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We propose the conjecture that every tree with order n at least 2 and total domination number γt has at most
(

n−
γt
2

γt
2

)

γt
2

minimum total dominating sets. As a relaxation of this conjecture, we show that every forest F with

order n, no isolated vertex, and total domination number γt has at most

min

{

(

8
√
e
)γt

(

n− γt
2

γt
2

)

γt
2

, (1 +
√
2)n−γt , 1.4865n

}

minimum total dominating sets.

Keywords: Tree, forest, total domination, domination

1 Introduction

A set D of vertices of a graph G is a dominating set of G if every vertex of G that is not in D has a

neighbor in D, and D is a total dominating set of G if every vertex of G has a neighbor in D. The

minimum cardinalities of a dominating set of G and a total dominating set of G are the well studied

[7, 8] domination number γ(G) of G and the total domination number γt(G) of G, respectively. A

(total) dominating set is minimal if no proper subset is a (total) dominating set. A dominating set of G of

cardinality γ(G) is a minimum dominating set of G, and a total dominating set of G of cardinality γt(G)
is a minimum total dominating set or γt-set of G. For a graph G, let ♯γt(G) be the number of minimum

total dominating sets of G.

Providing a negative answer to a question of Fricke et al. [6], Bień [2] showed that trees with domination

number γ can have more than 2γ minimum dominating sets. In fact, Bień’s example allows to construct

forests with domination number γ that have up to 2.0598γ minimum dominating sets. In [1] Alvarado et

al. showed that every forest with domination number γ has at most 2.4606γ minimum dominating sets,

and they conjectured that every tree with domination number γ has O
(

γ2γ

ln γ

)

minimum dominating sets.
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In the present paper we consider analogous problems for total domination, which turns out to behave quite

differently. As shown by the star K1,n−1 which has total domination number 2 but n− 1 minimum total

dominating sets, the number of minimum total dominating sets of a tree is not bounded in terms of its total

domination number alone, but in terms of both the order and the total domination number. In Figure 1 we

illustrate what we believe to be the structure of trees T with given order n at least 2 and total domination

number γt that maximize ♯γt(T ).
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Fig. 1: For the tree Teven on the left, we have k = γt
2

, 1 ≤ ℓ1, . . . , ℓk, and (ℓ1 + 1) + . . . + (ℓk + 1) = n − k,

while for the tree Todd on the right, we have k = γt−1

2
, 1 ≤ ℓ1, . . . , ℓk, and (ℓ1 +1)+ . . .+ (ℓk +1) = n− k− 2.

If γt is even, say γt = 2k, then the tree Teven in the left of Figure 1 satisfies

♯γt(Teven) =

k∏

i=1

(ℓi + 1) ≤
(
n− γt

2
γt

2

) γt
2

,

where we use that the geometric mean is at most the arithmetic mean. Similarly, if γt is odd, say γt =
2k + 1, then the tree Todd in the right of Figure 1 satisfies

♯γt(Todd) =

k∑

i=1





i−1∏

j=1

ℓj

k∏

j=i+1

(ℓj + 1)



 ≤ k

(
n− k − 4

k − 1

)k−1

=

(
γt − 1

2

)(

n−
(
γt+7
2

)

γt−3
2

) γt−3

2

.

In view of these estimates, we pose the following.

Conjecture 1. If a tree T has order n at least 2 and total domination number γt, then

♯γt(T ) ≤
(
n− γt

2
γt

2

) γt
2

.

As our first result, we show that Conjecture 1 holds up to a constant factor for bounded values of γt.

More precisely, we show the following.

Theorem 2. If a forest F has order n, no isolated vertex, and total domination number γt, then

♯γt(F ) ≤
(
8
√
e
)γt

(
n− γt

2
γt

2

) γt
2

.
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The well known estimate 1 + x ≤ ex implies

(
n− γt

2
γt

2

) γt
2

=

(

1 +
n− γt

γt

2

) γt
2

≤ en−γt .

