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We describe a limiting distribution for the number of connected components in the subgraph of the discrete cube
induced by the satisfying assignments to a random 2-SAT formula. We show that, for the probability range where for-
mulas are likely to be satisfied, the random number of components converges weakly (in the number of variables) to
a distribution determined by a Poisson random variable. The number of satisfying assignments or solutions is known
to grow exponentially in the number of variables. Thus, our result implies that exponentially many solutions are orga-
nized into a stochastically bounded number of components. We also describe an application to biological evolution;
in particular, to a type of fitness landscape where satisfying assignments represent viable genotypes and connectivity
of genotypes is limited by single site mutations. The biological result is that, with probability approaching 1, each
viable genotype is connected by single site mutations to an exponential number of other viable genotypes while the
number of viable clusters is finite.
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1 Introduction
We are interested in the connective properties of a random subgraph of the discrete cubeQn. This random
subgraph QF is induced on those vertices that correspond to literal assignments that satisfy a 2-CNF
formula F = Fp that is randomly determined by letting each clause be included in F with probability p.
Let Nn be the number of connected components in QF .

Theorem 1 Let F , QF and Nn be randomly determined as above. If p = c/2n and c < 1 is constant,
then Nn converges weakly to N = 2Ψ where Ψ is a Poisson random variable with mean

λ = −1

2
(ln (1− c) + c) .

In particular, the probability that there is a unique cluster converges to

e−λ =
√

(1− c)ec.
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Our interest in the component structure is motived by the theory of fitness landscapes. The notion of
fitness landscapes was introduced by a theoretical evolutionary biologist, Sewall Wright in [17] (see also
[14, 11]). The study of fitness landscapes has proved extremely useful both in biology and well outside
of it. In the standard interpretation, a fitness landscape is a relationship between a set of genes (or a set of
quantitative characters) and a measure of fitness (e.g. viability, fertility, or mating success). In Wright’s
original formulation the set of genes (or quantitative characters) is the property of an individual. However,
the notion of fitness landscapes can be generalized to the level of a mating pair, or even a population of
individuals [11]. For further information one can look at the book Fitness Landscapes and the Origin of
Species [11] or the paper [13], which is a sort of biological sister to our discussion here.

It turns out that k-SAT is also of interest to physicists working in statistical mechanics and it is some-
what surprising that the component structure for random 2-SAT has not been examined previously because
the component structure for 3-SAT has been explored. Replica symmetry breaking is a method from sta-
tistical mechanics that is not strictly rigorous, but has been used to find two phase transitions in 3-SAT [5].
In one phase, all satisfying assignments form a single component in the n-cube. In the next, the number
of components is exponential in n. In the final phase, there are no satisfying assignments. Since our result
shows that the number of components is stochastically bounded for 2-SAT, it seems that the structures are
quite different for 2-SAT and 3-SAT.

We organize the remainder as follows. In Section 2 we introduce notation and provide the necessary
background and results in both 2-SAT and fitness landscapes. We also describe the connection between
the two topics. Section 3 pertains to the number of clusters and contains the proof of our result.

2 Background

2.1 Fitness Landscapes

The particular model of fitness landscapes that we consider here begins with an idealized collection of
all genotypes that are haploid and diallelic at n loci. A haploid organism is one for which there is only
one copy of each chromosome. Alleles are the potential versions of a gene at a specified locus. In our
model, for any specified n loci, there exists a list L of all the unordered pairs of strictly distinct alleles
that are incompatible. Each genotype for these n loci is viable if none of its allele pairs is incompatible
and inviable otherwise. Each list L is an instance of a fitness landscape on the given genotype space.

We are primarily interested in two questions relating to a given list L: how many viable genotypes are
there and how well connected are they through single locus mutations? With regards to connectivity, we
say that two genotypes are in the same cluster if and only if they are connected by a path of single locus
mutations through viable genotypes. Thus, each cluster of viable genotypes corresponds to a collection
of genotypes which can each evolve into any other genotype in the cluster without passing through an
inviable genotype and without altering two or more alleles simultaneously. Since there are n loci and
two alleles at each locus, our genotype space is in bijection with the set of binary strings of length n
or the vertices of the discrete cube Qn. In addition, since the only allowed mutations are single locus
mutations (which are equivalent to bit flips) we can represent these mutations by edges in Qn. The viable
genotypes and mutations between them form an induced subgraph ofQn and the clusters are the connected
components.
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2.2 2-SAT

We begin with n Boolean variables ξ1, . . . , ξn. For each 1 ≤ i ≤ n, the two truth values of ξi are referred
to as the positive literal and the negative literal of ξi. We will be using a non-standard notation to refer
to these literals. We let 0 be the negative literal and 1 be the positive literal and then put the index in the
subscript, i.e., for 1 ≤ i ≤ n

0i is the negative literal of ξi
1i is the positive literal of ξi

The negation of any literal x is denoted x. Thus, 0i = 1i and 1i = 0i. Literals of distinct variables are
said to be strictly distinct. An assignment of n strictly distinct literals to n Boolean variables is referred
to as a truth assignment to the n variables.

