
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 12:4, 2010, 109–126

Grammatical compression:
compressed equivalence and other problems

Alberto Bertoni1† and Roberto Radicioni2‡

1Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy
2Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria, Italy

received 30th October 2009, revised 1st June 2010, accepted 11th October 2010.

In this work, we focus our attention to algorithmic solutions for problems where the instances are presented as
straight-line programs on a given algebra. In our exposition, we try to survey general results by presenting some
meaningful examples; moreover, where possible, we outline the proofs in order to give an insight of the methods and
the techniques.
We recall some recent results for the problem PosSLP, consisting of deciding if the integer defined by a straight-line
program on the ring Z is greater than zero; we discuss some implications in the areas of numerical analysis and
strategic games. Furthermore, we propose some methods for reducing Compressed Word Problem from an algebra
to another; reductions from trace monoids to the semiring of nonnegative integers are exhibited and polynomial
time algorithms for compressed equivalence in monoids related to Dyck reductions are shown. Finally, we consider
inclusion problems for context-free languages, proving how in some cases efficient algorithms for these problems
benefit from the ability to work with compressed data.

Keywords: grammatical compression, computational complexity, algebra representations

1 Introduction
Consider the problem SQRT-Sum of deciding whether

∑n
i=1

√
ai > t, for integers a1, . . . , an, t, and the

problem Incl(DA) of deciding whether L ⊆ DA for context-free languages L, where DA is the Dyck
language on the alphabet A∪A. Have these problems something in common? In this paper, we point out
that efficient algorithms for these problems take advantage from the ability to work with compressed data.

Compressing means to give a succinct description of data that can be reconstructed by means of a
decompression algorithm. Compression is ubiquitous. Signal coding benefits, among the others, from
Huffman or Lempel-Ziv compression algorithms; for translating analog into digital data, the signal is

†Email: bertoni@dsi.unimi.it
‡Partially supported by Project M.I.U.R. PRIN 2007–2009: Mathematical aspects and forthcoming applications of automata and

formal languages. Email: roberto.radicioni@uninsubria.it

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dm12:4ind.html

110 Alberto Bertoni and Roberto Radicioni

compressed by sampling and decompressed by the reconstruction filter; basic unsupervised learning algo-
rithms such Principal Component Analysis (PCA) can be interpreted in terms of optimal linear compres-
sion.

Probably, the most famous notion of compression is related to Kolmogorov complexity, a powerful
measure of nonrandomness of data (Kolmogorov (1968)). Roughly speaking, Kolmogorov complexity
K(D) is the length of the smallest program printingD. Unfortunately,K(D) is not computable, therefore,
in a practical context, the notion of “program printing D” should be limited in some sense. For example,
we can require that the program contains only assignment instructions. This restriction corresponds to
consider straight-line programs (SLP): in this case, compressing D means to give a short SLP computing
D. Such a representation is very flexible; for instance, in the case of strings, SLPs can be efficiently
converted in other compressed representations, such as Lempel-Ziv factorization, and vice versa (Rytter
(2003)).

In this work, we focus our attention to algorithmic solutions for problems where the instances are
presented as SLPs on a given algebra. In our exposition, we try to survey general results by presenting
some meaningful examples; moreover, where possible, we outline the proofs in order to give an insight of
the methods and the techniques.

In Section 2, we introduce SLPs as a sort of “shorten representations” of terms of an algebra: the term
can be viewed as a string and the SLP as a context-free grammar generating a language containing that
unique string.

Given an algebra A and a relation R ⊆ As, a natural problem requires to decide, given s terms
t1, . . . , ts respectively holding the elements a1, . . . , as ∈ A, whether R(a1, . . . , as) is true or not; we
call Relation(R,A) such a problem, and Compressed Relation(R,A) the analogous problem having as in-
stances SLPs Φ1, . . . ,Φs that are compressed versions of terms t1, . . . , ts. IfR is the identity relation =A,
we call Equivalence(A) and Compressed Equivalence(A) the problems Relation(=A,A) and Compressed
Relation(=A,A), respectively; in literature, such problems are also called Word Problem and Compressed
Word Problem. Other interesting instances of Compressed Relation are Compressed Substring Problem
(or Compressed Pattern Matching, Lifshits (2007)) and Compressed First-Order Unification (Gascón et al.
(2009)).

In Section 3, we observe that the gap between Compressed Equivalence(A) and Equivalence(A) can be
at most exponential depending on the considered algebra. We present some examples; for instance, in the
free monoid the gap is polynomial, while in the semiring of finite languages with union and product the
gap becomes provably exponential.

Compressed Relation(R,A) has been studied mostly for algebraic structures such as monoids or semir-
ings. In Section 4, we recall methods and results for the problem PosSLP, i.e. Compressed relation (R,A)
where A is the ring of integer numbers Z with the operations +,−,× and R is the relation “greater than
0”. This problem is proved to be in the counting hierarchy CH (Allender et al. (2008/09)); we discuss
some implications of this result in the area of numerical analysis and in that of strategic games. PosSLP
is a touchstone for many problems such as SQRT-Sum (Garey et al. (1976); Allender et al. (2008/09)) and
(Strong) ε-approximation of Nash equilibria (Nash (1951); Etessami and Yannakakis (2007)).

In Section 5, we discuss some methods useful to efficiently reduce Compressed Equivalence(A) to
Compressed Equivalence(B), for some given algebras A and B.

Compressed equivalence and other problems 111

First, we look for a notion of representation of an algebra into another preseving the complexity of Com-
pressed Equivalence. As an example, we show a representation of free partially commutative monoids
(Mazurkiewicz (1977); Cartier and Foata (1969)) in the semiring of integer numbers. A direct con-
sequence is that, given a trace monoid M , Compressed Equivalence(M) can be solved in randomized
polynomial time.

Secondly, we recall the notion of composition system (Gasieniec et al. (1996)), a flexible concept
applied to efficiently solve Compressed Equivalence(M) for certain monoids M . As an application, we
present a polynomial time algorithm for Compressed Equivalence(Dm), where Dm is the monoid with
2m generators obtained by Dyck reductions over m types of parentheses, a class of monoids studied in
the context of XML-grammars (Berstel and Boasson (2002)).

Finally, in Section 6, we observe that, in some cases, apparently uncorrelated problems can benefit
from the solution of Compressed Equivalence. For example, we consider the problem Incl(L0) of de-
ciding whether a context-free language is contained in a fixed language L0, and we prove that, in some
cases, it can be reduced to Compressed Equivalence(A) for some monoid A (Bertoni et al. (2009)). As a
consequence, we point out that Incl(DA) can be solved in polynomial time for every Dyck language DA.