In the following theorem we can show an upper bound that is a little better. But since 1 + x << ex for

large x, the estimate is not good for fixed γt and large values of n. In this case Theorems 2 and 4 give

better upper bounds.

Theorem 3. If a forest F has order n, no isolated vertex, and total domination number γt, then

♯γt(F ) ≤ (1 +
√
2)n−γt ,

with equality if and only if every component of F is K2.

Note that Theorem 3 is only tight for γt = n, which corresponds to the fact that 1 + x = ex only for

x = 0. For n divisible by 5, the disjoint union of n
5 stars of order 5 yields a forest F with ♯γt(F ) = 4

n
5 ≈

1.3195n. Our third result comes close to that value.

Theorem 4. If a forest F has order n and no isolated vertex, then ♯γt(F ) ≤ 1.4865n.

Before we proceed to the proofs of our results, we mention some related research. Connolly et al. [4]

gave bounds on the maximum number of minimum dominating sets for general graphs. The maximum

number of minimal dominating sets was studied by Fomin et al. [5], and the maximum number of general

dominating sets by Wagner [12] and Skupień [11], and by Bród and Skupień [3] for trees. Krzywkowski

and Wagner [9] study the maximum number of total dominating sets for general graphs and trees. For

similar research concerning independent sets we refer to [10, 13, 14].

The next section contains the proofs of our results. We use standard graph theoretical terminology and

notation. An endvertex is a vertex of degree at most 1, and a support vertex is a vertex that is adjacent to

an endvertex.

2 Proofs

For the proof of Theorem 2, we need the following lemma.

Lemma 5. If T is a tree of order n at least 2, and B is a set of vertices of T such that

(i) |B ∩ {u, v}| ≤ 1 for every uv ∈ E(T ), and

(ii) |B ∩NT (u)}| ≤ 1 for every u ∈ V (T ),

then |B| ≤ n
2 .

Proof: The proof is by induction on n. If T is a star, then (i) and (ii) imply |B| ≤ 1 ≤ n
2 . Now, let T

be a tree that is not a star; in particular, n ≥ 4. Let uvw . . . be a longest path in T . By (i) and (ii), we

have |B ∩ (NT [v] \ {w})| ≤ 1. By induction applied to the tree T ′ = T − (NT [v] \ {w}) and the set

B′ = B ∩ V (T ′), we obtain |B| ≤ |B′|+
∣
∣
∣B ∩ (NT [v] \ {w})

∣
∣
∣ ≤ n(T ′)

2 + 1 ≤ n
2 .

We are now in a position to present the proof of Theorem 2.
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Proof of Theorem 2: Let F be a forest of order n and total domination number γt such that ♯γt(F ) is as

large as possible. Let D be a γt-set of F . Let F ′ arise by removing from F all endvertices of F that do

not belong to D. For every u ∈ D, let L(u) = NF (u) \ NF ′(u) and ℓ(u) = |L(u)|, that is, L(u) is the

set of neighbors of u in D that are endvertices of F that do not belong to D. We call a vertex u in D big

if ℓ(u) ≥ 2, and we assume that – subject to the above conditions – the forest F and the set D are chosen

such that the number k of big vertices is as small as possible.

Claim 1. No two big vertices are adjacent.

Proof of Claim 1: Suppose, for a contradiction, that u and v are adjacent big vertices. Let L′ be a set of

ℓ(u) − 1 vertices in L(u), and let F ′ = F − {ux : x ∈ L′} + {vx : x ∈ L′}, that is, we shift ℓ(u) − 1
neighbors of u in L(u) to v. Clearly, the vertices u and v both belong to every γt-set of F and also to

every γt-set of F ′. This easily implies that a set of vertices of F is a γt-set of F if and only if it is a γt-set

of F ′. It follows that D is a γt-set of F ′ and that ♯γt(F ) = ♯γt(F
′). Since F ′ and D lead to less than k

big vertices, we obtain a contradiction to the choice of F and D.

Claim 2. No two big vertices have a common neighbor in D.