A 2-clause c = x ∨ y is the disjunction of two literals x and y. Generally these literals need not be
distinct, but here we assume x and y are strictly distinct. Thus, there are

22

(
n

2

)
= 2n(n− 1)

possible 2-clauses. Suppose we have some number m ≥ 0 of 2-clauses c1, . . . , cm. Then

F = c1 ∧ . . . ∧ cm

is a 2-SAT formula. Again, we assume that the clauses are distinct. If there is some literal assignment to
the n variables for which the formula F is TRUE, then it is said to be satisfied or SAT. Determining if a
formula is satisfiable is known as the 2-SAT problem.

The 2-SAT problem is the simplest of the k-SAT problems. For any k ≥ 2, a k-SAT formula is the
conjunction of m disjunctions where the number of literals per disjunction is k. The k-SAT problem, like
the 2-SAT problem, is to determine whether or not a given formula is satisfiable. Of course, one can con-
sider other types of satisfiability problems as well. Satisfiability problems in general have been important
in theoretical computer science since 1971, when Cook established that they are NP-complete [9]. The
most studied type of satisfaction problem is k-SAT because most other models were proven to generate
easy-to-satisy formulas. The 2-SAT problem, unlike k-SAT problems for k > 2, is not NP-complete. In
fact, solutions can be found in linear time [3].

2.3 2-SAT as a Fitness Landscape

Let each Boolean variable ξi be associated with a genetic locus i and let the literals 0i and 1i represent
the two alleles at that locus. Also, let us write that xy is an incompatibility if the alleles x and y are
incompatible. Then, notice that if a formula F contains the clause x ∨ y then no satisfying assignment to
n variables contains both x and y. Mapping each clause x ∨ y to the corresponding incompatibility xy
leads to a bijection between the set of 2-SAT formulas and the set of lists of incompatibilities. It follows
that if L is a list of incompatibilities and F is the 2-SAT formula with the corresponding clauses, then a
genotype with no allele pairs on L is associated with a literal assignment that satisfies the formula F and
vice versa. Consequently, we can let F refer to either the formula or the list of incompatibilities without
distinction and we can think of the biological questions in terms of 2-SAT or the other way around.
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2.4 Random 2-SAT and Results
Determining the probability that a randomly chosen formula F is satisfiable is a random 2-SAT prob-
lem. Throughout this paper, F is chosen by letting each possible clause be included independently with
probability

p =
c

2n
.

where c > 0. In general, c may depend on n, but all results stated here hold only for constant c. The
reason p is written as c/2n is that there is a phase transition from satisfiable to unsatisfiable where the
expected number of clauses is asymptotically equivalent to the number of literals 2n.

Theorem 2 Let ε > 0 be constant and F be a formula chosen randomly as described above. Then the
following statements hold with probability approaching 1 as n tends to infinity.

• If c ≥ 1 + ε then F is not satisfiable.

• If c ≤ 1− ε then F is satisfiable.

This is the fundamental result for random 2-SAT and was proved independently by three different groups
around 1992 [8, 10, 12]. The model examined in these papers is actually slightly different, but is asymp-
totically equivalent to ours in that both exhibit the same phase transition at equivalent critical values. This
equivalence and the best current results are described in [7], where ε > 0 is allowed to vary with n and
the size of the finite scaling window is described.

We are also interested in the number of satisfying assignments in the SAT phase. The following result
is proved in [13].

Theorem 3 The number of satisfying assignments to a satisfiable 2-SAT formula is at least

exp((e−2c + ce−4c) log 2− δ)n)

where c < 1 and δ > 0 are constants.

And now for the context of random 2-SAT. Random satisfiability problems became popular as a way
to study the hardness of “typical” formulas. A particularly interesting fact about random k-SAT problems
is that all random k-SAT problems undergo a phase transition similar to the transition for 2-SAT. More
on this can be found in [1], which is a nice paper on both the latest research on k-SAT and some general
satisfiability context.

2.5 Digraphs

2.5.1 The Standard Digraph for 2-SAT
Every 2-SAT formula F can be associated to a directed graph DF as defined by Aspvall et al [3]. The
proofs of Theorem 2 and the remainder of our discussion here are based on this digraph.

• The vertex set of DF is the set of literals {01, . . . , 0n, 11, . . . , 1n}.

• For each clause x ∨ y in F the directed edges x→ y and y → x are included in DF .
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To clarify this definition, consider the clause x ∨ y: a literal assignment including x must include y to be
satisfying and an assignment with literal y must have x. Thus, the two edges in the definition correspond
to the two implications naturally associated with the clause x ∨ y: x⇒ y and y ⇒ x.

If there is a directed path from x to y in DF it is denoted by x  y. Notice that this path is in DF if
and only if the path y  x is also in DF . Also, like the edges of DF , these paths do correspond to logical
implications corresponding to the satisfiability of F . The set of literals and edges that can be reached from
x is referred to as the out-graph D+

F (x) and the literal set of D+
F is denoted

L+(x) = L+
F (x) = {y : x y}.

