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Conjecture that any synchronizing automaton withtates has a reset word of lengih— 1) was made bﬁ:erny

in 1964. Notwithstanding the numerous attempts made bypwaresearchers this conjecture hasn’'t been definitively
proven yet. In this paper we study a random automaton thatnmgpked uniformly at random from the set of all
automata withn states andn(n) letters. We show that faf(n) > 18 1Inn any random automaton is synchronizing
with high probability. Form(n) > n®, 3 > 1/2 we also show that any random automaton with high probability
satisfies th€erny conjecture.

Keywords: Synchronizing DFA; Random DFA; Wormald’s Theoreéerny problem

Introduction

Let A = (@, %, ) be adeterministic finite automatofDFA), where@ denotes a state set, stands for
an input alphabet, andl: Q x X — @ is a transition function defining an action of the letter&ion Q.

A word w is said to be aeset wordfor DFA A if its action leaves4 in one particular state no matter what
state it starts at:d(q1, w) = d(q2, w) forall ¢1,q2 € Q. A DFA A is calledsynchronizingf it possesses
a reset word.

It is not too difficult to see that if an automaton withstates is synchronizing then there exists a reset
word of lengthn3 or shorter. It is not that easy, however, to see whether othi®tound is tight. In
1964éern§/ formulated a conjecture concerning an upper bourtdeofength of the shortest reset word
of a synchronizing DFA [4]: the length cannot be larger titan- 1)2. By now theéerny conjecture is
arguably the most long standing open problem in the combiizdtheory of finite automata. The best
upper bound has been obtained so fgnis— n)/6; it was proved by Pin [10] in 1983.

In fact, slowly synchronizing automatae. automata with the shortest reset word of ler@th?) are
known to be exceptional. For a long time the only infinite agdf such automata was the original one
proposed b)(v:ern)’/ [4]. The other substantially different ones [2] hamdy recently been constructed.

On the other hand, Higgins has shown that a compositi@nedndom mappings of a set of sizénto
itself with high probability(whp) is a mapping with an image of size (By “high probability” we mean
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that the probability tends to 1 with going to infinity.) In terms of automata, Higgins'’s resultane that
a random automaton with an alphabet of size larger thawhp has a reset word of leng#n. Indeed,
if we pick an automaton uniformly at random among all aut@mwith » states an@n letters then the
action of a word composed of all the letters is identical toapping composed &fn random mappings.

The problem of finding the shortest reset word for a givenmaton is both NP-hard [5] and co-NP-
hard [12], which dramatically limits a size of automata fblsfor numerical experiments. A limited
simulation that we conducted supposedly shows that a rarsdbomaton on 2-letter alphabet whp has a
reset word of a length sublinear with respect to the numbstatés.

The numerical experiment output combined with Higgins&uteoffers a new field of research: study
of the shortest reset word of random automata, ontbst probabléength of the shortest reset word, as
opposed to the classical problem of the upper bound; andstio put forward a hypothesis that the most
probable length should be much smaller than the upper bound.

Starting this new line of research we address the followingstjons.

e What size of an alphabet implies that almost all automata wie alphabet of this size are
synchronizing and what is the length of the shortest resed wothis case?

e What size of an alphabetimplies that almost all automata thie: alphabet of this size are synchro-
nizing and comply with th€erny conjecture?

In this paper we show th&n upper bound can be improved with regards to both of thesetignes
We show that if an alphabet size is greater th&in » then an automaton whp is synchronizing and if an
alphabet consists of more tha®/2*< letters for some positivethen it whp satisfies th&erny conjecture.

To get the latter bound we apply the Wormald’s theorem [13he Theorem allows one to reduce
the analysis of a stochastic process to a system of diffiefesquations. This method was originally
developed for the analysis of algorithms on random grapBjsdid was later used to proof the efficiency
of algorithms for the random Satisfiability problem [1].

Also as a byproduct of the latter bound we address the probfem epidemia spreading invertedly to
the edges of a directed graph corresponding to two mappirgsproblem of the epidemia spread along
a digraph of one random mapping was formulated and initistiidied by B. Gertbakh [6], and further
explored by J. Jaworski [8]. We show that in a digraph withesdgprresponding to two random mappings
if one individual is infected, then the whole populationivaié with constant probability infected, too.

The paper is organized as follows. The results of the worlstaed and discussed in Section 1. The
proofs of the two main theorems are stated in Section 1 arsgpted in Sections 2 and 3. The Wormald's
theorem and the other results used in the work are formuiatégpendix.