2 Straight-line Programs and Grammatical Compression
Given a finite set Σ of operation symbols σ with fixed arity m(σ), a Σ-algebra A is a pair 〈A,ΣA〉,
where A (with an abuse of notation) is the underlying set and σA : Am(σ) −→ A are the operations. If
m(σ) = 0, then σA is called a constant. In the following, for the sake of simplicity, we will omit the
constants whenever the context is clear.

Fixed a set X of variables, t is a Σ-term with variables X (or a Σ-expression) of A if either t = x,
for some x ∈ X , or t = σt1 · · · tm(σ), for some σ ∈ Σ and some Σ-terms t1, . . . , tm(σ). Σ-expressions
can be seen as the words of the fixed point of the following language equation with unique (context-free)
solution

TΣ(X) = X ∪
⋃
σ∈Σ

σTΣ(X)m(σ).

The free Σ-algebra TΣ has as underlying set TΣ = TΣ(∅) and the operations are given by σA(t1, . . . , tm(σ)) =
σt1 · · · tm(σ); we usually refer to elements of TΣ as Σ-terms. It is well known that, for every Σ-algebraA,
there is a unique morphism τA : TΣ −→ A. Moreover, we can consider a Σ-expression e with variables
{x1, . . . , xg} as a function e : T gΣ −→ TΣ, defined as follows. Let t = (t1, . . . , tg) ∈ T gΣ. Then,

e(t) =

 e if e ∈ TΣ;
ti if e = xi;

σe1(t) · · · em(σ)(t) if e = σe1 · · · em(σ)

Given a Σ-algebra A, a straight-line program (SLP) Φ is a sequence of n assignments of the form Xi =
σA(Xj1 , . . . , Xjm(σ)

), for some σ ∈ Σ, 1 ≤ i ≤ n and j1, . . . , jm(σ) < i. We call n the size of Φ and
denote it by |Φ|. Every variable Xi is associated with evalA(Xi) ∈ A, inductively defined by:

evalA(Xi) = σA(evalA(Xj1), . . . , evalA(Xjm(σ)
)).

Finally, we set evalA(Φ) = evalA(Xn). In the following, we call Xn the output variable.

112 Alberto Bertoni and Roberto Radicioni

A SLP Φ is basically a DAG, but can also be viewed as a context-free grammar GΦ, where X1, . . . , Xn

are the metasymbols,Xi −→ σXj1 · · ·Xjm(σ)
are the production rules andXn is the axiom. GΦ generates

a unique string tΦ ∈ TΣ such that evalA(Φ) = τA(tΦ). The name grammatical compression derives from
the fact that Φ can be viewed as a context-free grammar generating a unique term representing tΦ.

In the case A is a monoid, a slightly different approach should be used. If the monoid A is generated
by the constants Σ = {c1, . . . , cl}, then the free monoid Σ∗ should be considered instead of the free
algebra. In this case, a SLP Φ turns out to be a Chomsky Normal Form grammar generating a unique
word tΦ ∈ Σ∗.

For both free algebras and free monoids a SLP Φ can be an exponentially succinct representation of tΦ.

Example 2.1 Consider the following SLP Φn on the semiring 〈N,+, ·, 0, 1〉:

X0 = 1; X1 = X0 +X0; X2 = X1 ·X1; . . . Xn = Xn−1 ·Xn−1.

It computes the number 22n−1

, representable in binary notation by 2n−1 + 1 bits. The term tΦn is the
unique word generated by the context-free grammar associated with Φn and the length of tΦn is 2n+1−1.

Example 2.2 Consider the SLP Φn on the free monoid {a, b}∗ given by the CNF grammar with the rules:

X0 −→ a, X1 −→ b, Xi −→ Xi−1Xi−2 for 1 < i ≤ n.

It generates the n-th Fibonacci’s word; in this case, |tΦn | ∼ 1√
5

(
1+
√

5
2

)n+1

.

Finally, we recall a construction due to Lohrey (Lohrey (2006)) useful for studying the computational
complexity of some compressed word problems.

Example 2.3 A well known NP-complete problem is SUBSETSUM (Garey and Johnson (1979)): given a
vector w of integers and a target integer t, decide if there is at least one selection of entries in w the sum
of which is t, i.e., there exists x ∈ {0, 1}n such that x · w = t.

Let I = (w, t) be an instance of SUBSETSUM, with w ∈ Nn and define s = 1 ·w, where 1 is the vector
with all entries 1. The Lohrey strings of I are the two words ξab(I), ξ′ab(I) in {a, b}∗ given by

ξab(I) = (as−tbat)2n ξ′ab(I) =
∏

x∈{0,1}n
b(x)=0..2n−1

(ax·wbas−x·w)

Informally, ξab(I) encodes t by 2n blocks of length s+1 made of a in all places except in the (t+1)-th.
On the other hand, ξ′ab(I) encodes the sums of all the possible subsets of w by setting b only in position
x · w in the x-th block, for every x ∈ {0, 1}n.

Lohrey strings admit an exponential compression rate (Lohrey (2006)):

Lemma 1 Let I = (w, t) be an instance of SUBSETSUM with w ∈ Nn. Then, the length of Lohrey
strings ξab(I), ξ′ab(I) is (s + 1)2n, where s = 1 · w and they can be represented by SLPs on the free
monoid {a, b}∗ of size nO(1).

The previous examples exhibit SLPs with exponential compression rate with respect to their corre-
sponding term. Now, we observe that the compression rate is at most exponential:

Compressed equivalence and other problems 113

Fact 1 Consider a Σ-algebra A and let m = max{m(σ)|σ ∈ Σ}. If m > 1, then |tΦ| = mO(|Φ|) for
every SLP Φ.

A natural problem is, given as input a Σ-term (a word) t in the Σ-algebra TΣ (resp. in the free monoid
Σ∗), to find a smallest SLP generating t. Even if the study of these problems is not a topic of this work,
we notice that the situation is much different in the case of free algebras and that of free monoids. In fact,
in the first case, the problem is solvable in polynomial time. In the second, the problem is NP-hard to
approximate within a constant (Lehman and Shelat (2002)), while it is approximable up to a logarithmic
factor (Rytter (2003)). In particular, this last result is obtained by constructively proving that, given a
word w, the size of its Lempel-Ziv factorization and the smallest size of a SLP generating w are equal up
to a logarithmic factor in the length of w.

3 Problems on Compressed Terms
The computation of a SLP Φ over an algebra A can be conceptually factorized in two steps: first, the
term tΦ in the free algebra is considered and then it is evaluated obtaining τA(tΦ). The first step leads
us to consider Φ as a sort of compressed representation of tΦ. In this context, some natural problems
on algebras can be presented either in standard or compressed version: in the first case, the input of the
problem is represented by terms, in the second by SLPs. Fixed a Σ-algebra A and a relation R ⊆ As, we
consider the problem:

PROBLEM: Compressed relation (R,A) (CompRel(R,A))
INSTANCE: s SLPs Φ1, . . . ,Φs on A;
QUESTION:is R(evalA(Φ1), . . . , evalA(Φs)) true?

