7] and Chartrand et al. [6]. The lucky labeling of a graph G is a function
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ℓ : V (G) → N, such that for every two adjacent vertices v and u of G,
∑

w∼v ℓ(w) 6=
∑

w∼u ℓ(w) (x ∼ y
means that x and y are adjacent). The lucky number of G, denoted by η(G), is the minimum number k
such that G has a lucky labeling ℓ : V (G) → Nk. Also, the sigma partitioning of a graph G is a partition

of the vertices into sets P1, . . . , Pk such that for every two adjacent vertices u and v, there is an index i
such that u and v have different numbers of neighbors in Pi. The sigma number of a graph G, denoted by

σ(G), is the minimum number k such that G has a sigma partitioning P1, . . . , Pk.

There is an alternative definition for the sigma partitioning which is similar to the definition of lucky

labeling. For a graph G, let c : V (G) → N be a vertex labeling of G. If k labels are used by c, then c is

a k-labeling of G. If for every two adjacent vertices v and u of G,
∑

w∼v c(w) 6=
∑

w∼u c(w), then c is

called a sigma partitioning of G. The minimum number of labels required in a sigma partitioning is called

the sigma number of G. Now, we show that the alternative definition is equivalent to the first definition. In

any sigma partitioning of a graphG with σ(G) labels, we can use the set of labels {si : 0 ≤ i ≤ σ(G)−1},

where s is a sufficiently large number (it is enough to put s ≥ ∆(G) + 1). So the sigma number is the

minimum number k such that the vertices of graph can be partitioned into k sets P1, . . . , Pk such that for

every edge uv, there is an index i that u and v have different numbers of neighbors in Pi.

Sigma partitioning and lucky labeling have been studied extensively by several authors, for instance see

[2, 3, 5, 6, 7, 11, 20, 23]. Note that lucky labeling is also called an additive labeling of a graph [1, 16],

and sigma partitioning is also called the sigma chromatic number of a graph [6].

The sigma number can also be thought of as a vertex version of the detection number of a graph. For

a connected graph G of order |V (G)| ≥ 3 and a k-labeling c : E(G) → Nk of the edges of G, the code

of a vertex v of G is the ordered k-tuple (l1, l2, . . . , lk), where li is the number of edges incident with v
that are labeled i. The k-labeling c is detectable, if every two adjacent vertices of G have distinct codes.

The minimum positive integer k for which G has a detectable k-labeling is the detection number of G. It

was shown that it is NP-complete to decide if the detection number of a 3-regular graph is 2 [17]. Also,

it was proved that the detection number of every bipartite graph of minimum degree at least 3 is at most 2

[17].

Remark 1 For a partition P = ∪k
i=1Pi of the vertices of a graph G, consider the function fP : V (G) →

(N ∪ {0})k with the map fP(x) = (N(x) ∩ P1, . . . , N(x) ∩ Pk). The function P is called sigma

partitioning if and only if fP is a proper coloring for G. For a given graph G, let Pk be the set of partitions

of the vertices such that each partition has at most k parts. Now, consider the following parameter:

Ωp(G, k) = maxP∈Pk
minvu∈E(G) |fP(v)− fP(u)|p,

where p ≥ 1 and |.|p is the norm p. Note that p = 1 is the natural case and σ(G) = mink Ωp(G, k) 6= 0
(for all p).

Remark 2 The difference between the sigma number and the lucky number of a graph can be arbitrarily

large. In fact, there are graphs with σ ≤ 2 and arbitrary large lucky numbers. For instance, for every k
consider a complete graph with

(

k+2
2

)

−1 vertices {vαβ : α ∈ Nk∪{0}, β ∈ Nα+2}; next join each vertex

vαβ to α new isolated vertices vγαβ for γ ∈ Nα. We call this graph G. Note that G has k(k+1)(2k+7)/6

leaves. We show σ(G) ≤ 2. To do this, put A = {vαβ : β = 1} ∪ {vγαβ : γ ≤ β − 2} and let

A = V (G) \A. In order to show that (A,A) is a sigma partition one could mention that we only need to

consider pairs of vertices of the same degree, such as via and vib for some i and a < b, in which case vib
has more neighbors in A than via does. Thus (A,A) is a sigma partitioning. On the other hand, let ℓ be a

lucky labeling of G, for every two adjacent vertices u, v ∈ K(k+2
2 )−1, we have:
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∑

w∼v
w is a leaf

ℓ(w) + ℓ(u) 6=
∑

w∼u
w is a leaf

ℓ(w) + ℓ(v),

Therefore, we have:

∑

w∼v
w is a leaf

ℓ(w)− ℓ(v) 6=
∑

w∼u
w is a leaf

ℓ(w)− ℓ(u).