1 Main result

Consider a set of statésand an alphabet. Let us pick uniformly at random a transition functi®from
the sef{d : @ x ¥ — Q}. Aresulting triple(Q, X, §) defines @aandom deterministic finite automatoit
is important to note that a random automaton can be constiact follows: for each € @ and for each
a € ¥ we chooseg’ = é(g, a) uniformly at random fron@.

The following theorem states the lower bound of the alphsizetthat whp guarantees synchronizability
of the random automaton.
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Theorem1 Let A = (Q, X, 0) be a random automaton such th&| = n, || > 18lnn. ThenA is
synchronizing whp. Moreover, the length of the shortesitra®rd of A is whp less thaBn? Inn.

The theorem proof is presented in Section 2.

The natural question is whether the bound stated in Theorertight. From our point of view it is not
and we conjecture that even a 2-letter alphabet is suffibdestynchronizability of a random automaton.
At the moment, however, this question remains open.

The length of the shortest reset ward” In n is smaller than the one obtained by Pin, but is still larger
than Cernys To comply with thé:erny Conjecture we should enlarge our alphabet. Here ate 8ie
following theorem.

Theorem 2 Let A = (Q, %, §) be a random automaton such tHét| = n, |X| > n'/2*< for somee > 0.
ThenA is whp synchronizing. Moreover, the length of the shoresttrword of4 is whp at mostn — 1)?
letters.

The theorem proof is presented in Section 3.
We believe that the bound stated by tberny Conjecture is far from being tight for random autcemat
and according to numerical experiments the tight one shioilal sublinear one, as well.

2 The proof of Theorem 1

Letu, v be a pair of states of a random automatbe- (Q, 3, 0). Consider the process called&Uum
procedure. The aim of the process is to find a woret a; . .. a; such thatww = vw.

At the first step of the process we randomly choose a letter > and move fromu = ugp tou; = uga,
and fromv = vy to vy = vga;. If u; = vy then the process successfully finishes with= a1, else it
continues.

At the m-th step we have two states,,_; andv,,_;. Let us choose a letter,, that has not been
applied yet to any of the states,_; andv,,_;. If we cannot choose such a letter, the process fails. If we
can choose,,,, we make a move from,,,_1, v,,—1 t0 u,,, v, Similar to the first one. If1,, = v,, the
process finishes withy = ajas . .. a.,, €lse it continues. Obviously, at any step there are thresiple
outcomes for the process: it can fail, it can successfuligliimnd it can continue. So if it does not fail
then at some stepit finishes withw = a; . .. a; such thatww = vw.

A formal description of the procedure is presented at Fig. 1

Now let us pass over to the behavior of thedwum procedure.

Lemmal If the VAcuuM procedure is applied to a random automatdn= (@, X, ) and performs at
leastt steps then each of the patfiqy, ..., u;} and{vo,..., v} is indistinguishable from a random
walk path on a complete directed graph.

Proof: In other words, we should prove, that any is selected uniformly at random. Indeed, if we
choose a letted; at any stepg we will getu; = u;_;a; for a lettera; that has never been used at the state
u;_1. Random selection of a new letter for the transition fromdtage in a random automaton is equal to
uniformly-at-random selection of the transition reamlt Thus,u; (similarly v;) is selected uniformly at
random from@ and is history-independent.

The same proposition can be proved constructively. Bet (Q, E) be a complete directed graph;
{ug,...,us} and{vo,..., v} - random walk paths i of the lengtht. We construct fronB a random
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INPUT: A random automatol = (Q, X, 6) and a pair of states € Q,v € @
OuTPUT: failureor awordw = a; . ..ax such thabiw = vw
METHOD:
let Ay C X, weX”
initialize A, = oforallqe Q,w=¢
while uw # vw
if Auw UAy, # X then
choosea € ¥\ (Aupw U Avy)
else
return failure
let Apw = Auw U{a}, Avy = Ay U {a}
let w = wa
return w

Fig. 1: VAcuuM procedure

automatonAd with 2 paths performing first steps of the ¥Xcuum procedure. We label all edges i
with letters from> using the following algorithm: moving along the random atre label the edge from

u; (then similarlyv;) with an arbitrary letter never used in this vertex befohentwe label other edges
uniformly at random such that every vertex h&$ outgoing edges labelled with different letters. After
labelling we remove all unlabelled edges. The result is finden a random automaton and our paths
are precisely the firststeps of MA\cuum (while labelling the edges we were using the same logic). The
construction ofB from A consists in adding edges and erasing labels from the existins. Explanation

of the fact that{uy, ..., u;} and{vo,..., v} are the random walk paths & is completely equivalent

to one performed in the first proof of the lemma. |

Next we are bounding the probability of long executions ef¥acuum procedure.