This problem can be interpreted as the compressed version of the problem to decide, given s terms
t1, . . . , ts ∈ TΣ, whether R(τA(t1), . . . , τA(ts)) is true; we call Rel(R,A) such a problem.

A natural relation defined for every algebra A is the identity relation =A; we call Equivalence (A)
(Eq(A)) and Compressed Equivalence (A) (CompEq(A)) the problems Rel(=A,A) and CompRel(=A,A),
respectively; such problems are also called Word Problem and Compressed Word Problem in literature.
By Fact 1, the gap between the complexities of Eq(A) and CompEq(A) can be at most exponential,
and it depends on the considered algebra. In the following we present four examples. The first two
are borderline examples; in the first, the complexity gap is polynomial while in the second it becomes
provably exponential. The last two examples represent intermediate situations.

Example 3.1 Consider the monoid 〈Σ∗, ·〉 over the alphabet Σ. Then, both Eq(Σ∗) and CompEq(Σ∗) are
in P.

Eq(Σ∗) is trivially in P , while CompEq(Σ∗) has been proved to be in P by Plandowski (1994). In section
5, we show a randomized polynomial time algorithm for CompEq(Σ∗).

Example 3.2 Consider the algebra of finite languages FLΣ over the alphabet Σ = {0, 1} equipped with
the operations union ∪ and language product ·. Then, Eq(FLΣ) is coNP-complete, while CompEq(FLΣ)
is coNEXPTIME-complete.

This fact, quoted in Hunt III et al. (2000), is an easy consequence of a result of Meyer and Stockmeyer
(1972). First of all, we observe that the problem of deciding if w ∈ evalFLΣ

(Φ), where w ∈ Σ∗ and Φ
is a SLP over FLΣ, can be solved in polynomial time. Indeed, consider the new context-free grammar

114 Alberto Bertoni and Roberto Radicioni

G(Φ) = 〈Σ, Q, P, qn〉, whereQ = {q1, . . . , qn} contains the instruction variables of Φ and the production
rules in P are obtained from the instructions of Φ as follows: each instruction qi = 0/1 generates the rule
qi −→ 0/1, each instruction qi = qj∪qs generates the rules qi −→ qj/qs and each instruction qi = qj ·qs
generates the rule qi −→ qjqs. Clearly, w ∈ evalFLΣ(Φ)⇔ w ∈ LG(Φ), hence the membership problem
can be checked in polynomial time.

Now, we recall that evalFLΣ
(Φ1) 6= evalFLΣ

(Φ2) if and only if there exists a word w such that w ∈
evalFLΣ

(Φ1) ⇔ w /∈ evalFLΣ
(Φ2). Since |w| = 2O(max(|Φ1|,|Φ2|)), we conclude that CompEq(FLΣ)

∈ coNEXPTIME. With a similar argument, Eq(FLΣ) ∈ coNP.
The completeness of Eq(FLΣ) is obtained by reduction from 3-TAUT, i.e., the problem of deciding if a

disjunction F of 3-monomials is a tautology. Each 3-monomialM = xqii ∧x
qj
j ∧xqss , where s > j > i and

qi, qj , qs ∈ {0, 1}, can be associated with the language LM = Σi−1qiΣ
j−i−1qjΣ

s−j−i−1qsΣ
n−s−j−i−1

and the disjunction F of 3-monomials is associated with the languageLF =
⋃
M∈F LM , so thatLF = Σ∗

if and only if F is a tautology.
At the end, in order to prove the completeness of CompEq(FLΣ), consider the algebra

F2
Σ = 〈FLΣ, {∪, ·, ∅, 0, 1, ()2}〉,

where ()2 is the squaring operation (L)2 = L·L. The problem Eq(F2
Σ) has been proved to be coNEXPTIME-

complete in Meyer and Stockmeyer (1972). On the other hand, every term e of size n in F2
Σ can be easily

translated in a SLP Φe over FLΣ such that evalFLΣ
(Φe) = τF2

Σ
(e) and |Φe| = O(|e|).

Example 3.3 Consider the ring 〈Z,+, ·,−, 0, 1〉. Then, Eq(Z) ∈ P, while CompEq(Z) ∈ coRP.

This result is presented in Schönhage (1979). The main idea follows a classical fingerprint technique,
depicted by the following randomized algorithm that verifies if evalZ(Φ) = 0:

Input: a SLP Φ on 〈Z,+, ·,−, 0, 1〉 such that |Φ| = n.
h ← rand(2, n22n); // select h uniformly at random in {2, . . . , n22n}.
x ← evalZh(Φ); // evaluate Φ using arithmetic modulo h.
if x 6= 0 then s ← “not 0”;

else s ← “probably 0”;
Output: s.

Clearly, this algorithm works in randomized polynomial time and fails in the case evalZ(Φ) 6= 0 but
evalZ(Φ) mod h = 0. The probability of error can be obtained in the following way. Call a prime p
“good” if p does not divide evalZ(Φ): in this case, evalZ(Φ) mod p 6= 0. Let {b1, . . . , bk} be the set
of “not good” primes. Since 22n ≥ |evalZ(Φ)| ≥

∏k
j=1 bj ≥ 2k, there are at most 2n not good primes,

while in the range {2, . . . , n2 · 2n} there are Θ(n · 2n) primes. Hence, the probability of error is at most
(n22n −Θ(n2n) + 2n)/(n22n) = 1−Θ(1/n).

Example 3.4 Consider the monoid M presented by the rewrite system 〈{a, b, c, d}, R〉 where a, b, c, d
are the generators and ac −→ ε, bc −→ ε and ad −→ ε are the relators. Then, Eq(M) ∈ P, while
CompEq(M) is coNP-hard.

This result is proved in (Lohrey, 2006, Th. 5.2) as a consequence of the fact that the problem of deciding
if evalM (Φ) = ε is coNP-complete. We sketch the proof, which takes advantage of Lohrey strings (see

Compressed equivalence and other problems 115

Example 2.3). With every instance I of SUBSETSUM of size n, we associate the term T (I) on {a, b, c, d}∗
given by

T (I) = ξab(I)ξ′cd(I) = (as−tbat)2n
∏

x∈{0,1}n
b(x)=0..2n−1

(cx·wdcs−x·w)

By Lemma 1, T (I) can be represented by a SLP of polynomial size. Now, observe that:

τM (as−tbatct
′
dcs−t

′
) =

{
ε if t 6= t′,
bd if t = t′.