Proof of Claim 2: Suppose, for a contradiction, that u and w are big vertices with a common neighbor v

in D. Let

• ♯u be the number of γt-sets of F that contain a vertex from L(u),

• ♯w be the number of γt-sets of F that contain a vertex from L(w), and

• ♯ū,w̄ be the number of γt-sets of F that contain no vertex from L(u) ∪ L(w).

In view of v, no γt-set of F contains a vertex from both sets L(u) and L(w), which implies

♯γt(F ) = ♯u + ♯w + ♯ū,w̄.

Note that ♯u
ℓ(u) is the number of subsets of V (F ) \ L(u) that can be extended to a γt-set of F by adding

one vertex from L(u). By symmetry, we may assume that ♯u
ℓ(u) ≤ ♯w

ℓ(w) . Again, let L′ be a set of ℓ(u)− 1

vertices in L(u), and let F ′ = F − {ux : x ∈ L′} + {wx : x ∈ L′}. Similarly as before, the vertices u

and w both belong to every γt-set of F and also to every γt-set of F ′. It follows that D is a γt-set of F ′,

and that

♯γt(F
′) =

♯u

ℓ(u)
+

♯w

ℓ(w)
(ℓ(u) + ℓ(w)− 1) + ♯ū,w̄ ≥ ♯u + ♯w + ♯ū,w̄ = ♯γt(F ).

Since F ′ and D lead to less than k big vertices, this contradicts the choice of F and D.

Claim 3. k ≤ γt

2 .

Proof of Claim 3: This follows immediately by applying Lemma 5 to each component of F [D], choosing

B as the set of big vertices in that component.



On the maximum number of minimum total dominating sets in forests 5

Let n′ = n(F ′), let V ′
1 be the set of endvertices of F ′, let n′

1 = |V ′
1 |, and let m be the number of edges

of F ′ between D and V (F ′) \D. Since the vertices in V ′
1 are either endvertices of F that belong to D or

are adjacent to an endvertex of F , we obtain that V ′
1 ⊆ D. Since D is a total dominating set, we obtain

n′ − γt = |V (F ′) \D| ≤ m ≤
∑

u∈D

(dF ′(u)− 1). (1)

Since F ′ is a forest with, say, κ components,

n′
1 = 2κ+

∑

u∈V (F ′):dF ′(u)≥2

(dF ′(u)− 2)

≥
∑

u∈D:dF ′ (u)≥2

(dF ′(u)− 2)

=
∑

u∈D:dF ′ (u)≥2

dF ′(u)− 2(γt − n′
1),

which implies

2γt − n′
1 ≥

∑

u∈D:dF ′ (u)≥2

dF ′(u). (2)

Now, we obtain

n′
(1)

≤
∑

u∈D

dF ′(u) =
∑

u∈D:dF ′(u)≥2

dF ′(u) + n′
1

(2)

≤ 2γt. (3)

Let u1, . . . , uk be the big vertices. By (3), the forest F ′′ = F −
⋃k

i=1 L(ui) has order at most 3γt. Let

D′′ be a set of vertices of F ′′ that is a subset of some γt-set D of F . For every i ∈ {1, . . . , k}, if ui has a

neighbor in D′′, then D contains no vertex from L(ui), otherwise, the set D contains exactly one vertex

from L(ui). This implies that each of the 2n(F
′′) subsets of V (F ′′) can be extended to a γt-set of F in at

most
k∏

i=1

ℓ(ui) many ways.

Since

(i) n(F ′′) ≤ 3γt,

(ii) the geometric mean is less or equal the arithmetic mean,

(iii)
k∑

i=1

ℓ(ui) = n− n(F ′′) ≤ n− γt ≤ n− γt

2 ,

(iv)

(

1 +
γt
2
−k

k

)k

≤ e
γt
2
−k ≤ e

γt
2 , and

(v)
γt
2

n−
γt
2

≤ 1,
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we obtain

♯γt(F ) ≤ 2n(F
′′)

k∏

i=1

ℓ(ui)

(i)

≤ 23γt

k∏

i=1

ℓ(ui)