Lemma 2 If the VACUUM procedure is applied to a paia, v of states of a random automatoh =
(Q, %, 9) such thai@| = n then for an arbitrary constank” the probability that this procedure makes at
least Kn Inn steps is less than= .

Proof: As we have already observed, at every step Knlnn the process either fails or continues:
statesu; andv, are selected independently and uniformly at random f€arithe probability thaty; and
v; will coincide equals}—L. Thus, the probability that the process will not terminatthim K Inn steps

is less thar(1 — %)K"mn <n K O

So far we have proved that the probability of the existen@elohg pathu;us . . . uy is rather low. Next,
another question arises: how often do these states repihdd jpath? In order to answer this question we
need to obtain a certain information on a random path in a ¢tetepigraph — it is formulated below.

Lemma3 Letqy,...,qxn1mn» fOr some constank” be a random walk path in a complete digraph of size

n then for any constant, L > K the probability that there is a vertexsuch thai{i | q; = x}| > Llnn
V2

is less tham!'~“5< > fora sufficiently largen.
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Proof: The expectation of{i | q; = x}| for bz € Q equals to: x Knlnn = K Inn. So the Chernoff
bound for the random variab|¢i | q; = x}| gives (see for example [9])

P(‘|{i|qi:x}|—Klnn‘>5Klnn) <2 Q)
Settingd = ZX we get required inequality
P (\|{¢ | qi = x}| - Klnn‘ > (L - K) lnn) < gt - @

The last inequality holds for a sufficiently large Applying the union bound to at € @ we get the
(L—‘K)Q

= and finish the proof. O

desired bouna!~
Now we are ready to prove the key lemma of the section.

Lemma4 Let A = (Q, %, §) be arandom automaton such tHg}| = n,|X| > 181nn then for any two
statesu € Q, v € @ theVAcuum procedure whp does not fail.

Proof: SettingK = 3 in Lemma 2 we conclude that thea@uum procedure will not terminate within
3nInn steps with the probability at most=3. It means that our procedure will finish with a waig or
with failure, with the probability at leadt — n=3.

SettingL = 18 in Lemma 3 and using Lemma 1 we conclude that the probabiiayu, or v, will
visit some state more tha® Inn times is less thafn —23/2,

If there arel8Inn letters in our alphabet and there is a statuch that{: | q; = x}| > 18Inn then
the process will fail at thg-th step when we come tofor (18nInn + 1)-th time.

There are more that8n Inn letters, thus the probability that the process will failés$ thar2n —23/2,

There are only two possibilities not to find the wardefore the3n In n-th step — to fail or to continue
the process after this step, therefore the probabilityafihtl the wordw before the stepn Inn is at most
n~3 4+ 2n~23/2 < 3p~3, That means that theA¢uum procedure finishes with the probability- 3n~3.
The Lemma is proved. O

Proof Proof of Theorem 1.: Our Theorem 1 is easily derived from Lemma 4. Applicationtef tinion
bound to all pairs of statas, v € @ finishes the synchronizability proof. The length of the tegerd that

is stated in the theorem is derived from the fact that eveoystates of the automaton may be synchronized
within 3n lnn steps. In order to synchronize the automaton we subsegusmithronizgn — 1) pairs.

|

3 The proof of Theorem 2

Let us define one more procedure on automata, entitied&EviA — this algorithm works for automata
with a 2-letter alphabet. It takes a random automadosa (Q, {a, b}, ) and a state € @ and returns a
set()- of all the states from whicls can be reached.