These are the literals that must be present in any satisfying assignment with literal x. Of course, an
assignment may have all the literals in L+(x) and yet still not be satisfying due to an unrelated clause. On
the other hand, those literals that require x to be present in any satisfying assignment are denoted

L−(x) = L−F (x) = {y : y  x}.

and the corresponding graph is called the in-graph of x and denoted D−(x).
We say that two vertices x and y in a digraph are weakly connected if there is an undirected path from x

to y in the digraph, i.e., x and y are weakly connected in the digraph if they are connected in the undirected
(multi)graph that is formed by replacing directed edges with undirected edges. The components of this
undirected graph formed from DF are called the weak components of DF . Notice that x and y may be in
the same weak component without having a directed path from x to y or from y to x.

Suppose that y ∈ L+
F (x) ∩ L−F (x), so x  y and y  x. In this case x and y are said to be strongly

connected. Consider the set of literals

CF (x) = {y : x y  x}

that are strongly connected to x. The subgraph of DF induced by these literals is a strongly connected
component. We will refer to both the strongly connected component and its set of literals as the strong
component of x. We follow the convention that x  x for every vertex x ∈ DF so that every vertex is
a member of a strong component and CF (x) is well defined for every literal and the set of all 2n literals
can be partitioned into strong components of DF . When a strong component consists of a single literal
we will say that the strong component is trivial. Otherwise the strong component is considered to be
nontrivial. The set of all strong components can be partially ordered. Let

CF (x) ≤ CF (y) if x y,

which also implies that x′  y′ for any x′ ∈ L−F (x) ⊇ CF (x) and y′ ∈ L+
F (y) ⊇ CF (y).

For any set of literals M , we define

M = {y : y ∈M}.

When M ∩M = ∅, we say that M and M are complementary. Notice that if y ∈ CF (x), then y ∈ CF (x)
so CF (x) = CF (x) for every literal x. We also see that

CF (x) ∩ CF (x) 6= ∅ ⇐⇒ CF (x) = CF (x).
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If there is a literal x such that CF (x) = CF (x), then there are literals y, z /∈ {x, x} (not necessarily
distinct) such that

x y  x z  x

and we say that x (and each y ∈ CF (x)) is on a contradictory cycle inDF . Notice that this cycle need not
be simple (have the same number of literals as edges). Since the literal x depends upon its complement x
to be satisfying and vice versa, neither literal can be assigned to the corresponding variable and there are
no satisfying assignments. On the other hand, it can be shown that if there are no contradictory cycles,
then there is at least one satisfying assignment (see [7] for example). This is perhaps the most fundamental
result in the study of 2-SAT.

Theorem 4 A formula F is satisfiable if and only if there is no contradictory cycle in DF .

2.5.2 The Digraph of the Partial Ordering of Strong Components OF

Since a formula F is satisfiable exactly when there is no literal x such that CF (x) = CF (x), we see
that having a satisfiable formula is equivalent to having every strong component of the digraph being
a member of a complementary pair {CF (x), CF (x)}. It follows that, given any satisfiable formula F
and any strong component C of DF , a necessary (but not sufficient) condition for an assignment to
be satisfying is that it must have either have all the literals of C or else all of the literals of C. This
means that, while there are 2|C| potentially satisfying (partial) assignments to the variables of C, we
know that there are actually only two possible combinations of the literals on these variables that might
correspond to satisfying assignments. To indicate the assignment of all literals in C (or C) we will simply
state that we have assigned C (or C). Now suppose that there are s complementary strong component
pairs determined by a satisfiable formula F , and {C1, C1} . . . {Cs, Cs} is a listing of these. Then every
satisfying assignment must satisfy

(C1 ∨ C1) ∧ . . . ∧ (Cs ∨ Cs). (1)

It follows that there are no more than 2s assignments that satisfy F . In this manner, it makes sense to
think of complementary strong components as a tool for reducing the dimension of the solution space.

Continuing in this vein, we find it helpful to consider the directed graph corresponding to the partial
order on the strong components of DF , which we will denote by OF . The vertex set of OF is the set
of strong components of DF and there are edges X → Y in OF exactly when X and Y are strong
components of DF such that there exist literals x in X and y in Y such that x → y is an edge of DF .
Thus the edges of OF correspond to implications that are represented in DF . Moreover, the implications
corresponding to OF in conjunction with the statement (1) form a statement that is logically equivalent
to F . In much of Section 3 we will effectively ignore the internal structure of the strong components that
determines (1) and focus our attention on the ordering of the strong components represented in OF .

We will relax our language a bit and write that a collection of strong components C = {C1, . . . , Ci}
is a partial assignment to indicate that all the literals in ∪iCi have been assigned. Similarly, we will use
L+(C) to refer to L+(∪iCi), and so on. Given two partial assignments C and D, we notice that C ∪D is a
partial assignment without contradiction if and only if L+(C)∪L+(D) is strictly distinct. A related result
is

Lemma 5 If X is a collection of strong components such that L+(X ) = X and Y is any collection of
strong components that is strictly distinct from X , then L+(Y) ∩ X = ∅. Thus, under the given premises,
X ∪ Y can be assigned without contradiction if and only if L+(Y) is strictly distinct.
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Proof: If this were not the case, then there are strong components X ∈ X and Y ∈ Y such that Y ≤ X ,
which is equivalent to X ≤ Y . Since X = L+(X ) this means that Y ∈ X ; which means that X and Y
were not strictly distinct. 2 This result allows us to make the assignment X

for any collection of strong components that satisfies X = L+(X ) and then consider partial assignments
to the remaining variables without consideration of the variables of X .