∑

w∼v
w is a leaf

ℓ(w) − ℓ(v) is one of the (k + 1)η(G) − 1 different numbers. Thus

(k + 1)η(G)− 1 ≥
(

k + 2

2

)

− 2.

Therefore, η(G) ≥ k/2.

1.1 Complexity for 3-regular graphs

For a given graph G, we have σ(G) = η(G) = 1 if and only if every two adjacent vertices of G have

different degrees. We know that σ(G) ≤ χ(G) [6], on the other hand we have the following conjecture

about the lucky number.

Conjecture 1 [Additive Coloring Conjecture [7]] For every graph G, η(G) ≤ χ(G).

It is not known whether this conjecture is true even for bipartite graphs. Moreover, it is not even known

if η(G) is bounded for bipartite graphs. Recently, Grytczuk et al. [16] proved that η(G) ≤ 468 for every

planar graph G.

It was shown in [2] that it is NP-complete to decide for a given planar 3-colorable graph G, whether

η(G) = 2. Here, we are interested in the following conjecture:

Conjecture 2 [2] It is NP-complete to decide whether η(G) = 2 for a given 3-regular graph G.

In this work, we prove Conjecture 2. In order to prove Conjecture 2; first, we prove Theorem 1. After

that by this theorem we prove the conjecture.

Theorem 1 It is NP-complete to decide for a given 3-regular graph G, whether σ(G) = 2.

It is easy to check that for every regular graph G, σ(G) = 2 if and only if η(G) = 2. Therefore from

Theorem 1 we have Theorem 2 and we can prove Conjecture 2.

Theorem 2 It is NP-complete to decide for a given 3-regular graph G, whether η(G) = 2.

In the proof of Theorem 1, for a given formula Ψ, we transform Ψ into a 3-regular graph GΨ such that

σ(GΨ) = 2 if and only if Ψ has a Not-All-Equal (NAE) truth assignment, where a NAE assignment is

an assignment such that each clause has at least one true literal and at least one false literal. On the other

hand, GΨ has a triangle and is a 3-regular graph, so we have χ(GΨ) = 3. Also, since GΨ is a 3-regular

graph, σ(GΨ) ≥ 2. Thus, σ(G) = χ(G) if and only if Ψ does not have any NAE truth assignment.

Consequently, by Theorem 1, we have the following corollary.
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Corollary 1 It is NP-complete to determine whether σ(G) = χ(G), for a given 3-regular graph G.

It was proven in [2] that for every k ≥ 2, it is NP-complete to decide whether η(G) = k for a given

graph G. Here, we present the following result for sigma partitioning.

Theorem 3 For every k ≥ 3, it is NP-complete to decide whether σ(G) = k for a given graph G.

Consider the problem of partitioning the vertices of G into σ(G) parts, such that this partitioning is

a sigma partitioning and some parts have the smallest possible size. We show that for a given planar

3-regular graph with sigma number two the following problem is NP-complete.

Problem Ξ.

INSTANCE: A planar 3-regular graph G with σ(G) = 2 and a real number 0 < r < 1.

QUESTION: Does G have a sigma partitioning c with σ(G) parts, such that there is a part with at most

r|V (G)| vertices?

Theorem 4 Problem Ξ is NP-complete.

1.2 Some upper bounds

It was shown that σ(G) = O(∆2) for every graph G [23]. We prove the following upper bound for

triangle-free graphs.

Theorem 5 Let G = {Gi}i∈N be a sequence of triangle-free graphs. Then for this family,

(i) if δ = Ω(∆) then σ = O(1) for all graphs in G, except a finite number of them;

(ii) if δ ≥ 3.501(ln∆), then σ = O(δ).

Next, we show that almost all graphs have a small sigma number. Let G(n, p) be the notation of

Erdös-Rényi random graph on n vertices.