As a consequence:

τM (T (I)) = ε ⇐⇒ x · w 6= t ∀ x ∈ {0, 1}n ⇐⇒ I 6∈ SUBSETSUM.

4 CompRel(R,A): an example in the area of arithmetical SLPs
Often, a deep insight on a problem about SLPs on a fixed algebraic structure can give unexpected benefits
in other areas. In this section we recall methods and results concerning the problem PosSLP, together with
its relation with problems such as Square Root Sum (Garey et al. (1976)) and (Strong) ε-Approximation of
Nash equilibrium (Nash (1951); Etessami and Yannakakis (2007)). PosSLP is defined on the arithmetical
algebra 〈Z,+, ·,−〉:

PROBLEM: Positivity of SLP (PosSLP)
INSTANCE: a SLP Φ on 〈Z,+, ·,−〉;
QUESTION:is evalZ(Φ) > 0?

This apparently somewhat artificial problem is motivated in Allender et al. (2008/09) for better un-
derstanding the Blum-Shub-Smale model of computation (Blum et al. (1997)); moreover, it captures
important stability aspects of floating point numerical computation.

In the matter of its complexity, observe that for a SLP Φ of size n it holds −22n < evalR(Φ) < 22n ,
therefore:

(22n − 1 + evalR(Φ)) : 22n =

{
1 if evalR(Φ) > 0
0 otherwise

where : is the integer division. Since Eq(〈Z,+, ·,−, :〉) is PSPACE-complete (Bertoni et al. (1981)), we
conclude that PosSLP is in PSPACE. Is it possible to do something better? A nice result in Allender
et al. (2008/09) proves that PosSLP is in the counting hierarchy. The (polynomial) counting hierarchy
CH was introduced by Wagner (Wagner (1986)) with the goal of classifying the complexity of certain
combinatorial problems where counting is involved. Let PP be the class of languages L for which there
exists a polynomial time bounded probabilistic Turing machine M such that x ∈ L if and only if x is
accepted with probability larger that 1/2. Then, for every integer k, the k-th level Ck of the counting
hierarchy is defined by:

Ck+1 = PPCk and C0 = P

CH is the union of all classes Ck. CH is contained in PSPACE, moreover CH collapses to P if P=PP.

Fact 2 PosSLP is in CH.

116 Alberto Bertoni and Roberto Radicioni

Fact 2 is a consequence of methods and results developed on circuit theory in the 90s, particularly in
the area of neural networks with a fixed number of layers. In circuit theory, one is interested to state
whether there are (or not) efficient circuits for fixed functions. For instance, consider the Boolean function
majority:

majority(x1, . . . , xn) = 1 ⇐⇒
n∑
k=1

xk >
n

2

It has been proved in Razborov (1987) that majority is not in AC0, the class of Boolean functions com-
putable by polynomial size unbounded fan-in circuits with constant depth. It follows as a natural question
to study the power of circuits using majority as gates, by considering the class TC0 of Boolean functions
computable by polynomial size constant depth circuits containing constants, negation and majority.

In this area there has been a sequence of surprising results. For instance, in the case of iterated multi-
plication and division of integers, in Reif and Tate (1992) threshold circuits of polynomial size and depth
4 have been found. A further solution with strong uniformity requirements has been given in Hesse et al.
(2002), where DLOGTIME-uniform circuits performing these tasks are exhibited. The main tool is the
construction of a family Dn of DLOGTIME-uniform threshold circuits of polynomial size and constant
depth that, having as input the Chinese Remainder Representation of an integer z of n bits, compute the
binary representation of z. The Chinese Remainder Representation of an integer z of n bits is a sequence
z(p, k) of binary values indexed by (p, k), where z(p, k) is the k-th bit of the integer z mod p, for each
prime p < n2.

For proving that PosSLP is in CH, given a SLP Φ of size n, it needs to construct a SLP Ψ such that
evalZ(Ψ) = 22n + evalZ(Φ). Observe that, if z is a string of n bits representing in binary notation the
integer evalZ(Ψ), the first bit of z is 1 if and only if evalZ(Φ) > 0. A circuit En computing z using Ψ is
constructed as follows: gates of level 1 are labelled by (p, k) (p and k integers represented with 2n bits, p
prime) and (p, k) outputs the k-th bit of evalZ(Ψ) mod p; the other gates are those of Dn, i.e. majority
gates. Given a gate F of En, let u(Φ, F) be the output of F if En uses Ψ. Consider now:

Ld = {(Φ, F, b) | F is the label of a gate of level d, b = u(Φ, F)}

ClearlyL1 is inC1. Let d > 1. For a gate F at level d, since F is a majority gate, it holds that u(Φ, F) = 1
if and only if

Prob(u(Φ, F ′) = 1 | F ′ connected with F, hence F ′ is at level d− 1) > 1/2

Since the family Dn is DLOGTIME-uniform, given gates F and F ′ it can be verified in polynomial time
if F ′ is connected to F . Therefore, if Ld−1 is in Cd−1 then Ld is in Cd. Since En has a constant depth,
PosSLP is in CH.

This result has consequences for several problems in areas such as computational geometry, numerical
analysis and game theory. Here we recall the relations connecting PosSLP with Square Root Sum Problem
(SQRT-Sum) (Allender et al. (2008/09)) and (Strong) ε-Approximation of Nash Equilibrium (Etessami
and Yannakakis (2007)).

Compressed equivalence and other problems 117

PosSLP vs. SQRT-Sum
SQRT-Sum consists of deciding, given as input n + 1 positive integers a1, . . . , an, r, if

∑n
k=1

√
ak > r.

It appeared in Garey et al. (1976) in relation with Traveling Salesman Problem in the euclidean plane,
which was only shown to be NP-hard, because of the difficulty of checking if a given path has length
less than r. So, a natural still open question posed in Garey et al. (1976) is whether SQRT-Sum is in NP.
At present, the best classification of SQRT-Sum is the following, obtained in Allender et al. (2008/09)
combining arguments in Tiwari (1992):

Fact 3 SQRT-Sum is in CH.

We outline a proof based on a reduction to PosSLP via Canny’s gap theorem (Canny (1988a)):

Theorem 1 (Canny’s gap) Let x1, x2, . . . , xn be an arbitrary solution of an algebraic system of n equa-
tions and n unknowns, having a finite number of solutions, with maximal total degree d, with relative
integer coefficients smaller or equal to M in absolute value. Then, for all i = 1, . . . n, either xi = 0 or
|xi| > ε where ε = (3Md)−nd

n

.