Clearly, we are interested in the structure of the partial order OF . A chain is a totally ordered subset
of a partially ordered set, which means that any two elements in the chain are comparable in order. An
antichain is a subset A of a partially ordered set such that any two elements in A are incomparable. A
maximal (anti)chain is an (anti)chain that is not a proper subset of any other (anti)chain. A maximum
(anti)chain is an (anti)chain that has cardinality at least as large as every other (anti)chain. The height of
a partial order is the cardinality of a maximum chain. The width of a partial order is the cardinality of a
maximum antichain. We will use the term complementary antichains to refer to a pair {A,A} where A
is a strictly distinct collection of strong components where each element in A is incomparable to every
other element in A ∪ A. We will refer to the cardinality of a maximum complementary antichain as the
complementary width of OF .

Lemma 6 Suppose F is satisfiable. If {A,A} is a pair of complementary antichains in OF where A =
{C1, . . . , Cl}, and X = {X1, . . . , Xl} is any partial assignment where Xi ∈ {Ci, Ci} for 1 ≤ i ≤ l,
then there exists a satisfying assignment containing X .

Proof: Notice that L+(X ) is strictly distinct. Indeed, if not, then there is a component Z such that there
exist Xi and Xj from X such that Xi ≤ Z and Xj ≤ Z. And so we have Z ≤ Xi, which gives us
Xj ≤ Xi. Since this contradicts the complementary nature of A, the outgraph is strictly distinct and we
can select all the literals of L+(X ) for a partial assignment A that is without contradictions. Notice that
A = L+(A) = L+(X ), so A = L−(A). Thus, once we have selected A, we can not choose a strong
component Y from L−(A) (because we have already chosen the complements). This means that the
choice between any strong component pair {Y, Y } beyond A can be made independent of A. Thus, we
can simply invoke the satisfiability of F to be sure that there exists some satisfying assignment containing
A which of course contains X . 2

Corollary 7 Suppose F is satisfiable. If k is the complementary width of OF , then there are at least 2k

assignments that satisfy F .

Proof: Let A be a maximum complementary antichain. We observe that there are 2k distinct partial
assignments X as described in Lemma 6 that correspond to A. Thus, Lemma 6 ensures the existence of
2k distinct assignments that satisfy F . 2

3 The Number of Components
The purpose of our discussion here is ultimately to study the number of connected components of QF .
Besides our innate mathematical interest in structure, we are also interested in connected components of
QF for biological reasons. Recall that in our biological model, literals correspond to alleles, so comple-
mentary strong components represent alternate strategies for survival. If we anthropomorphize evolution,
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then we can think of the evolution of an organism as a sequence of choices between these alternate strate-
gies. We imagine the set of satisfying assignments as the collection of all possible viable strategies for
survival. We are interested in the topology of QF as opposed to a more dense graph because allowing for
edges only between assignments that differ on a single variable corresponds with allowing evolutionary
pathways through single allele mutations only. If one considers our primary result, Theorem 1 in light of
Theorem 3, we see that exponentially many solutions are organized into a stochastically bounded number
of components. In the biological model, this means that each viable genotype is connected by single
site mutations to an exponential number of other viable genotypes; whereas the number of these clusters,
which are not connected to each other is very likely to be small.

We begin our study in Section 3.1 by considering the structure ofQF for a fixed formula F . We will see
that this structure is somewhat difficult to describe when a formula F gives rise to a complicated partial
order OF . In Section 3.2 we consider the random picture and prove Theorem 1. The proof of this result
is based on the fact that in a random setting where satisfiability is asymptotically almost sure, the partial
order OF is asymptotically almost surely an antichain.

3.1 The Deterministic Setting
Consider two satisfying assignments U and V inQF that differ by only one strong component pair {C,C}.
We take the perspective that moving from U to V is achieved by changing the literals of C in U to the
literals of its complement C in V . We will use the notation V = U ~ C to denote this evolution. In other
words, U ~ C = (U − C) ∪ C. In general, two satisfying assignments U and V may differ by several
strong component pairs. We will write X = U − V to denote the collection of strong components in U
whose complements are in V . We will also write V = U ~ X to indicate that V is the assignment that
results from starting with U and changing X to X .

Lemma 8 If U and V are any two F satisfying assignments, then there exist satisfying assignments
U0,U1,U2, . . . ,Ul such that U0 = U , Ul = V and Ui+1 = Ui ~ Ci for 0 ≤ i < l where C1, . . . , Cl
is some ordering of the strong components of U − V .

Proof: We begin by making the following definitions:

C = U − V
P = the graph of the partial order of C ∪ C
B = {C ∈ C | L−P (C) = ∅}.

Notice that B is defined so that for any X ⊆ B, we have L+
P (X ) = X . Thus, if Y = U − X , then

Lemma 5 applies and U ~ X is satisfying for any X ⊆ B. Thus, given any ordering of the components
in C, we can generate a sequence of satisfying assignments from U to U ~ B following this order. To
be concrete, let C1, C2, . . . , Cl be the components in B in the order induced by the original order of the
literals, i.e., C1 has the least literal among all literals in B and C2 has the least literal among all literals
in B − C1 and so on. Then, each of U0,U1,U2, . . . ,Um is a satisfying assignment, where U0 = U ,
Um = U ~ B and Ui+1 = Ui ~ Ci for 0 ≤ i < m.