Theorem 6 For every constant p, 0 < p < 1, σ(G(n, p)) ≤ 5.

1.3 Notation

We conclude the section by fixing some notation which is not defined here. When we say that f if a sigma

partitioning for a graph G, we mean that f : V (G) → N such that for every two adjacent vertices v and u
of G,

∑

w∼v f(w) 6=
∑

w∼u f(w). For a vertex v of G, let N(v) denote the neighborhood of v (the set

of vertices adjacent to v). Let N [v] = N(v) ∪ {v} denote the closed neighborhood of v. Also, for every

v ∈ V (G), dG(v) denotes the degree of v (for simplicity we denote dG(v) by d(v)). For a natural number

k, a graph G is called a k-regular graph if d(v) = k, for each v ∈ V (G). We denote the maximum degree

and the minimum degree of G by ∆(G) and δ(G), respectively. For k ∈ N, a proper vertex k-coloring of

G is a function c : V (G) → Nk, such that if u, v ∈ V (G) are adjacent, then c(u) and c(v) are different.

The smallest integer k such that G has a proper vertex k-coloring is called the chromatic number of G and

denoted by χ(G). We follow [24] for terminology and notation which are not defined here.
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2 Complexity results

Proof of Theorem 1. Here, we prove that for a given 3-regular graph G, it is NP-complete to de-

cide whether σ(G) = 2. Let Ψ be a 3-SAT formula with clauses C = {c1, . . . , ck} and variables

X = {x1, . . . , xn}. The following problem is NP-complete [14].

Not-All-Equal (NAE) 3-SAT .

INSTANCE: Set X of variables, collection C of clauses over X such that each clause c ∈ C has |c| = 3.

QUESTION: Is there a truth assignment for X such that each clause in C has at least one true literal and

at least one false literal?

¬x ¬x ¬x ¬x ¬x1 2 k-1k-2 k

x1 x 2
x

k-2
x k-1

x k

x

¬x

,

x x

x

,,

,,,

Fig. 1: The graph Hx. In every lucky labeling ℓ : V (Hx) → N2, the set of black vertices has the same label and also

the set of white vertices has the same label and these two labels are different (with respect to symmetry).

Since for every regular graph G we have that σ(G) = 2 if and only if η(G) = 2, it suffices to prove the

theorem for the lucky labeling.

We reduce NAE 3-SAT to our problem in polynomial time. Consider an instance Ψ with the set of

variables X and the set of clauses C. We transform this into a 3-regular graph GΨ such that η(GΨ) = 2
if and only if Ψ has an NAE truth assignment. We use three auxiliary graphs Hx, Icj and T . The gadgets

Hx and T are shown in Figure 1 and Figure 2. Also, the gadget Icj is a triangle c1jc
2
jc

3
j . The graph GΨ

has a copy of Hx for each variable x ∈ X and a copy of Icj for each clause cj ∈ C. For each clause

cj = y ∨ z ∨ w, where y, w, z ∈ X ∪ ¬X , add the edges c1jy
j , c2jz

j and c3jw
j . Finally, for every vertex

v with d(v) < 3, put a copy of T and add edge between v and t. Repeat this procedure one more time to

obtain a 3-regular graph GΨ.

We next discuss basic properties of the graph GΨ. Assume that η(GΨ) = 2 and ℓ : V (GΨ) → N2 is a

lucky labeling.
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T

1 2

3

4

5 6

S

SS

S

S

SS

t

Fig. 2: Two auxiliary graphs T and S. For every lucky labeling of T with the labels N2, the set of black vertices

has a same label and also the set of white vertices has a same label and these two labels are different (with respect to

symmetry). This fact is also true for S.

Fact 1 For every x ∈ X , in the subgraph Hx we have, ℓ(x) 6= ℓ(¬x).

Proof. For a contradiction, suppose that ℓ(x) = ℓ(¬x). Consequently, ℓ |{x′,x′′,x′′′} is a lucky labeling

for the odd cycle x′x′′x′′′. But the lucky number of every odd cycle is 3, a contradiction. ♠
If u and v are two vertices in the graphGΨ such that N [u] = N [v], then ℓ(u) 6= ℓ(v). As a consequence,

we have the following fact.

Fact 2 In every copy of S and T (see Figure 2), the set of black vertices has the same label and also the

set of white vertices has the same label and these two labels are different (with respect to symmetry).