(ii)

≤ 23γt

(

1

k

k∑

i=1

ℓ(ui)

)k

(iii)

≤ 23γt

(
n− γt

2

k

)k

= 23γt

(

1 +
γt

2 − k

k

)k ( γt

2

n− γt

2

) γt
2
−k (

n− γt

2
γt

2

) γt
2

(iv)

≤ 23γte
γt
2

( γt

2

n− γt

2

) γt
2
−k (

n− γt

2
γt

2

) γt
2

Claim 3, (v)

≤ 23γte
γt
2

(
n− γt

2
γt

2

) γt
2

=
(
8
√
e
)γt

(
n− γt

2
γt

2

) γt
2

,

which completes the proof.

There is clearly some room for lowering 8
√
e to a smaller constant. Since the dependence on γt would

still be exponential, we did not exploit this for the sake of simplicity. It would be interesting to see whether

the bound can be improved to
(

1 + o

(
n

γt

))(
n− γt

2
γt

2

) γt
2

.

Note that Theorem 2 implies

♯γt(T ) ≤
(
n− γt

2
γt

2

) γt
2
+o( n

γt
)
.

We proceed to our next proof.

Proof of Theorem 3: We proceed by induction on n. If n = 2, then F = K2, γt = 2, and ♯γt(F ) = 1 =
(1 +

√
2)0 = (1 +

√
2)n−γt . Now, let n ≥ 3.

Claim 1. If F contains a component T that is a star, then ♯γt(F ) ≤ (1 +
√
2)n−γt , with strict inequality

if T has order at least 3.

Proof of Claim 1: Suppose that F contains a component T that is a star. Thus, T = K1,t for some t ≥ 1.

The forest F ′ = F − V (T ) has order n′ = n − t − 1, no isolated vertex, and total domination number
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γ′
t = γt − 2. By induction, we obtain

♯γt(F ) = t · ♯γt(F ′) ≤ t(1 +
√
2)n

′−γ′

t = t(1 +
√
2)n−t−1−(γt−2)

= (1 +
√
2)n−γt(t(1 +

√
2)1−t) ≤ (1 +

√
2)n−γt ,

where we use t(1 +
√
2)1−t ≤ 1 for t = 1 and t ≥ 2. Furthermore, if t ≥ 2, then t(1 +

√
2)1−t < 1, in

which case ♯γt(F ) < (1 +
√
2)n−γt .

Claim 2. If F contains a component T of diameter 3, then ♯γt(F ) < (1 +
√
2)n−γt .

Proof of Claim 2: Suppose that F contains a component T of diameter 3. Note that T has a unique

minimum total dominating set. The forest F ′ = F − V (T ) has order n′ ≤ n− 4, no isolated vertex, and

total domination number γ′
t = γt − 2. By induction, we obtain

♯γt(F ) = ♯γt(F
′) ≤ (1 +

√
2)n

′−γ′

t ≤ (1 +
√
2)n−γt−2 < (1 +

√
2)n−γt .

By Claim 1 and Claim 2, we may assume that there is a component of F that has diameter at least 4,

for otherwise the desired result follows. Let T be such a component of F . Let uvwxy . . . r be a longest

path in T , and consider T as rooted in r. For a vertex z of T , let Vz be the set that contains z and all its

descendants.

Claim 3. If dF (w) ≥ 3, then ♯γt(F ) < (1 +
√
2)n−γt .

Proof of Claim 3: Suppose that dF (w) ≥ 3, which implies that w belongs to every γt-set of F , because

either w is a support vertex or w is the only neighbor of two support vertices, that is no leaf. Let v′ be a

child of w distinct from v. Let F ′ = F − Vv′ . If v′ is an endvertex, then F ′ has order n′ = n − 1, no

isolated vertex, and total domination number γ′
t = γt. By induction, we obtain

♯γt(F ) ≤ ♯γt(F
′) ≤ (1 +

√
2)n

′−γ′

t = (1 +
√
2)n−γt−1 < (1 +

√
2)n−γt .