We can complete our proof via induction on the depth of P . Our base case is that P has depth one. In
this case, B = C and Um = V , so we are done. If the depth of P is k, then the depth of the partial order
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on C − B is k − 1, so we can apply the inductive hypothesis to Um and V and concatenate the satisfying
assignments found there to the satisfying assignments U0,U1,U2, . . . ,Um and we have our proof. 2

Corollary 9 Suppose F is a satisfiable 2-formula and that U and V are any two distinct satisfying assign-
ments in QF . Then U and V are connected in QF if and only if U − V consists entirely of trivial strong
components.

Proof: We use the notation from the proof of Lemma 8. In the case that U − V consists entirely of trivial
strong components, the sequence U0,U1,U2, . . . ,Um is a path in Qn. Since QF is induced from Qn, it
follows that this path connects U to V in QF .

For the converse, suppose that there is a nontrivial strong componentC ∈ U−V . Consider the subcubes
ofQn formed by fixing the literals corresponding toC andC respectively, but varying over both literals on
all other variables. Since the pair is nontrivial, any assignment in one subcube differs from any assignment
in the other subcube for at least two variables. Moreover, there are no satisfying assignments outside these
subcubes because every satisfying assignment has to have all the literals of C or else all the literals of C.
Since U and V are in different subcubes they are not connected in QF . 2

It is important to realize that Lemma 8 and Corollary 9 apply only under the assumption that U and V are
both satisfying assignments. It is certainly possible that U is a satisfying assignment, while the assignment
V is unsatisfying even though U and V differ by only one strong component pair. A few example formulas
and the corresponding graphs are provided in Figure 1. In the figure, we refer to incompatibilities as
opposed to disjunctions, so we remind the reader that an incompatibility xy is equivalent to the disjunction
x ∨ y. Incompatibilities are useful when studying the structure of QF because we simply remove the
subcubes of Qn that are specified by the list of incompatibilities.

From Corollary 9 we see that to study the component structure of QF one must understand the partial
order on the nontrivial strong components. In particular, if there are no nontrivial strong components in
DF on which two assignments differ, then the components are not in distinct components of QF . From
Corollary 7, we see that we will have satisfying assignments with every combination of strong components
from a maximum complementary antichain and its complement. But this tells us nothing about the com-
ponent structure of QF . If we want to count the number of components in QF , then we need to identify
satisfying assignments in distinct components of QF . To accomplish this, we will look at complementary
antichains of nontrivial strong components. We will use the term nontrivial complementary width to refer
to the greatest cardinality among the complementary antichains consisting entirely of nontrivial strong
components of DF . We will use the term nontrivial height to refer to the greatest number of nontrivial
strong components within a single chain of DF . The term nontrivial complementary height will mean the
greatest number of nontrivial strong components in a maximal chain that is complementary. Notice that
we first make a list of all maximal chains and then consider only those that are complementary to find one
with a maximum number of nontrivial strong components.

Theorem 10 Suppose that F is a satisfiable formula with nontrivial width j. Also, let k be the number
of complementary pairs of nontrivial strong components determined by F and let N be the number of
connected components in QF . Then 2j ≤ N ≤ 2k. Furthermore

1. If the nontrivial height of OF is one, then N = 2k.

2. If the nontrivial height of OF is greater than one, then 2j ≤ N < 2k.
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Fig. 1: A sequence of digraphs and the corresponding subgraphs of Qn for n = 4. Dimensions of Qn are or-
dered left/right, down/up, front/back, in/out. The subcubes of nonsatisfying assignments are shaded. For F1 =
{0112, 0213}, DF1 has no cycles and QF1 is connected. A complementary pair {{01, 02, 03}, {11, 12, 13}} that is
not order related arises in F2 = F1 ∪ 1102 and QF2 is disconnected. In F3 = F2 ∪ 0102, the complementary pair
from F2 becomes order related and we see that one of the two components from QF2 is lost in QF3 .
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3. If there are complementary weak components containing chains of nontrivial height greater than
one, then 2j < N < 2k.

Proof: The weak upper bound follows directly from Corollary 9. The weak lower bound follows directly
from Corollaries 7 and 9. Result 1 follows from the fact that j = k if there are no order relations between
nontrivial strong components. On the other hand, if there are nontrivial strong components C1 and C2

such that C1 < C2, then j < k. For the remainder of the proof, we suppose that this is the case.
Since C1 < C2 there is no satisfying assignment with C1 and C2, so N < 2k. Thus, the strict

upper bound in 2 and 3 holds. Notice that this allows for C2 = C1; in which case there is no satisfying
assignment with C1. All that remains is to show that the strict lower bound holds in the case that C1 and
C2 are strictly distinct and C1 and C2 are not related to C1 or C2.