Proof. In the subgraphs S, first assume that ℓ(s1) = 2. Since N [s3] = N [s4], we have that ℓ(s3) 6= ℓ(s4).
Without loss of generality suppose that ℓ(s3) = 2 and ℓ(s4) = 1. If ℓ(s5) = 2, then ℓ |{s2,s3,s4} is a

lucky labeling for the odd cycle s2s3s4, but it is a contradiction, hence ℓ(s5) = 1. If ℓ(s2) = 2, then
∑

w∼s2
ℓ(w) =

∑

w∼s4
ℓ(w), so ℓ(s2) = 1. Also if ℓ(s6) = 1, then

∑

w∼s4
ℓ(w) =

∑

w∼s5
ℓ(w), so

ℓ(s6) = 2. By a similar argument if ℓ(s1) = 1, then ℓ(s6) = 1. Therefore, the set of black vertices has

the same label and also the set of white vertices has the same label and these two labels are different. For

the subgraph T we have a similar argument. ♠
By Fact 1, Fact 2 and since S is a subgraph of Hx, without loss of generality, for every x ∈ X , in

the subgraph Hx, the set of black vertices has the same label and also the set of white vertices has the

same label and these two labels are different. In other words, ℓ(x) = ℓ(x1) = · · · = ℓ(xk) 6= ℓ(¬x) =
ℓ(¬x1) = · · · = ℓ(¬xk). For an arbitrary clause cj = y ∨ z ∨ w, where y, w, z ∈ X ∪ ¬X , assume that

ℓ(yj) = ℓ(zj) = ℓ(wj), consequently ℓ |{c1j ,c2j ,c3j} is a lucky labeling for the odd cycle c1jc
2
jc

3
j , but the

lucky number of an odd cycle is 3. This is a contradiction. Hence, we have the following fact:

Fact 3 For every clause cj = y ∨ z ∨ w, where y, z, w ∈ X ∪ ¬X , we have {ℓ(yj), ℓ(zj), ℓ(wj)} = N2.

First, assume that η(GΨ) = 2 and let ℓ : V (GΨ) → N2 be a lucky labeling. We present an NAE

satisfying assignment Γ : X → {true, false} for Ψ. Now put Γ(xi) = true if and only if ℓ(xi) = 1.

By Fact 1, for every xi we have ℓ(xi) 6= ℓ(¬xi) so it is impossible that both ℓ(xi) and ℓ(¬xi) are 1.

For every cj = y ∨ z ∨ w by Fact 3, | {ℓ(yj), ℓ(zj), ℓ(wj)} |= 2; so at least one of the literals y, z, w
is true and at least one of the literals is false. On the other hand, suppose that Ψ is satisfiable with the

satisfying assignment Γ : X → {true, false}. We present the lucky labeling ℓ for GΨ from the set {1, 2}.

By attention to Figure 1 and Figure 2, in each copy of Hx, if Γ(x) = true, label the set of black vertices
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by 1 and label the set of white vertices by 2. Also if Γ(x) = false, label the set of black vertices by 2
and label the set of white vertices by 1. For every copy of T , label the vertex t with the label different

from ℓ(t′), where t′ is the unique neighbor of t which is not in T . This determines the labels of all other

vertices of T . By Fact 3, for every cj ∈ C, we can determine the labels of the vertices c1j , c
2
j , c

3
j . Finally,

by straightforward counting one can see that ℓ is a lucky labeling. This completes the proof. ✷

Proof of Theorem 3. Here, we prove that for every k ≥ 3, for a given graph G it is NP-complete to

decide whether σ(G) = k. It was shown in [8] that the following problem is NP-complete. We reduce it

to our problem in polynomial time.

The 3-colorability of 4-regular graphs.

INSTANCE: A 4-regular graph G.

QUESTION: Is χ(G) ≤ 3?

For a given 4-regular graph G, we construct a regular graph G∗ such that χ(G∗) ≤ k if and only if G
is 3-colorable (step 1). Next, we construct the graph G∗∗ such that σ(G∗∗) ≤ k if and only if χ(G∗) ≤ k
(step 2).