Let a stateg € @ have some illness and this illness can invertedly spreathaloe edges, i.e., if the
stateq is ill, then at a certain time all the statéa | ua = q vV ub = q} will be ill, too. In these terms the
aim of the procedure is to find all states that could be infbatken only state: is initially ill.
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INPUT: A random automatol = (Q, {a,b},d) and a stat& € Q
OuUTPUT: a setQ,, of all the states from whiclk can be reached
METHOD:
let Qo, @1, Q2 be the subsets @)
intia”zeQO =Q \ {X}7Q1 = {X}7 Q2=9
while Q; # &
choose q € @, arbitrary
lee N={uec@Qy|ua=q Vub=q}
let Qo =Qo\ N, Q1= (Q:1\{a})) UN,Q2=Q2U{q}
return Qs

Fig. 22 EPIDEMIA procedure

The algorithm works as follows. At each step of the algoritleintroduce 3 setd?)s is the set of all
states that are ill now and have already infected all theght®urs,Q; is the set of all states that are ill
but have not infected their neighbours y@t, is the set of all states that are still healthy.

At the first stepQo = Q \ {x},Q1 = {x}, Q2 = @. At every step of the process we pigke Q1
arbitrarily and consider a sé&¥ = {u € Qo | ua = q V ub = q} of all the healthy states that can
be infected bys. At this step we exclud& from @, and include it intoQ);— from now on the states
from this set are infected and may infect the new states dbtleaving steps. State is transferred to
Q>— from now on it is not dangerous for the healthy states. Atesasitep); becomes empty: all the
states that could be infected are infecte&gh is constructed. A formal description of the procedure is
presented on Fig. 2. A step of the procedure is illustratedign3.

We shall also need the following technical lemma.

Lemma5 For any lettera probability that there is a statq such that there are at least'/® statesq’ for
whichq’'a = qis at most—<"""" for some constant

Proof: It is known that for any:, m we have

()=

For a fixedq and a fixed sef/ of n!/® other states the probability that for all of them applicataf a
lettera leads toq is less than

1/5 _pl/s

n =e Inn (4)
There are less than

n — n1/5 I nl/5 nn
"(n1/5) < n(n! 71 5e) T < elirent (5)

ways to choose andM . By the union bound, the probability that such a&eand a state exist is less
thanef(%n1/5+o(l))lnn' O

Now we are ready to state the key lemma of this section.
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X I
Q1 b

Qo

Fig. 3: One step of the BEIDEMIA procedure.

Lemma6 If A = (Q,{a,b},d) is a random automaton over a two-letter alphabet and . Then
there is a constant, 0 < r < 1, such that for sufficiently large probability of the event "for any state
q € Q there is awordwq_x € {a,b}* satisfyingquq—.x = x” is greater thanr-.

Proof: We consider a state € (Q and compute the probability that it can be reached from agweht of
Q, i.e. the BPIDEMIA procedure withx on input returng)> = (. The computation may be divided into
3 parts:

e computation of the probability that the process will noti@rate in the very beginning and at least
0.1n steps will be made;

e computation of the probability that the process will notrerate in the middle betweeh1n-th
and0.9n-th steps;

e computation of the probability that the process will notstnat the end befor@)z| = n, i.e. if the
EPIDEMIA maked).9n steps, then it will make.

Let us start with the first probability. Execution of thelBeMIA procedure for a random automaton
can be viewed as a Galton-Watson process. That is, at evaya have a population of speci@s.
One of them (namely) dies, but possibly leaves some offsprings The question of interest for us is
the following: how many species will ever be born? We will tisis model for the first/10 steps of the
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procedure. Within this model at the stethe setV will be viewed as a set of all offsprings af Note
that if at the step < 0.1n we happened to hav€);| > 0.2n then the process will not terminate by the
step0.1n and we will have at the stejg);| > 0.1n. Otherwise at the stepwe havelQ2| + |Q1] < 0.3n
and consequently)o| > 0.7n. Each state € Qo with probability greater thai — - will satisfy q € N.
Therefore, expectation of the number of offspings at thp ste 0.1n is at Ieast% -0.7n + o(1) > 1.3.
According to Lemma 8 when an expected number of offspingsdeerthan 1 aftef).1n steps with at
least constant probability we have a number of species sitdedor some constart > 0.