We consider Lemma 5 and use the notation there for X . We notice that L+(C1) is strictly distinct, so
if we set X = L+(C1), then we see that there will be a satisfying assignment with C1 and C2. Similarly,
if we set X = L+(C2) ∪ L+(C1) we find another satisfying assignment. The same can also be said
for X = L+(C2). Thus, we have satisfying assignments with each of C1C2, C1C2, and C1C2, but not
with C1C2. We clearly have that these three possible combinations fall strictly between two and four.
We also notice that any satisfying assignment must have one of these three combinations. It follows that
2j < N < 2k. 2

3.2 The Random Setting
In this subsection, we prove the primary result of this paper, Theorem 1. Throughout, F and consequently
DF , are randomly determined as described in Section 1. When a strong component is comprised of
exactly i ≥ 2 edges and i literals, we will refer to the strong component as a simple cycle of order i, or
more succinctly, as an i-cycle. The proof of Theorem 1 follows easily from Theorem 10 and the following
lemmas.

Lemma 11 With probability 1−O(n−1), every nontrivial strong components is a simple cycle.

Lemma 12 With probability 1−O(n−1), the set of all nontrivial strong components is an antichain.

Lemma 13 The distribution on complementary simple cycle pairs converges to a Poisson distribution
with parameter λ = −(ln(1− c) + c)/2.

Proof: (of Theorem 1 under the assumption of Lemmas 11, 12 and 13.) If Lemmas 11 and 12 are true,
then it follows from Theorem 10 that we are a.a.s. that the number of components in QF is 2Xn where
Xn is the random number of complementary simple cycle pairs. If Lemma 13 is true then Xn converges
weakly to a Poisson random variable Ψ with parameter λ = −(ln(1 − c) + c)/2. Together, these imply
that the number of connected components in QF converges weakly to 2Ψ, and that the probability that
there is a unique cluster converges to e−λ =

√
(1− c)ec. 2

All that remains is to show that Lemmas 11, 12 and 13 are true. Before beginning these proofs, we will
attempt to provide some context for the results in this section. From a combinatorial perspective (or even
simply from a descriptive perspective), Theorem 10 is quite unsatisfactory. We would like to know what
happens when the nontrivial height of P is not one. A cursory examination of various partial orders on
nontrivial strong components of DF leads to the conclusion that categorizing all the possible scenarios
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would be quite involved and is certainly beyond our scope here. The good news is that Lemmas 11
and 12 show that from a probabilistic perspective, none of these complexities are important because, as
the number of variables becomes large, we are asymptotically almost sure that the nontrivial height will
be one.

This should come as no surprise to someone well versed in random graph theory because of the sim-
ilarity between DF and a standard directed random graph on 2n vertices where each edge appears with
probability p. One can also relate DF to a standard undirected random graph Gp′ where p′ = 2p− p2 as
was done in [7]. It is well known [6, 4, 15] that for p = O(n−1), the number of simple cycle pairs of any
fixed length in directed or undirected random graphs converges weakly to a Poisson distribution. What
we must show is that the total number of simple cycle pairs of all lengths converges weakly to the Poisson
distribution with parameter λ = −(ln(1− c) + c)/2 when p = c/2n and c < 1. While this result doesn’t
seem to be published for the 2-SAT digraph, it has been shown [16, 2] that in the standard random graph,
Gp∗ where p∗ = c/n, the total number of simple cycles converges weakly to a Poisson distribution with
parameter− 1

2 (ln(1− c)+ c+ c2/2). The proof we provide forDF closely resembles the proof in Section
4.3 of [2].

We now establish our notation and make some preliminary observations. Let Γi,n be the set of (un-
ordered) complementary i-cycle pairs on the 2n literals and define Γn =

⋃
i=2

Γi,n. Then, for each α ∈ Γn

let

Iα =

{
1 if α ∈ DF

0 else and pα = E(Iα).

We remind that reader that for any literals y1, y2, . . . , yi we can make the following statement about cycles
in DF :

y1 → y2 → . . .→ yi → y1 ⇐⇒ y1 ← y2 ← . . .← yi ← y1.

Since every α ∈ Γi,n is a complementary pair of directed cycles on strictly distinct literals, pα = pi for
all α ∈ Γi,n. We next define

Xi,n =
∑

α∈Γi,n

Iα and µi,n = E (Xi,n) .

Again, by the complementary nature of DF , we get

µi,n =
∑

α∈Γi,n

pα =
∑

α∈Γi,n

pi =
(n)i
i

2i−1pi =
(n)i
ni

ci

2i
.

Notice that for any fixed i, (n)i/n
i = (1− 1/n)(1− 2/n) . . . (1− (i− 1)/n). Thus, µi,n monotonically

increases with n and converges to ci/2i. Next, we define

Xn =

n∑
i=2

Xi,n and λn = E (Xn) .

Notice that Xn is the random variable that counts the total number of simple cycle pairs in DF . Thus, λn
is the expected total number of simple cycle pairs in DF . If c < 1, then

λn =

n∑
i=2

µi,n <

∞∑
i=2

ci

2i
= −1

2
(ln (1− c) + c) .
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This immediately implies that if c < 1 and ω = ω(n)→∞, then

P

(
n∑
i=ω

Xi,n > 0

)
≤ E

(
n∑
i=ω

Xi,n

)
−→n 0. (2)

Thus, the probability that the length of the longest cycle will diverge with n converges to 0. Nevertheless,
our proof technique will require that we control cycles of unbounded length. We discuss the reason for
this after completing this proof. For now, we define for any 2 ≤ m ≤ n

Tm,n =

m∑
i=2

Xi,n and λm,n = E(Tm,n).