Step 1. If k = 3 we can assume that G∗ ∼= G, otherwise do the following. Consider a copy of the graph

G and a copy of the complete graph Kk−3. Join each vertex of G to each vertex of Kk−3 and call the

resultant graph G′. One can see that χ(G′) = χ(G)+k− 3 and ∆(G′) = k− 4+ |V (G)|. Now, consider

a copy of the graph G′ and for each vertex v ∈ G′, put ∆(G′) − dG′(v) new isolated vertices and join

them to the vertex v. Also, put ∆(G′) copies of the K2’s. Call the resultant graph G′′. It is easy to check

that δ(G′′) = 1, ∆(G′′) = ∆(G′) and χ(G′′) = χ(G′). Let S = {v | dG′′(v) = 1}. Now, consider two

copies of G′′ and put ∆(G′′)− 1 distinct perfect matching between the set of vertices S in the first copy

of G′′ and the set of vertices S in the second copy of G′′. Call the resultant graph G∗. On can see that G∗

is a regular with χ(G∗) = χ(G) + k − 3.

Step 2. Suppose that G∗ is a regular graph with n vertices. For every α, 1 ≤ α ≤ n consider a copy

of a complete graph K
(α)
k2−k+1, with the vertices {yαβγ : β, γ ∈ Nk−1} ∪ {yαkγ : γ ∈ Nk}. Next consider

k− 1 isolated vertices v1, . . . , vk−1 and join every yαβγ to vβ , also consider a copy of G∗ with the vertices

x1, . . . , xn and join every yαkγ to xα. Finally put n isolated vertices z1, . . . , zn and join every xα to zα.

Name the constructed graph G∗∗.

First, note that σ(G∗∗) ≥ k, since in every sigma partitioning of G∗∗ the labels of y1k1, y
1
k2, . . . , y

1
kk

are different. Let c : V (G∗∗) → {a1, . . . , ak} be a sigma partitioning. For every α and β, the labels of

yαβ1, · · · , yαβ(k−1) are different. We claim that the labels of v1, . . . , vk−1 are different (Property A). To

the contrary suppose that c(vβ) = c(vβ′), then the labels of the vertices in {y1βγ : γ ∈ Nk−1} ∪ {y1βγ′ :
γ′ ∈ Nk−1} must be different, so we need at least 2(k − 1) labels. Similarly, for every i and γ, i ∈ Nn,

γ ∈ Nk−1, we can see that c(vβ) 6= c(xi) (Property B). First, suppose that σ(G∗∗) = k, by Properties A

and B, we have c(x1) = · · · = c(xn). Consider the set of vertices {xi : i ∈ Nn}, since G∗ is regular and

for every α we have |{c(yαkγ) : γ ∈ Nk}| = k, therefore, the function c′ : {xi : i ∈ Nn} → N, where

c′(xα) = c(zα), is a proper vertex coloring of G∗, so χ(G∗) ≤ k. On the other hand, let χ(G∗) ≤ k and

c′ : {xi : i ∈ Nn} → Nk be a proper vertex coloring G∗. Suppose that s is a sufficiently large number,

we give a sigma partitioning c for G∗∗ with the labels {si : i ∈ Nk}, that is:

c(xα) = sk, c(vβ) = sβ , c(yαkγ) = sγ , c(zα) = sc
′(xα),
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and for every α, β with β 6= k, label the vertices yαβγ such that {c(yαβγ) : γ ∈ Nk} = {si : i ∈ Nk}\{sβ}.

It is not hard to check that c is a sigma partitioning of G∗∗. This completes the proof. ✷

Proof of Theorem 4. Here, we prove that for a given planar 3-regular graph G with σ(G) = 2 and a real

number 0 < r < 1, determining whether G has a sigma partitioning with σ(G) parts, such that there is a

part with at most r|V (G)| vertices, is NP-complete.

First consider the following problem.

Planar NAE 3-SAT.

INSTANCE: Set X of variables, collection C of clauses over X such that each clause c ∈ C has |c| = 3
and the following graph obtained from 3-SAT is planar. The graph has one vertex for each variable, one

vertex for each clause; all variable vertices are connected in a simple cycle and each clause vertex is con-

nected by an edge to variable vertices corresponding to the literals present in the clause.

QUESTION: Is there an NAE truth assignment for X?