Theorem 1 gives a way to numerically prove whether an algebraic number is zero, greater than zero or less
than zero: compute a (guaranteed) interval containing it, of width smaller than ε. As soon as the interval
does not contain zero, the number is clearly not zero and its sign is known. Otherwise, if the interval
contains zero and has width less than ε, then the number can only be zero.

By Theorem 1, we know that

n∑
k=1

√
ak − r = 0 (exclusive) or

∣∣∣∣∣
n∑
k=1

√
ak − r

∣∣∣∣∣ > max
1≤k≤n

(ak)−2Θ(n)

.

Hence, it suffices to approximate
√
ai up to δ = 1

3n max(ak)−2Θ(n)

, for 1 ≤ i ≤ n. To this end, consider
the following (concise representation of a) SLP on the rational field 〈Q,+, ·,−, /〉 approximating

√
ai by

the Newton Method:

X0 = d
√
aie; X1 = X0/2 + ai/(2X0); . . . ; Xk = Xk−1/2 + ai/(2Xk−1).

Since Newton Method guarantees a quadratic convergence, it holds

|Xk −
√
ai| ≤ 2−2O(k)

.

By choosing k so that 2−2O(k)

= δ, we approximate
√
ai with sufficient precision by a SLP of size

O(n+ log max(ai)). Therefore, we can decide
∑
i

√
ai − r > 0 by checking if a polynomial size SLP Φ

on 〈Q,+, ·,−, /〉 represents a number greater than r ∈ Q.
This last problem can be reduced to PosSLP. Indeed, recalling that every rational x is x = a/b for two

integers a and b, with every SLP Φ on 〈Q,+, ·,−, /〉 we can associate in polynomial time two SLPs Π
and ∆ on 〈Z,+, ·,−〉 such that evalQ(Φ) = evalZ(Π)/evalZ(∆).

Hence, the problem of checking evalQ(Φ) > r can be reduced to solve PosSLP for a SLP of size
O(|Φ|) representing (evalZ(Π)− r · evalZ(∆)) · evalZ(∆). By Fact 2, SQRT-Sum is in CH.

118 Alberto Bertoni and Roberto Radicioni

PosSLP vs. Nash Equilibrium
Nash equilibrium is a central concept in the area of strategic games, which model situations where several
actors are making decisions at the same time, knowing that the gain of each one depends on the decisions
of the others. In a n-player game, each player k ∈ {1, . . . , n} disposes of a finite set Sk of strategies
together with a payoff function uk : S −→ Q, where S =

∏
k Sk; the rational number uk(s1, . . . , sn)

represents the “gain” of player k if player j adopts the strategy sj , for all j. The players can adopt
probabilistic strategies, called mixed strategies: a mixed strategy of player k is a probability distribution
pk on Sk; the situation where each player k chooses mixed strategy pk is described by the strategy profile
p = (p1, . . . , pn). A profile p induces the probability distribution p̂ on S given by p̂(s1, . . . , sn) =
p1(s1) · . . . · pn(sn), and the expected payoff of player k on the profile p is:

Uk(p) = Ep̂[uk].

The target of each player is to maximize his expected payoff, but that depends on the choices of the others:
a Nash equilibrium is a profile p∗ where no player can increase its own payoff by unilaterally switching its
strategy. More formally, with (p, k, gk) we denote the profile obtained from p by substituting the strategy
pk of player k with the new strategy gk; then a Nash equilibrium is a profile p∗ such that, for every player
k and a mixed strategy gk, Uk(p∗) ≥ Uk(p∗, k, gk).

A central result presented in Nash (1951), previously proved by von Neumann and Morgenstern (1947)
in the case of sum-zero games, is:

Fact 4 Every finite game has a Nash Equilibrium.

This result is proved in a non constructive way, via Brower’s Theorem. Then, a non trivial task is to search
for a Nash equilibrium. Moreover, while for games with two players the Nash equilibria are vectors with
rational entries, as pointed out in Nash (1951) there are 3-player games with only irrational equilibria, that
we can only approximate. As a consequence, a very natural problem is:

PROBLEM: (Strong) ε-Approximation of a Nash Equilibrium (Nash ε-App)
INSTANCE: a finite game G with 3 players;
OUTPUT: a profile z s. t. ∃ Nash Equilibrium p∗ with ||z − p∗||∞ < ε,

where, for a vector x ∈ Rd, ||x||∞ = max |xi|.
Given a game G, a Nash Equilibrium is a fixed point z = FG(z) for a suitable function FG, obtained

as a composition of operations +, ·, / and max on the set of real numbers R. Fixed two vectors a and b,
the expression

∃z (z = FG(z) ∧ a ≤ z ≤ b)
can be easily transformed in a formula on the Existential Theory of Reals. Since this theory can be decided
in PSPACE (Canny (1988b)), Nash ε-App can be solved in PSPACE. Further improvements to this result
are limited from the fact that Nash ε-App is more difficult than PosSLP (Etessami and Yannakakis (2007)).

In particular, Etessami and Yannakakis give a construction that associates with every SLP Φ on 〈Z,+, ·,−〉
a 3-player game G that admits a unique Nash equilibrium p∗ such that the first strategy s1 of Player 3 ver-
ifies:

evalZ(Φ) > 0 =⇒ p∗3(s1) > 1− ε,
evalZ(Φ) ≤ 0 =⇒ p∗3(s1) = 0.

Compressed equivalence and other problems 119

That means that any nontrivial approximation of a Nash equilibrium is computationally difficult at least
as PosSLP:

Fact 5 PosSLP is polinomially reducible to Nash ε-App.

5 Algebra representations
In this section, we discuss some methods useful to reduce CompEq(A) to CompEq(B) efficiently, for
some given algebras A and B.

First, we look for a notion of representation of an algebra into another preseving the complexity of
CompEq. As an example, we show a representation of free partially commutative monoids (Mazurkiewicz
(1977); Cartier and Foata (1969)) in the semiring of integer numbers. A direct consequence is an efficient
randomized polynomial time algorithm to solve CompEq(M) for trace monoids M .

Secondly, we recall the notion of composition system (Gasieniec et al. (1996)), a flexible concept ap-
plied to efficiently solve CompEq(M) for certain monoidsM . As an application, we present a polynomial
time algorithm for CompEq(Dm), where Dm is the monoid with 2m generators obtained by Dyck reduc-
tions over m types of parentheses, a class of monoids studied in the context of XML-grammars (Berstel
and Boasson (2002)); a more general result can be found in Lohrey (2006).