If v′ is not an endvertex, then F ′ has order n′ ≤ n− 2, no isolated vertex, and total domination number

γ′
t = γt − 1. Note that if T is a minimum total dominating set of F , T − {v} is a total dominating set

of F ′, since v′ is a support vertex and v and w are part of every minimum total dominating set of F . By

induction, we obtain

♯γt(F ) ≤ ♯γt(F
′) ≤ (1 +

√
2)n

′−γ′

t ≤ (1 +
√
2)n−γt−1 < (1 +

√
2)n−γt .

In both cases, ♯γt(F ) < (1 +
√
2)n−γt .

By Claim 3, we may assume that dF (w) = 2, for otherwise the desired result holds.

Claim 4. If dF (v) ≥ 3, then ♯γt(F ) < (1 +
√
2)n−γt .

Proof of Claim 4: Suppose that ℓ = dF (v)− 1 ≥ 2. Let F ′ = F − Vw, F ′′ = F − (NF (v) \ {w}), and

F ′′′ = F − (Vw ∪ {x}). See Figure 2 for an illustration.
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v

w

x

y

ℓ

The forest F

x

y

The forest F ′

v

w

x

y

The forest F ′′

y

The forest F ′′′

Fig. 2: The important details of the forests F , F ′, F ′′ and F ′′′.

• There are at most ℓ · ♯γt(F ′) many γt-sets of F that contain v and a child of v but do not contain w.

Furthermore, if such a γt-set exists, then F ′ has order n′ = n− ℓ− 2, no isolated vertex, and total

domination number γ′
t = γt − 2.

• There are at most ♯γt(F
′′) many γt-sets of F that contain v, w, and x. Furthermore, if such a γt-set

exists, then F ′′ has order n′′ = n− ℓ, no isolated vertex, and total domination number γ′′
t = γt− 1.

• There are at most ♯γt(F
′′′) many γt-sets of F that contain both v and w but do not contain x.

Furthermore, if such a γt-set exists, then F ′′′ has order n′′′ = n − ℓ − 3, no isolated vertex, and

total domination number γ′′′
t = γt − 2.

Since all γt-sets of F are of one of the three considered types, we obtain, by induction,

♯γt(F ) ≤ ℓ · ♯γt(F ′) + ♯γt(F
′′) + ♯γt(F

′′′)

≤ ℓ(1 +
√
2)n−ℓ−2−(γt−2) + (1 +

√
2)n−ℓ−(γt−1) + (1 +

√
2)n−ℓ−3−(γt−2)

= (1 +
√
2)n−γt(1 +

√
2)−ℓ−1(ℓ(1 +

√
2) + (1 +

√
2)2 + 1)

< (1 +
√
2)n−γt ,

where we use ℓ(1 +
√
2) + (1 +

√
2)2 + 1 < (1 +

√
2)ℓ+1 for all ℓ ≥ 2.

By Claim 4, we may assume that dF (v) = 2, for otherwise the desired result holds.

Claim 5. If x is a support vertex, then ♯γt(F ) < (1 +
√
2)n−γt .

Proof of Claim 5: Suppose that x is a support vertex, which implies that v and x belong to every γt-set

of F . Let F ′ = F − Vw and F ′′ = F − (NF [v] ∪NF [x]).
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• There are at most ♯γt(F
′) many γt-sets of F that contain u but do not contain w. Furthermore, if

such a γt-set exists, then F ′ has order n′ = n− 3, no isolated vertex, and total domination number

γ′
t = γt − 2.

• There are at most ♯γt(F
′) many γt-sets of F that contain w and at least one other neighbour of x.

Furthermore, if such a γt-set exists, then F ′ has order n′ = n − 3, no isolated vertex, and total

domination number γ′
t = γt − 2.

• There are at most ♯γt(F
′′) many γt-sets of F that contain w and no other neighbour of x. Further-

more, if such a γt-set exists, then F ′′ has order n′′ ≤ n−5, no isolated vertex, and total domination

number γ′′
t = γt − 3.