Moret [22] proved that Planar NAE 3-SAT is in P by a reduction to a known problem in P, namely Pla-

nar MaxCut (for more information see [10, 12]). Moret’s reduction used only local replacement. Given an

instance of Planar NAE 3-SAT with k clauses, they transformed it in polynomial time into an instance Q of

MaxCut with 9k vertices as follows. For each variable x forming a total of nx literals in the k clauses, they

put a cycle of 2nx vertices. Alternating vertices represent complemented and uncomplemented literals.

For each clause, they put a copy of the complete graph K3, where each vertex of the K3 is connected by

an edge to the (complement of the) corresponding literal vertex. They proved that 11k is the maximum at-

tainable cut sum if and only if Planar NAE 3-SAT is satisfied. Note that the cycle that contains all variables

does not have any rule in the construction of Q. So, if we replace an instance of Planar NAE 3-SAT with

an instance of the following problem; the proof remains correct. Therefore, the following problem is in P.

Planar NAE 3-SAT Type 2.

INSTANCE: Let X be the set of variables and let C be the set of clauses such that each clause c ∈ C
has |c| = 3 and the bipartite graph obtained by linking a variable and a clause if and only if the variable

appears in the clause, is planar.

QUESTION: Is there an NAE truth assignment for X?

On the other hand, Moore and Robson [21] proved that the following 1-In-3 SAT problem is NP-

complete.

Cubic Planar 1-In-3 3-SAT.

INSTANCE: Set X of variables, collection C of clauses over X such that each clause c ∈ C has |c| = 3
and every variable appears in exactly three clauses, there is no negation in the formula, and the bipartite

graph obtained by linking a variable and a clause if and only if the variable appears in the clause, is planar.

Note that |C| = |X |.
QUESTION: Is there a truth assignment for X such that each clause in C has exactly one true literal?

We reduce Cubic Planar 1-In-3 3-SAT to our problem in polynomial time. Assume that H is a dummy

3-regular graph with σ(H) = 2. Also, without loss of generality, suppose that H does not have any sigma
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x

Fig. 3: The auxiliary graph Ax. For every sigma partitioning of Ax with the labels {α, β}, the set of black vertices

have the same label and also the set of white vertices have the same label and these two labels are different (with

respect to the symmetry).

partitioning with two parts, such that there is a part with at most 62
138 |V (H)| vertices. Now, consider an

instance Φ with the set of 3n variables X and the set of 3n clauses C. By the polynomial time algorithm

which was presented in [22] (they proved that Planar NAE 3-SAT Type 2 is in P), we check whether Φ has

an NAE truth assignment. If Φ does not have any NAE truth assignment, then it does not have a 1-In-3

truth assignment. In this case we return H . Otherwise, we construct GΦ. We use two auxiliary graphs Ax

and Bc. The gadget Ax is shown in Figure 3 and the gadget Bc is a complete graph K3. Let HΦ be the

graph obtained by linking a variable and a clause if and only if the variable appears in the clause. Replace

each variable x ∈ X by Ax and replace each clause c ∈ C by Bc. Call this planar 3-regular graph GΦ.

This graph has 138n vertices.

First we show that σ(GΦ) = 2. By assumptionΦ has an NAE truth assignmentΓ : X → {true, false}.

We present a sigma partitioning c for GΦ, with labels α and β. Put c(x) = β if and only if Γ(x) = true.

This determines the labels of the remaining vertices in Ax. Let c ∈ C be an arbitrary clause and without

loss of generality, assume that v1v2v3 is the complete graph corresponds to the clause c = (x ∨ y ∨ z) in

the graph. Also, assume that v1 has a neighbor in Ax with label α, v2 has a neighbor in Ay with label β
and v3 has a neighbor in Az with label β. Put c(v2) = α and c(v1) = c(v3) = β. Since Γ is an NAE truth

assignment, one can label the vertices of Bc by the above method.

We prove that for every sigma partitioning with σ(GΦ) labels, for every part P we have |P |/|V (GΦ)| ≥
62
138 and the equality holds for a part, if and only if Φ has a truth assignment such that each clause in C has

exactly one true literal. Assume that ℓ : V (GΦ) → {α, β} is a sigma partitioning. Consider the following

fact:

Fact 4 Let G be a regular graph, σ(G) = 2 and ℓ : V (G) → {α, β} be a sigma partitioning. Also, let α′

and β′ be two arbitrary number such that α′ 6= β′. Define ℓ : V (G) → {α′, β′} such that ℓ(v) = α′ if

and only if ℓ(v) = α. The function ℓ is a sigma partitioning for the graph G.