5.1 Representations
Consider two algebras 〈A,ΣA〉 and 〈B,ΓB〉 and, for the sake of simplicity, let maxσ∈ΣA{m(σ)} = 2.

Definition 1 A representation of A in B is an injective function f = (f1, . . . , fs) : TΣ(X) −→ TΓ(X)s

for some s ∈ N, such that, for every operation σ ∈ Σ, there exist s Γ-expressions tσ,1, . . . , tσ,s ∈ TΓ(X)
satisfying

τB(fi(σxy)) = τB(tσ,i(f1(x), . . . , fs(x), f1(y), . . . , fs(y))), (1)

for every i, 1 ≤ i ≤ m.

We say that A is representable in B if there exists a representation of A in B.

Theorem 2 Let A and B be two algebras. If A is representable in B, then CompEq(A) is polynomial
time reducible to CompEq(B).

Proof: Consider a SLP Φ inA with variablesX1, . . . Xn. Recalling Eq. (1), we associate with Φ a SLP Ψ
inB with variables Yj,i, where 1 ≤ j ≤ n and 1 ≤ i ≤ s. More precisely, each instructionXk = σXlXm

in Φ corresponds to s macro-instructions in Ψ of the form

Yk,1 = tσ,1(Yl,1, . . . , Yl,s, Ym,1, . . . , Ym,s),

...
Yk,s = tσ,s(Yl,1, . . . , Yl,s, Ym,1, . . . , Ym,s).

With macro-instruction Yk,i = tσ,i(Yl,1, . . . , Yl,s, Ym,1, . . . , Ym,s) we intend the SLP straightforwardly
obtainable from tσ,i, interpreted as a derivation tree of the grammar TΓ(X). For example, from t(x, y, z) =
γ1(x, γ2(y, z)) we obtain the SLP whose instructions are X1 = γ2(y, z), X2 = γ1(x,X1).

120 Alberto Bertoni and Roberto Radicioni

The structure of Eq. (1) implies that, for all 1 ≤ i ≤ s:

τB(fi(tΦ)) = evalB(Yn,i).

Denote by Ψi the SLP obtained from Ψ considering Yn,i as output variable, so that evalB(Ψi) =
evalB(Yn,i). Given an instance (Φ,Φ′) of CompEq(A), we construct Ψi, . . . ,Ψs and Ψ′1, . . . ,Ψ

′
s. Injec-

tivity of f implies that evalA(Φ) = evalA(Φ′) if and only if∧
1≤i≤s

evalA(Ψi) = evalA(Ψ′i).

Since the sizes of the translated SLPs are polynomially bounded, the theorem is proved. 2

In the following, we show some examples of representations reducing, directly or undirectly, the prob-
lem CompEq on different monoids to the same problem on the semiring of natural numbers.

Free Monoid vs. Integer Numbers
Let Σ = {0, 1} and consider the free monoid Σ∗. Then, Σ∗ is representable in the semiring 〈N,+, ·〉 as
follows.

Consider a function b : Σ∗ −→ N where b(ε) = 0 and b(w) =
∑n−1
i=0 xi · 2i for w = x0x1 · · ·xn−1.

The representation of Σ∗ in N can be realized by the injective function f : Σ∗ −→ N2 defined as
f(w) = (f1(w), f2(w)), where f1(w) = b(w) and f2(w) = 2|w|. Indeed, f(ε) = (0, 1), f(0) = (0, 2)
and f(1) = (1, 2). Moreover,

f1(w · v) = f1(w) · f2(v) + f1(v) and f2(w · v) = f2(w) · f2(v).

As a consequence, recalling Example 3.3, CompEq(Σ∗) can be solved in polynomial time by a randomized
algorithm. It should be remarked that, thanks to Plandowski (1994), the same problem has been solved in
polynomial time deterministically (Example 3.1).

Trace Monoids vs. Free Monoids
Trace monoids were introduced in Mazurkiewicz (1977) for representing concurrent processes. They are
defined by undirected graphs 〈Σ, E〉 where Σ is the set of generators and E, called independence relation,
summarizes commutations ab = ba for (a, b) ∈ E. The trace monoid T (Σ, E) is the free partially
commutative monoid generated by 〈Σ, E〉 (Cartier and Foata (1969)) and its elements are called traces.

Every trace monoid T (Σ, E) is representable in the free monoid {0, 1}∗. Indeed, let < be a total order
on Σ and consider, for σ ∈ Σ, the morphism fσ(σ′) = 0 if σ = σ′ and fσ(σ′) = ε otherwise, and, for
(a, b) 6∈ E and a < b, fab(a) = 0, fab(b) = 1, fab(σ) = ε if σ 6= a or σ 6= b. In Duboc (1986) it is
proved that, for all traces t 6= t′, either there is σ ∈ Σ for which fσ(t) 6= fσ(t′) or there is (a, b) 6∈ E
such that fab(t) 6= fab(t

′). Hence, there is an injective morphism f : T (Σ, E) −→ ({0, 1}∗)s, where
s = |Σ| (|Σ|+ 1)/2− |E|, proving the reprentability of T (Σ, E) in {0, 1}∗.

The injectivity of f is proved by the fact that the fσ’s guarantee that traces with different Parikh vectors
have different images. Moreover, a swap of two adjacent noncommuting symbols in a trace t necessarily
causes a swap in at least one of the components fab (Duboc (1986)).

Therefore, recalling Example 3.1, also CompEq(T (Σ, E)) can be solved in polynomial time for every
trace monoid T (Σ, E).

Compressed equivalence and other problems 121

Finally, we observe that there are useful polynomial time reductions that are not representations. For
instance, consider the semiring 〈N[x],+, ·〉 of polynomials with nonnegative coefficients and the semiring
〈N,+, ·〉 of nonnegative integers. The function

p(x) 7−→ p(2p(1)+1)

is not a representation in the sense of Definition 1, but is useful for reducing CompEq(N[x]) to CompEq(N),
since, for polynomials with the same degree, p 6= q implies p(2p(1)+1) 6= q(2q(1)+1).

In a similar way, by considering the semiring 〈N[x, y],+, ·〉 of bivariate polynomials, CompEq(N[x, y])
can be reduced to CompEq(N). This fact gives the intuition that CompEq(〈Σ∗∗,	,�〉) can be solved
in randomized polynomial time (Berman et al. (1997)), where 〈Σ∗∗,	,�〉 is the algebra of bidimen-
sional words with horizontal and vertical concatenations. In fact, in Berman et al. (1997) is observed that
〈Σ∗∗,	,�〉 admits a natural representation in 〈N[x, y],+, ·〉.

It is a still open problem whether CompEq(〈Σ∗∗,	,�〉) is in P.

5.2 Composition systems
Let M be a monoid presented by a confluent and terminating semi-Thue system (see Book and Otto
(1993)) with generators in Σ. In this case, there is a function red : Σ∗ −→ Σ∗ that associates with
every w ∈ Σ∗ its normal form red(w) so that the monoid M is isomorphic to 〈red(Σ∗),�, ε〉, where
x� y = red(xy); a SLP Φ on M represents the word evalM (Φ) ∈ Σ∗.