Now consider the-th step of the EIDEMIA, wheret € (0.1n,0.9n). LetQ;(¢) be @, at thet-th step
and let us compute the expectation of the chand€gf, | Q1| and|Q2|:

|Qo(t)]

E([Qo(t+1)| —[Qo(t)]) = —-2x T 0] (6)
B(Qie+ DI~ Q) = ~1+2x 1200 @
E(|Q@+1)|-[Q@)) = 1 8

So the change of); at each step has constant expectation that can be expressetuaction of
Qo(t),Q1(t) and Q(t). Since, according to Lemma 5, a degree of any variable exceld with
an exponentially small probability we ha® (|Qo(t + 1) — Qo(t)| > n'/®) < n=3. We also observe
that the functions in the right hand side of the equationgantinuous and differentiable on the segment
[0.1,0.9]. Therefore, all conditions of the Wormald’s theorem are.met

Applying the Wormald’s theorem and denoting: by y we get the following system of differential
equations in variableg), ¢; andg, corresponding tdQo|, |Q1| and|Q2|, respectively.

dqo lqo(y)]
S — g WL ©)
dy 1 —|g2(y)|
dg lq0(¥)]
o= qox (10)
dy 1 — g2yl
dgo
22— 1 11
i (12)
or, shorter,
G = — 12
(jl - *1 + 12:1;2 (12)
Go=1

It's easy to see that at the stepf the EPIDEMIA process we havig)q(t)| = t. Thus we are interested
in the solution that hag;(y) = y. Substituting the expression fgr into the first equation we get a linear
differential equation and solve it fgp. Oncegy andqg, are knowny; can be found by integrating the right
hand side of the second equation. Thus, we get a parametegtzef solutions

0=U—-1% q=Q2c—y—y’c+d 2=y (13)
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with parameters andd. By definition ofg; ¢o + g1 + g2 = 1, soc + d = 1. Obviously,qo > 0, soc > 0.
Consequentlyp < ¢ < 1 and an analysis of the quadratic functipnshows us that; (0.9n) > 0 and
the process whp goes on for at le@dgin steps reaching)z| = 0.9n. Thus, we have shown that with
constant probability we have the vertexeachable fron.9n vertices.

We finish the proof by showing that whp there is no set of sizesgntially less tham /e without
outgoing edge. In terms of thePEDEMIA it means that if at some stdfo| < n/e, the next step is
possible, and finally we g&p> = Q.

Indeed, for an arbitrary set of size (m = n/c for some constant > e) the probability that there are

no outgoing edges equals to:/n)?™. There are :1 < (22)™ sets of sizen. Applying the union

bound we conclude that the probability that there is a seizefrs with no outgoing edges is less than
m\2m /rne\™ me\m™

) G =) e (14)

d

To start proving Theorem 2 we need one more lemma. In protiwg iuse Chebushev inequality that
holds for any random variabl& and any real numbér:

P (|X —E(X)| > kJ/V (X)) <1/k% (15)

Lemma7 Let A = (Q,%,6) be a random automaton, such th&| = n, |X| = n”, 3 > 0.5. Let
%1, %5 be an arbitrary pair of sets such that O 3, U X5, 51 Ny = &, || = |X2] = n® for areal
« satisfying0.5 < a < . Then, with high probability, a set of the triplés, b,q), a € ¥1,b € ¥5 such
that

qa=qb=q, (16)
contains more than?®—! elements.

Proof: Let us denote a sét; x X x @ by T and a random variable

{(a,b,q) € T | qa = qb = q}| (17)

by N. We shall use the Chebyshev inequality to prove ftiat 0 whp.
At first we compute the expectation df. The probability that a tripléa, b, q) € 31 x X2 x @Q satisfies
(16) equals: 2. There arex?**! triples thus we have

E(N) =n?**t!t x =2 = p2o~1, (18)
Now we compute an upper bound of the varianc&ofSince we have
V(N) =E(N?) - E(N)? (19)

we need an upper bound fE(NQ). We define a random variable

1, qa=qb=q,
A, = 20
(a:b,0) {0, otherwise (20)
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and compute

2

I
=

E (N?)

> Awba

(a,b,q)€T

= Z E (A(alvblﬂh) ’ A(a27b27q2))
{(ai,bi,qi)bi=1,2

= Z E (A(ahblach) : A(az,bz,qz)) +
{(ai,bi,qi)}i=1,2€T?,q17#q2

Z E (A(alabhcﬂ ’ A(aQaanq)) +
a1#az,b1#b2,q

> E(Awbiag) Aabea) T

a,b17#b2,q
Z E (A(a17baq) ’ A(ag,b,q)) +
ai1#az,b,q
Y E(Awba)  Awba)-
a,b,q

Considering tha>; | = |X2| = n%, |Q] = n we get

E (N?) = n'n(n—Dn~ "+ n**(n® = 1)’nn~* +20**(n®* — 1)nn™® + n**nn =2 (21)

and thus
E (N?) < plo2 pplo=3 L op3a=2 4 201 <E(N)® + o(n) + E(N). (22)
So we have
V(N)=E(N?) —E(N)’ <E(N) +o(n) < 2E(N). (23)
The Chebyshev inequality in applicationAd, using the fact thaV (N) < 2E (V) states that
P <|N7E(N)| > k\/W) <1/K% (24)