Since all γt-sets of F are of one of the three considered types, we obtain, by induction,

♯γt(F ) ≤ 2♯γt(F
′) + ♯γt(F

′′) < 2(1 +
√
2)n−3−(γt−2) + (1 +

√
2)n−5−(γt−3)

= (1 +
√
2)n−γt(1 +

√
2)−2(2(1 +

√
2) + 1) = (1 +

√
2)n−γt ,

where we use 2(1 +
√
2) + 1 = (1 +

√
2)2. Note that in F ′ there is a component that contains a path of

length two, in particular not every component of F ′ is a K2.

By Claim 5, we may assume that x is not a support vertex, for otherwise the desired result holds.

Claim 6. If x has a child that is a support vertex, then ♯γt(F ) < (1 +
√
2)n−γt .

Proof of Claim 6: Suppose that x has a child w′ that is a support vertex. Clearly, the vertex w′ is distinct

from w and belongs to every γt-set of F . The forest F ′ = F − Vw has order n′ = n − 3, no isolated

vertex, and total domination number γ′
t = γt − 2. By induction, we obtain

♯γt(F ) = 2♯γt(F
′) ≤ 2(1 +

√
2)n−3−(γt−2) = (1 +

√
2)n−γt2(1 +

√
2)−1 < (1 +

√
2)n−γt ,

where we use 2 < (1 +
√
2).

By Claim 6, we may assume that no child of x is a support vertex, for otherwise the desired result holds.

Together with Claims 3 and 4, we may assume that the subforest of F induced by Vx arises from a star

K1,q for some q ≥ 1 by subdividing every edge twice. Let F ′ = F − Vx, F ′′ = F − (Vx ∪ {y}), and

F ′′′ = F − (Vx ∪NF [y]).

• There are at most 2q♯γt(F
′) many γt-sets of F that do not contain x. Furthermore, if such a γt-

set exists, then F ′ has order n′ = n − 3q − 1, no isolated vertex, and total domination number

γ′
t = γt − 2q.

• There are at most (2q − 1)♯γt(F
′′) many γt-sets of F that contain x but do not contain y. Fur-

thermore, if such a γt-set exists, then F ′′ has order n′′ = n − 3q − 2, no isolated vertex, and total

domination number γ′′
t = γt − 2q − 1.

• There are at most 2q♯γt(F
′′′) many γt-sets of F that contain both x and y. Furthermore, if such a

γt-set exists, then F ′′′ has order n′′′ ≤ n− 3q− 3, no isolated vertex, and total domination number

γ′′′
t = γt − 2q − 2.
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Since all γt-sets of F are of one of the three considered types, we obtain, by induction,

♯γt(F ) ≤ 2q♯γt(F
′) + (2q − 1)♯γt(F

′′) + 2q♯γt(F
′′′)

≤ 2q(1 +
√
2)n−3q−1−(γt−2q)

+(2q − 1)(1 +
√
2)n−3q−2−(γt−2q−1)

+2q(1 +
√
2)n−3q−3−(γt−2q−2)

= (1 +
√
2)n−γt(1 +

√
2)−q−1(2q + 2q − 1 + 2q)

< (1 +
√
2)n−γt ,

where we use 3 · 2q − 1 < (1 +
√
2)q+1 for all q ≥ 1. This completes the proof of Theorem 3.

We proceed to the proof of Theorem 4, which uses exactly the same approach as Theorem 3.

Proof of Theorem 4: By induction on n, we show that ♯γt(F ) ≤ βn, where β is the unique positive

real solution of the equation 2β + β3 + 1 = β5, that is, β ≈ 1.4865. If n = 2, then F = K2 and

♯γt(F ) = 1 < β2. Now, let n ≥ 3.

Claim 1. If F contains a component T that is a star, then ♯γt(F ) ≤ βn.

Proof of Claim 1: Suppose that F contains a component T that is a star. Thus, T = K1,t for some t ≥ 1.