Suppose now to enrich 〈Σ∗, ·, ε〉 with new operations O on Σ∗ so that CompEq(〈Σ∗, ·,O, ε〉) remains
in P. Then, a method for solving CompEq(M) is to consider the following two steps:

1. Find a function f that associates every SLP Φ on M with a SLP f(Φ) on an (even infinite) algebra
〈Σ∗, ·,O, ε〉 such that evalM (Φ) = evalΣ∗(f(Φ));

2. Given two SLPs Φ,Ψ on M , check evalΣ∗(f(Φ)) = evalΣ∗(f(Ψ)).

In fact, if the function f is polynomial time computable, then CompEq(M) is in P.
A good choice for O turned out to be the operations of prefix and suffix selection; that leads to the

concept of composition system (Gasieniec et al. (1996)).
Given the monoid 〈Σ∗, ·〉 and a word w ∈ Σ∗, let w[i] the symbol of w in position i, with 1 ≤ i ≤ |w|

and let w[i, j] be the factor w[i]w[i+ 1] · · ·w[j], where i ≤ j. A composition system is a SLP generating
words in Σ∗ where the instructions are the concatenation, the prefix and the suffix selection, denoted
respectively by

A = BC A = [i]B and A = B[i].

The semantics of the concatenation is obvious, while for the others it holds evalΣ∗([i]B) = w[1, i] and
evalΣ∗(B[i]) = w[|w| − i, |w|], with w = evalΣ∗(B).

In Gasieniec et al. (1996) it has been proved the following:

Lemma 2 The compressed equivalence problem for composition systems is solvable in polynomial time.

Such a result is used in Lohrey (2006) for proving that CompEq(M) is solvable in polynomial time if M
is presented by suitable semi-Thue systems (2-homogeneous confluent N-free rewrite systems). Here, we
present the particular (but important) case of Dyck reductions.

122 Alberto Bertoni and Roberto Radicioni

Dyck reductions
Given a finite alphabet Σ, let Σ = {σ | σ ∈ Σ} a disjoint copy of σ. Let 〈Σ∪Σ, R〉 be the rewrite system
where R = {σσ −→ ε | σ ∈ Σ}, so that w1 −→R w2 if and only if w1 = vσσu and w2 = vu, for some
σ ∈ Σ.

Now, let ∼R be the smallest congruence relation containing −→R and consider the quotient monoid
M = (Σ∪Σ)∗/ ∼R; notice that {w | w ∼R ε} is the Dyck language on Σ. Every element in (Σ∪Σ)∗ can
be mapped into a reduced word red(w) having no factors of the form σσ, for all σ ∈ Σ, by using rewrite
rules regardless of the order of their application. As a consequence, M is isomorphic to 〈red(Σ∗),�, ε〉,
where red(Σ∗) is the set of reduced words and

w � v = red(w · v) = w[1, |w| − i]v[i+ 1, |v|], (2)

being i the maximum integer for which red(w[|w|− i+ 1, |w|]v[1, i]) = ε. Let w′ be the string in Σ∗ such
that w′[j] = w[|w| − j], for j = 1, . . . , |w|. Then, i is the length of the maximum common prefix of w′

and v and can be computed in polynomial time by a binary search, recalling log |v| times the algorithm
proving Lemma 2 (see Gasieniec et al. (1996) for further details).

Every SLP on 〈red(M),�〉 can be inductively translated in a composition system by replacing each
instruction A = B � C with the sequence of instructions

B′ = [|evalM (B)|−i]B

C ′ = C [|evalM (C)|−i+1]

A = B′C ′

where i, defined as in Eq. (2), is obtained by doing the previously described binary search. Hence, Step 1
of the method can be computed in polynomial time.

Such a coding from SLPs on M to compositions systems, together with Lemma 2, also allows solving
Step 2 in polynomial time, proving:

Fact 6 CompEq(M) is in P.

6 CompEq and Inclusion Problem for CF languages
In this section, we point out the benefit of studying Compressed Equivalence Problem for efficiently
solving, in some cases, the inclusion problem of context-free languages. Given a context-free language
L0, the inclusion problem for L0 can be formulated as follows:

PROBLEM: Inclusion for L0 (Incl(L0))
INSTANCE: a CF grammar G;
QUESTION:does LG ⊆ L0?

This problem is known to be indecidable even for some deterministic languages L0 (see, for example,
Valiant (1973)) and the set of CF grammars generating languages L0 for which the problem is decidable
is not recursive (Hopcroft (1969)). However, if the language L0 is superdeterministic, then the problem
turns out to be decidable, even though the best algorithm proposed is doubly exponential (Greibach and
Friedman (1980)).

A natural problem is that of finding a class of languages L0 for which the problem is solvable in
polynomial time. To this matter, let M be a monoid presented by a terminating and confluent semi-Thue

Compressed equivalence and other problems 123

system; for every string w, let red(w) be its normal form (see Subsection 5.2) and let LM = red−1(ε).
If M is cancellative (i.e. zxw = zyw implies x = y, for every x, y, z, w ∈ M), then Incl(LM) and
CompEq(M) are related by the following (Bertoni et al. (2009)).

Theorem 3 Let M be a monoid presented by a terminating and confluent semi-Thue system. If M is
cancellative, then Incl(LM) is polynomially reducible to CompEq(M).

This result is based on the following property of cancellative monoids: let G be a CF grammar with
nonterminal symbols X0, . . . , Xn, where X0 is the axiom. If M is cancellative, then

LG ⊆ LM ⇐⇒ |red(LXi)| = 1, i = 0, . . . , n ∧ red(LX0
) = {ε}. (3)

In light of this, Incl(LM) can be decided in two steps.
First, associate with every Xi in G a SLP Φi, generating a word in LXi with derivation tree of minimal

length.
Second, for all the productionsXi → XjXk (resp. Xi → σ) inG, check if red(wi) = red(wjwk) (resp.

red(wi) = σ). These conditions are not verified on the words w1, but through the SLPs Φi representing
the words. If at least one of them is not true or red(w0) 6= ε, then the left side of the condition of (3) is
false.

In the matter of the computational complexity, the first step can be executed in polynomial time, while
the second requires to call a polynomial number of times an algorithm for CompEq(M).

Example 6.1 Consider the problem Incl(DA), where DA is the Dyck language with parenthesis A ∪ A.
Incl(DA) is solvable in polynomial time.