Settingk = VQE\%V) and remembering thaf (V) < 2E (N), E (N) = n?*~1 we apply the Chebyshev

inequality and get

P(IN—-E(N)|>0.5E(N)) <8/E(N) =o(1), (25)
which impliesP (N = 0) = o(1). O

Proof Proof of Theorem 2.: Let « be a real number satisfyirg5 < o < min(2/3,0.5 + ¢). Let us fix
some sets of letters; C X, ¥, C ¥ such thatX,| = |X2| = n*, %1 N Xy = &. Let L be the set of all
triples(a,b,x),a € 31,b € 3a,x € Q such thatka = x,xb = x. By Lemma 7 the seE whp contains
more tham?2*~! elements. For any triplgz, b, x) € L by Lemma 6 probability of everf(a, b, x) =“for
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any statey € @ there is awordvg—x € {a,b}* satisfyingwq—xq = x” is greater than some constant
Consequently expectation of the random variable

Z = {(a,b,x) | S(a,b,x) A (a,b,x) € L}|. (26)

is greater or equal ten2>~!. In order to apply Chebyshev inequality and to show that Whp 0 we
are going to prove that evenfia, b, x) are pairwise independent for triplés, b, x) € L. And to prove
that we show that whp for any pair of triplég;, b1,x1) € L, (as, ba,x2) € L we have

a1 75 as N\ by 75 bs. (27)

Note thata; # b; because&; N X, = @.

We compute the probability that there are distinct triples
(a1, b1,%1), (az, ba, x2) such that the statemeat # a2, b1 # by does not hold and yetu,,b1,x;1) €
L, (ag, bQ,XQ) € L, thatis

X101 = X1 A X1b1 = X1 N XoOg = X9 A\ X2b2 = X»o. (28)

If distinct triples (a1,b1,%1), (ag, b2, X2) do not satisfy condition
a1 # asg, by # bs they must satisfy one of the following:

1. X1 = X9, 01 = a2, bl 7’é b21
2. X1 = X9, Q1 75 as, bl = b21
- X1 7éx2,a1 =ag, b ?é b,

- X1 7§X2,G1 ?éa%bl = bo,

g A~ W

. X1 7£x2,a1 :a2,b1 :b2.

For each conditio@ from this list we compute the probability of event "There ingles (a1, b1, x1), (a2, ba, X2)
that satisfy conditio’ and equation (28)".

To pick a pair of triples satisfying condition 1. we need t@mebkez;,a;1,b; andb,. So there are
n-n®-(n?*—1) < n-n3* pairs of triples satisfying condition 1. For those the e@qraf28) takes form

X101 = X1 AX1bp = X1 Ax1b2 = %3 (29)

and its probability equals—3. Thus, the probability that there exists a pair of tripletsséging condition
1. and equation (28) can be bounded above by

3 x n=3 =nd? — 0. (30)

n—oo
Similar bounds for probabilities of conditiofls. . ., 5 equalnn3® x n=3, n?n3® x n=4, n?n3® x n =4,
n?n?> x n=4, respectively, and it is easy to see that they all tend to 0wihgoes to infinity. Thus whp
for any pair of distinct triplega, b1,x1) € L, (az,b2,x2) € L we haven; # as, by # bo.
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So far we have proven that whp| > n22~! and for any(a;, b1,x1) € L, (a2, b2,x2) € L we have
aj # as, by # by. The expectation of is at leastn?*~! and it is a sum of pairwise independent random

variables
1,8(a, b, x),
Istabx) = i 31
S(a.bx) {0, otherwise. (31)

Similarly to Lemma 7 we can apply Chebyshev inequality anucbade that whpZ > rn22~1 /2. Thus
whp Z > 0 and there is a tripléa, b,x) € L such that for any statg there is a wordvg_,x € {a,b}*
satisfyingwq—xq = x. Since(a,b,x) € L,wq—x € {a,b} we havexw = x. Then we consider a word
wg—x defined as follows: at the first step we take an arbitrary sjat@nd setwg_,x = wq,—x, at the
i-th step we take as@; one of the states remaining landed andwsgt,x = wg_xwq,—x. There are
n — 1 steps at most. By definitiom¢_.x is a reset word of the length at mast — 1)2. O