Proof. Since the graph G is regular, the proof is clear. ♠
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By Fact 4 and Fact 2, in the subgraph Ax, the label of x forces the labels of all other vertices; therefore,

the labels of exactly 16 vertices including x are equal to ℓ(x). Also, by the structure of Bc, the function Γ
is an NAE satisfying assignment. So, in every Bc, at least one vertex has label β, at least one vertex has

label α, also at least one vertex of their neighbors in ∪x∈XAx has label β and at least one vertex of their

neighbors in ∪x∈XAx has label α. As |C| = |X | = 3n and Φ is satisfied, at least 1
3 of the variables are

true and at most 2
3 of the variables are false. Thus for α, we have:

|ℓ−1(α)| = |ℓ−1(α) ∩
⋃

c

Bc|+ |ℓ−1(α) ∩
⋃

ℓ(x)=α

Ax|+ |ℓ−1(α) ∩
⋃

ℓ(x)=β

Ax|

≥ (1× 3n) + (16× 2n) + (27× n)

= 62n

If the equality holds, then Φ has a 1-In-3 satisfying assignment with the satisfying assignment Γ : X →
{true, false}, when Γ(x) = true if and only is ℓ(x) = β. Next, suppose that Φ has 1-In-3 satisfying

assignment with the satisfying assignment Γ : X → {true, false}. We present the sigma partitioning

σ for GΦ from the set {α, β} such that exactly 62n vertices have the label β. Put ℓ(x) = β if and only

if Γ(x) = true, the labels of other vertices of Ax are determined. Now, for each c ∈ C, exactly one of

the vertices of Bc has a neighbor in ∪xAx with the label β. Call this vertex of Bc by vc. Label vc by α
and label the two other vertices of Bc by different labels. One can see that σ is a sigma partitioning. This

completes the proof. ✷

3 Random graphs and upper bounds

Proof of Theorem 5. (i) Let G = {Gi}i∈N be a sequence of triangle-free graphs. Then for this family

we prove that if δ = Ω(∆) then σ = O(1), for all graphs in G, except a finite number of them. We will

use the probabilistic method to prove the theorem. The following tool of the probabilistic method will be

used several times.

Lemma A [The Local Lemma [4]] Suppose A1, . . . , An is a set of random events such that for each i,
Pr(Ai) ≤ p and Ai is mutually independent of the set of all but at most d other events. If ep(d+ 1) < 1,

then with positive probability, none of the events occur.

We will also use the following well known inequalities (Stirling’s approximation).

√
2πn(

n

e
)n ≤ n! ≤

√
e2n(

n

e
)n.

Let G be a given graph. We will use the Local Lemma in order to prove the Theorem. Color each vertex

of G by a random color from the set Nk such that each color is chosen with probability 1
k and the color

of every vertex is independent from the colors of other vertices. The value of k will be determined later.

For an edge e = uv, let Be be the event “for each i, i ∈ Nk, the vertex u and the vertex v have the same

number of neighbors in part i”. Note that if Be occurs, then d(u) = d(v). For every edge e, the event Be

is dependent on less than 2∆3 events. Since the maximum of Pr(Be) is when d(v) = d(u) = δ(G) and

G is triangle-free, we have:
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Pr(Be) ≤
∑

∑
i ti=δ

(

(

δ

t1, . . . , tk

)

kδ

)2

(1)

≤ max∑
i ti=δ

(

δ

t1, . . . , tk

)

kδ
(2)

≤

(

δ
δ
k , . . . ,

δ
k

)

kδ
(3)

=
δ!