Such a problem is proved to be decidable by Knuth (1967) in the case |A| = 1; a doubly exponential algo-
rithm has been exhibited by Berstel and Boasson (2002) in the general case. Now, every Dyck language is
the preimage LM = red−1(ε) in a monoid M presented by Dyck reductions (see Subsection 5.2). Since,
by Fact 6, CompEq(M) is in P and it is easy to verify that M is cancellative, then Incl(DA) is solvable in
polynomial time.

References
E. Allender, W. Hesse, and D. A. Barrington. Uniform constant-depth threshold circuits for division and

iterated multiplication. J. Comput. System Sci., 65(4):695–716, 2002. Special issue on complexity,
2001 (Chicago, IL).

E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity of numerical
analysis. SIAM J. Comput., 38(5):1987–2006, 2008/09.

P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related problems. SIAM
J. Comput., 15(4):994–1003, 1986.

P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and W. Rytter. On the complexity of pattern
matching for highly compressed two-dimensional texts. In Combinatorial pattern matching (Aarhus,
1997), volume 1264 of Lecture Notes in Comput. Sci., pages 40–51. Springer, Berlin, 1997.

J. Berstel and L. Boasson. Formal properties of XML grammars and languages. Acta Inform., 38(9):
649–671, 2002.

124 Alberto Bertoni and Roberto Radicioni

A. Bertoni, G. Mauri, and N. Sabadini. A characterization of the class of functions computable in poly-
nomial time on random access machines. In Proceedings of the thirteenth annual ACM symposium on
Theory of computing, pages 168–176. ACM New York, NY, USA, 1981.

A. Bertoni, C. Choffrut, and R. Radicioni. The inclusion problem of context-free languages: Some
tractable cases. In V. Diekert and D. Nowotka, editors, Developments in language theory, volume
5583 of Lecture Notes in Comput. Sci., pages 103–112. Springer-Verlag, Berlin Heidelberg, 2009.

L. Blum, M. Shub, F. Cucker, and S. Smale. Complexity and real computation. Springer Verlag, 1997.

R. V. Book and F. Otto. String-rewriting systems. Springer-Verlag, London, UK, 1993.

J. Canny. The complexity of robot motion planning, volume 1987 of ACM Doctoral Dissertation Awards.
MIT Press, Cambridge, MA, 1988a.

J. Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 460–469. ACM New York, NY, USA, 1988b.

P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrangements. Lecture Notes in
Mathematics, No. 85. Springer-Verlag, Berlin, 1969.

C. Duboc. Commutations dans les monoı̈des libres: un cadre théorique pour l’étude du parallélisme.
PhD thesis, Université de Rouen, 1986.

K. Etessami and M. Yannakakis. On the Complexity of Nash Equilibria and Other Fixed Points (Extended
Abstract). In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
pages 113–123. IEEE Computer Society, 2007.

M. Garey, R. Graham, and D. Johnson. Some NP-complete geometric problems. In Proceedings of the
eighth annual ACM symposium on Theory of computing, pages 10–22. ACM New York, NY, USA,
1976.

M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman and Co., San Francisco,
Calif., 1979. A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sci-
ences.

A. Gascón, G. Godoy, and M. Schmidt-Schauß. Unification with singleton tree grammars. In Rewriting
Techniques and Applications, pages 365–379. Springer, 2009.

L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for lempel-ziv encoding.
Lecture Notes in Computer Science, 1097:392–403, 1996.

S. A. Greibach and E. P. Friedman. Superdeterministic PDAs: a subcase with a decidable inclusion
problem. J. Assoc. Comput. Mach., 27(4):675–700, 1980.

W. Hesse, E. Allender, and D. Mix Barrington. Uniform constant-depth threshold circuits for division and
iterated multiplication. Journal of Computer and System Sciences, 65(4):695–716, 2002.

J. E. Hopcroft. On the equivalence and containment problems for context-free languages. Math. Systems
Theory, 3:119–124, 1969.

Compressed equivalence and other problems 125

H. Hunt III, R. Stearns, and M. Marathe. Relational representability, local reductions, and the complexity
of generalized satisfiability problems. Manuscript, 2000.

D. E. Knuth. A characterization of parenthesis languages. Inform. Control, 11(3):269–289, 1967.

A. N. Kolmogorov. Three approaches to the quantitative definition of information. Internat. J. Comput.
Math., 2:157–168, 1968.

E. Lehman and A. Shelat. Approximation algorithms for grammar-based compression. In SODA ’02:
Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 205–212,
Philadelphia, PA, USA, 2002. Society for Industrial and Applied Mathematics.

Y. Lifshits. Processing compressed texts: A tractability border. In Combinatorial Pattern Matching,
volume 4580 of Lecture Notes in Comput. Sci., pages 228–240. Springer, Berlin, 2007.

M. Lohrey. Word problems and membership problems on compressed words. SIAM J. Comput., 35(5):
1210–1240, 2006.

A. Mazurkiewicz. Concurrent program schemes and their interpretation. Technical Report DAIMI PB-78,
Aarhus University, Comp. Science Depart., July 1977.

A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with squaring requires
exponential space. pages 125–129, Washington, DC, USA, 1972. IEEE Computer Society.

J. Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–295, 1951.

W. Plandowski. Testing equivalence of morphisms on context-free languages. In Algorithms—ESA ’94
(Utrecht), volume 855 of Lecture Notes in Comput. Sci., pages 460–470. Springer, Berlin, 1994.

A. Razborov. Lower bounds on the size of bounded depth networks over a complete basis with logical
addition. Mathematicheskie Zametki, 41(4):598–607, 1987.

J. H. Reif and S. R. Tate. On threshold circuits and polynomial computation. SIAM J. Comput., 21(5):
896–908, 1992.

W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based compression.
Theoret. Comput. Sci., 302(1-3):211–222, 2003.

A. Schönhage. On the power of random access machines. In Proceedings of the 6th Colloquium, on
Automata, Languages and Programming, pages 520–529. Springer-Verlag London, UK, 1979.

P. Tiwari. A problem that is easier to solve on the unit-cost algebraic RAM. J. Complexity, 8(4):393–397,
1992.

J. Torán. Complexity classes defined by counting quantifiers. J. Assoc. Comput. Mach., 38(3):753–774,
1991.

L. G. Valiant. Decision procedures for families of deterministic pushdown automata. PhD thesis, Univer-
sity of Warwick Coventry, UK, 1973.

126 Alberto Bertoni and Roberto Radicioni

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University
Press, Princeton, N. J., 1947. 2d ed.

K. W. Wagner. The complexity of combinatorial problems with succinct input representation. Acta
Inform., 23(3):325–356, 1986.

	Introduction
	Straight-line Programs and Grammatical Compression
	Problems on Compressed Terms
	CompRel(R,A): an example in the area of arithmetical SLPs
	Algebra representations
	Representations
	Composition systems

	CompEq and Inclusion Problem for CF languages