4 Future Work

The results presented in this paper set new upper boundsdarimber of letters required for a random
automata to be synchronizing whp and to satisfy Whpfﬂeeny conjecture. The bounds still do not
reach quantities that are to be expected considering teaeas of slowly synchronizing automata and the
experimental results. We believe thatrastate random automaton with an alphabet of size 2 is with high
probability synchronizing and has a reset word of the letegh tham.
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5 Appendix
5.1 Chernoff's Bound

Let B(p,n) be a random variable, that is the number of successesifiependent trials. 1p is the
probability of success in each trial, then the followinggoality is known as Chernoff Bound [11]

P<‘M—p’§5) SQe_%?. (32)

n

5.2 Galton-Watson Process

A simple Galton-Watson Process|[3] is a sequence of randoiables{ X ,,} which satisfies

Xn—l
=1

where¢ is some predefined random variable. Galton-Watson Procasstudied as a model of popula-
tion survival. X; represents the size of the initial population aXid is the size of the:-th generation.
Distribution of the random variablereflects the distribution of the number of offsprings of adividual.

The following statement was proven for the Galton-Watsarcess (see Proposition 1.2 and Corol-
lary 1.6 in [3])

Lemma8 Let
X

i=1

Then there is a constantsuch that? (X,, = 0) > r for all n.



108 Evgeny Skvortsov and Yulia Zaks

5.3 Wormald’'s Theorem

One of the instruments of our analysis is the Wormald’s teeof13] that allows one to replace a prob-
abilistic analysis of a combinatorial algorithm with an bysés of a deterministic system of differential
equations.

All random processes are discrete time random processeh.a3urocess is a probability spaede-
noted by(Qo, @1, . . .), where eacld); takes values in some s§t Consider a sequen€g,, n = 1,2, .. .,
of random processes. The element$)igfare sequences(n), ¢1(n), .. .) where eacly;(n) € S. For
the convenience’s sake the dependance @fill usually be dropped from the notation. Asymptotics,
denoted by the notatiom and O, are forn — oo, but uniform over all other variables. For a random
X, we sayX = o(f(n)) alwaysif max{z|P (X = z) # 0} = o(f(n)). An event occuralmost surely
if its probability in Q,, is 1 — o(1). We denote bys5+ the set of allh; = (qo, ..., q:), eachg € S for
t =0,1.... By H; we denote thénistory of the processes, that is thex (¢ + 1)-matrix with entries
Qi(j),0<i<t1<j<n.

A function f(us,...,u;) satisfies the.ipschitz conditioron D C R/ if a constantl, > 0 exists with
the property that /
[f(ur, . ug) = fon, o) S LY Juy — vy (35)
forall (uy,...,u;) and(vy, ..., v;)in D. =1

Theorem 3 (Wormald, [13]) Letk be fixed. Forl < ¢ < k, lety(®): St — Randf,: R**!' — R, such
that for some constar® and all ¢, |y“)| < Cn for all by € S* for all n. Suppose also that for some
functionm = m(n):

(i) for all i and uniformly over alt < m, P (|Yt(f)1 Y| > nt/5 | Ht) = o(n—?) always;

(i) forall ¢ and uniformly over alt < m,
B, =Y [ H) = folt/n. Y [n, oy fn) + o(1) always;

(i) for each/ the functionf, is continuous and satisfies a Lipschitz conditionloywhereD is some
bounded connected open set containing the intersectigitof™™ ..., 2(®) | + > 0} with some
neighborhood of (0, (1), ... 2(*)) | P (YO(Z) =20n1<0< k:) # 0 for somen}.

Then:
(@) For (0,21 ... 2(0) ¢ D the system of differential equations

d . L .
e _ fe(syz1,...,21), £ =1,... k, has a unique solution i® for z,: R — R passing through

20(0) = 29, 1 < ¢ < k, and which extends to points arbitrarily close to the bourydairD.
(b) Almost sureI)Yt“) = nzi(t/n) + o(n) uniformly for0 < ¢ < min{on, m} and for eact?, where

2¢(s) is the solution in (a) withe () = Yo(e)/n, ando = o(n) is the supremum of thoseto which
the solution can be extended.