The forest F ′ = F − V (T ) has order n′ = n − t − 1 and no isolated vertex. By induction, we obtain

♯γt(F ) = t · ♯γt(F ′) ≤ tβn−t−1 ≤ βn, where we use t ≤ βt+1.

Claim 2. If F contains a component T of diameter 3, then ♯γt(F ) ≤ βn.

Proof of Claim 2: Suppose that F contains a component T of diameter 3. The forest F ′ = F −V (T ) has

order n′ ≤ n− 4 and no isolated vertex. By induction, we obtain ♯γt(F ) = ♯γt(F
′) ≤ βn′

< βn.

By Claim 1 and Claim 2, we may assume that every component of F has diameter at least 4, for

otherwise the desired result follows. Let T be an arbitrary component of F . Let uvwxy . . . r be a longest

path in T , and consider T as rooted in r. For a vertex z of T , let Vz be the set that contains z and all its

descendants.

Claim 3. If dF (w) ≥ 3, then ♯γt(F ) ≤ βn.

Proof of Claim 3: Suppose that dF (w) ≥ 3, which implies that w belongs to every γt-set of F . Let v′

be a child of w distinct from v. The forest F ′ = F − Vv′ has order n′ < n and no isolated vertex. Since

♯γt(F ) ≤ ♯γt(F
′), we obtain, by induction, ♯γt(F ) ≤ ♯γt(F

′) ≤ βn′

< βn.

By Claim 3, we may assume that dF (w) = 2, for otherwise the desired result holds.

Claim 4. If dF (v) ≥ 3, then ♯γt(F ) ≤ βn.

Proof of Claim 4: Suppose that ℓ = dF (v) − 1 ≥ 2. Arguing exactly as in the proof of Claim 4 in the

proof of Theorem 3 using the forests F ′, F ′′, and F ′′′, we obtain, by induction,

♯γt(F ) ≤ ℓ · ♯γt(F ′) + ♯γt(F
′′) + ♯γt(F

′′′)

≤ ℓβn−ℓ−2 + βn−ℓ + βn−ℓ−3

= βnβ−ℓ−3
(
ℓβ + β3 + 1

)

≤ βn,
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where we use ℓβ+β3+1 ≤ βℓ+3 for all ℓ ≥ 2; in fact, this inequality is the reason for the specific choice

of β.

By Claim 4, we may assume that dF (v) = 2, for otherwise the desired result holds.

Claim 5. If x is a support vertex, then ♯γt(F ) ≤ βn.

Proof of Claim 5: Suppose that x is a support vertex. Arguing exactly as in the proof of Claim 5 in the

proof of Theorem 3 using the forests F ′ and F ′′, we obtain, by induction,

♯γt(F ) ≤ 2♯γt(F
′) + ♯γt(F

′′) ≤ 2βn−3 + βn−5 = βnβ−5(2β2 + 1) ≤ βn,

where we use 2β2 + 1 ≤ β5.

By Claim 5, we may assume that x is not a support vertex, for otherwise the desired result holds.

Claim 6. If x has a child that is a support vertex, then ♯γt(F ) ≤ βn.

Proof of Claim 6: Suppose that x has a child w′ that is a support vertex. Arguing exactly as in the proof

of Claim 6 in the proof of Theorem 3 using the forest F ′, we obtain, by induction,

♯γt(F ) = 2♯γt(F
′) ≤ 2βn−3 = βn2β−3 ≤ βn,

where we use 2 < β3.

Now, arguing exactly as at the end of the proof of Theorem 3 using the forests F ′, F ′′, and F ′′′, we

obtain, by induction,

♯γt(F ) ≤ 2q♯γt(F
′) + (2q − 1)♯γt(F

′′) + 2q♯γt(F
′′′)

≤ 2qβn−3q−1 + (2q − 1)βn−3q−2 + 2qβn−3q−3

= βnβ−3q−3
(
2qβ2 + (2q − 1)β + 2q

)

≤ βnβ−3q−32q
(
β2 + β + 1

)

≤ βn,

where we use 2q
(
β2 + β + 1

)
≤ β3q+3 for all q ≥ 1.
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