(

( δk )!
)k

× k−δ (4)

By Stirling’s approximation and (4), we have

Pr(Be) ≤
e
√
δ(δ/e)δ

(
√

2πδ
k ( δ

ek )
δ
k

)k
× k−δ (5)

=
e
√
δ

(
√

2πδ
k

)k
. (6)

It was shown in [23] that for every graph G, we have σ(G) = O(∆2). So for a given graph G if ∆(G) is

a constant number then σ(G) = O(1). Thus, we can assume that for a given graph G, ∆ is a sufficiently

large number. Since δ = Ω(∆), there are constant numbers n0 and c such that for each i ≥ n0, for the

graph Gi, we have δ ≥ c∆. Put k = 8. For each i ≥ n0, for the graph Gi with a sufficiently large ∆, we

have ep(d+ 1) ≤ e e
√
δ

(√
2πδ
8

)8∆3 < 1. Thus by the Local Lemma there is a sigma partitioning with O(1)

colors for all graphs in G, except a finite number of them. This completes the proof of the part (i).

(ii) Let G = {Gi}i∈N be a sequence of triangle-free graphs. Then for this family we prove that if

δ ≥ 3.501(ln∆), then σ = O(δ). Put k = δ. We use the Local Lemma to prove the theorem. From the

previous calculation we have:

Pr(Be) ≤

(

δ
δ
k , . . . ,

δ
k

)

kδ
(7)
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Since k = δ, by (7), we have

Pr(Be) ≤

(

δ

1, . . . , 1

)

δδ
(8)

=
δ!

δδ
(9)

By Stirling’s approximation and (9), we have

Pr(Be) ≤
e
√
δ

eδ
(10)

It was shown in [23] that for every graph G, we have σ(G) = O(∆2). So for a given graph G if

∆(G) is a constant number then σ(G) = O(1). Thus, we can assume that for a given graph G, ∆
is a sufficiently large number. Since δ ≥ 3.501(ln∆) and ∆ is a sufficiently large number, we have

ep(d+ 1) ≤ e e
√
δ

∆3.501∆
3 < 1. Thus by the Local Lemma there is a sigma partitioning. This completes the

proof.

✷

Proof of Theorem 6. Here, we prove that for every constant p, 0 < p < 1, σ(G(n, p)) ≤ 5. The proof

is similar to the proof of Theorem 4 in [9]. Suppose that {P1, . . . ,P5} is a partition for n vertices such

that the size of each part is ⌊n/5⌋ or ⌈n/5⌉. Next consider the graph G(n, p) on these vertices. For every

vertex v denote the number of neighbors of the vertex v in Pi by Ai
v . This partition is a sigma partitioning

if for every two adjacent vertices v and u, there is an index i, such that Ai
v 6= Ai

u. First, we calculate

Pr(Ai
v = Ai

u). There is a constant C such that

Pr(Ai
v = Ai

u) ≤ C
(

n
5

∑

t=0

(

(n
5

t

)

pt(1− p)
n
5 −t

)2
)

(11)

By (11), there is a constant C′ such that

Pr(Ai
v = Ai

u) ≤ C′
(

max
0≤t≤n/5

(n
5

t

)

pt(1 − p)
n
5 −t

)

(12)

On the other hand, by Stirling’s approximation we have

Θ
(

max
0≤t≤n/5

(n
5

t

)

pt(1 − p)
n
5 −t

)

= Θ
(

( n
5
pn
5

)

p
pn
5 (1 − p)

(1−p)n
5

)

= Θ(n− 1
2 ) (13)

Thus, by (12) and (13), we have Pr(∀i Ai
v = Ai

u) = Θ(n− 5
2 ), therefore Pr(∃vu ∀i Ai

v = Ai
u) =

Θ(n2)Θ(n− 5
2 ) = o(1). This completes the proof. ✷

4 Concluding remarks

• A hypergraph H is a pair (X,Y ), where X is the set of vertices and Y is a set of non-empty subsets of

X , called edges. A k-coloring of H is a coloring ℓ : X → Nk such that, for every edge e with |e| > 1,



Sigma Partitioning: Complexity and Random Graphs 13

there exist v, u ∈ e such that ℓ(u) 6= ℓ(v) (for more information about hypergraphs, see [15]). We say

that two vertices v and u are adjacent if there is an edge like e such that v, u ∈ e. A sigma partitioning

for a hypergraph H is a partition for the vertices such that every edge e has two adjacent vertices v and u,

such that v and u have different numbers of neighbors in some parts. Investigating the property of sigma

partitioning in hypergraphs can be interesting as a future work.

• In Theorem 1, we used NAE 3-SAT . The planar version of NAE 3-SAT is in P [22], so the computational

complexity of σ for planar 3-regular graphs remains unsolved.
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