We also introduce the notation Ψm,n for the Poisson random variable with mean λm,n. Now that we have
established some notation we proceed with the proofs.

Proof: (of Lemma 11.) We observe that any strong component of order i ≥ 3 that is not a simple cycle
contains at least a simple cycle α and a path β with first and last literals in α. Suppose α ∈ Γi,n and β is
a path with j > 0 edges and both endpoints in α. Then the expected number of such ordered pairs (α, β)
in DF is bounded above by(

n

i

)
2i−1(i− 1)!

(
n− i
j − 1

)
2j−1(j − 1)!i2pi+j < i(2n)i+j−1pi+j =

ici+j

2n
.

Since c < 1, the sum over 1 ≤ j ≤ n− i and then over 2 ≤ i ≤ n isO(n−1). We have actually counted at
least two ordered pairs for each of the potential nonsimple components because exactly one of the paths
of α with endpoints in common with β will form a cycle with β, which will be counted as some cycle α′

with the other path as β′. Thus, for anyDF , the number of nonsimple strong components is not more than
one half of the number of ordered pairs considered here. Thus, the expected number of ordered pairs we
have estimated is at least twice the expected number of nonsimple strong components, which is greater
than the probability that there exists a nonsimple strong component. 2

Proof: (of Lemma 12.) Notice that if there are strong components A and C such that A ≤ C, then there
are directed cycles α ⊆ A and γ ⊆ C such that α and γ are connected by a directed path β. Similar to
the proof of Lemma 12, it is sufficient to show that the expected number of such ordered triples (α, β, γ)
is O(n−1). To identify (α, β, γ) we select α and mark a literal of α that is common to β; and then select
the remaining literals of β in order, the last of which is the first literal of γ; and then select the remaining
literals of γ in order. Assuming that α is an i-cycle, β is a path with j > 0 edges, and γ is a k-cycle, we
have must choose i+j+k−1 literals in order. Thus, there are no more than (2n)i+j+k−1 < (2n)i+j+k−1

such triples. Notice that there are necessarily i+ j + k edges in the subgraph corresponding to (α, β, γ).
Thus, ci+j+k−1p is an upper bound for the expected number of such configurations. Since c < 1 we can
sum over i, j, and k to get the desired result. 2

Proof: (of Lemma 13) We will prove the weak convergence of Xn to Ψ by demonstrating that for any
subset A of the positive integers we can make |P (Xn ∈ A)− P (Ψ ∈ A)| arbitrarily small by taking n to
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be large enough. An upper bound for |P (Xn ∈ A)− P (Ψ ∈ A)| is provided by

|P (Xn ∈ A)− P (Tm,n ∈ A)| (3)
+ |P (Tm,n ∈ A)− P (Ψm,n ∈ A)| (4)
+ |P (Ψm,n ∈ A)− P (Ψ ∈ A)| . (5)

Thus, to prove the weak convergence of Xn to Ψ it is enough to show that we can choose n and m (which
may depend on n) to make (3), (4) and (5) arbitrarily small.

We first consider (5). From (2), we see that whenm diverges with n, λm,n will become arbitrarily close
to λ. Thus, we have the weak convergence of Ψm,n to Ψ and (5) must vanish for any m that diverges with
n.

We now focus on (3). Notice that (3) is bounded above by P (Xn 6= Tm,n), which is in turn bounded
above by the expected number of events that distinguish Xn from Tm,n. Notice that by (2) the probability
that there are any i-cycles for i > m vanishes as m diverges. Notice also that by Lemma 11 we have for
any m, that the probability that there is a strong component that is not a simple cycle is O(n−1). Lastly,
by Lemma 12 the probability that there are two nontrivial strong components that are ordered is O(n−1)
for any m. Thus, the probability that Xn 6= Tm,n vanishes as n and m diverge.

The supremum over all A of (4) is half the total variation between the law of Tm,n and Ψm,n. Thus,
the bound for (4) and the proof of Lemma 13 is complete provided that the following lemma is true.

Lemma 14 There exists an m = m(n) that is unbounded such that the total variation between the law of
Tm,n and Poisson random variable with mean λm,n is O(n−1).

Proof: There is a family of methods called the Stein-Chen or Chen-Stein method for bounding the total
variation between two distributions. A thorough treatment of these methods can be found in [4]. Of
particular interest here is Corollary 2.C.5, on pg. 26. of [4], which we restate using our current notation

and the following definition. Let Γmn =

m⋃
i=2

Γi,n.

Lemma 15 Suppose that for each α ∈ Γmn , Γmn can be partitioned into Γ0
α, Γiα such that Iα and Iβ are

independent for all β ∈ Γiα. Then the total variation between the laws of Tm,n and Ψm,n is not more than

min{1, λ−1
m,n}

 ∑
α∈Γmn

p2
α +

∑
α∈Γmn ,β∈Γ0

α

(pαpβ + E(IαIβ))

 .

For any α, there certainly is a set Γ0
α of all complementary cycle pairs that are distinct from α and yet not

independent of α. Moreover, since λm,n is bounded below, our proof will be complete when we can find
an unbounded m = m(n) for which the sums are both O(n−1).

Consider the first sum

∑
α∈Γmn

p2
α =

m∑
i=2

(
n

i

)
2i−1(i− 1)!p2i <

∞∑
i=2

1

ni
.
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Since this sum is O(n−2) for any m ≤ n, we can address the second sum. If Iα and Iβ are not inde-
pendent, then they share some edge and the event that Iα = 1 increases the probability that Iβ = 1, so
E(IαIβ) > pαpβ and we need only show convergence of∑

α∈Γmn ,β∈Γ0
α

E(IαIβ). (6)

Let α ∈ Γi,n and let β be such that the edges of β that are shared with those of α are found on j disjoint
paths in each member of the pair and such that there are k literals on each member of β which are not on
the paths common to both α and β. Then, the probability that any such fixed pair (α, β) is present in DF

is pi+j+k. Notice that there are j more edges than literals in such an (α, β) configuration. This is what
causes the expectation in question to converge to 0. Now for the details.

We will count the number of such pairs by first fixing α, and then examining the number of possible
shared paths. Notice that by choosing 2j literals in one member of α we fix the endpoints for one of two
possible collections of j shared paths. Thus, the number of ways to choose j paths from an i-cycle is
2
(
i

2j

)
where 1 ≤ j ≤ bi/2c. This fixes j pairs of complementary paths from the members of α that will

be shared with β, but it does not determine which of the complementary paths will be chosen for a given
member of β. There are 2j binary sequences that are in one-to-one correspondence with the possible
assignments of j paths to the first member of β. Thus there are 2j+1

(
i

2j

)
ways to select the j paths from

α that will be shared with one of the members of β.
Next we consider the k additional literals in each member of β. There are no more than n−2j variables

that do not correspond to the shared paths. Moreover, β is a complementary pair of simple cycles, which
must have strictly distinct literals in each member of the pair. Thus, there are at most

(
n−2j
k

)
2k possible

ways to choose the remaining literals for one of the members of β.
Together, the literals and paths make for j+k objects to be ordered on a cycle, and there are (j+k−1)!

ways to do this. Notice that we did not make use of the restriction that two paths are not allowed to be
consecutive in this ordering if there is only one edge between them on α. Thus we are overestimating
once again. The choices above, along with the (n)i2

i−1/i choices for α provide an upper bound for the
total number of ordered pairs (α, β). There is just one last bit of counting to mention. We have double
counted everything. That is, when we started selecting the k additional literals for one of the members
of β, it matters which of the members these k literals go with; but we could get the same structure by
selecting the complementary k literals and the complementary member of α. Thus, all together we have
i+ j + k − 1 total factors of 2, which we will group together with the powers of p.

The computations on the following page are mostly self explanatory, but we mention that to obtain (12)
and (13) we begin with the Robbins-Feller Stirling approximation and then simplify a bit to get

j! <
√

2πj

(
j

e

)j
e1/(12j) < 4

√
j

(
j

e

)j
.

Then we use j ≤ i/2 ≤ m to get

j!

(2j + 2)(2j + 1)

(
c

n(1− c)

)j
<

4
√
j

(2j + 2)(2j + 1)

(√
cm

2e(1− c)n

)2j

<

(√
cm

2e(1− c)n

)2j

.
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∑
α∈Γn,β∈Γα

E(IαIβ) <

m∑
i=2

bi/2c∑
j=1

m∑
k=0

(n)i
2i

(
i

2j

)(
n− 2j

k

)
(k + j − 1)!(2p)i+j+k (7)

<

m∑
i=2

ci

2i

bi/2c∑
j=1

(
i

2j

)
cj

nj
(j − 1)!

∞∑
k=0

(
k + j − 1

k

)
ck (8)

=

m∑
i=2

ci

2i

bi/2c∑
j=1

(
i

2j

)
cj

nj
(j − 1)!

(
1

1− c

)j
(9)

=
c

2n(1− c)

m∑
i=2

ci

i

bi/2c∑
j=1

i(i− 1)

2j(2j − 1)

(
i− 2

2(j − 1)

)
(j − 1)!

(
c

n(1− c)

)j−1

(10)

=
c

2n(1− c)

m∑
i=2

(i− 1)ci
bi/2c−1∑
j=0

(
i− 2

2j

)
j!

(2j + 2)(2j + 1)

(
c

n(1− c)

)j
(11)

<
c

2n(1− c)

m∑
i=2

(i− 1)ci
bi/2c−1∑
j=0

(
i− 2

2j

)(
j

e

)j (
c

n(1− c)

)j
(12)

<
c

2n(1− c)

m∑
i=2

(i− 1)ci
bi/2c−1∑
j=0

(
i− 2

2j

)(√
cm

2e(1− c)n

)2j

(13)

<
c

2n(1− c)

m∑
i=2

(i− 1)ci
i−2∑
j=0

(
i− 2

j

)(√
cm

2e(1− c)n

)j
(14)

=
1

n
· c

2(1− c)

m∑
i=2

(i− 1)ci
(

1 +

√
cm

2e(1− c)n

)i−2

(15)

If we look at expression (15) we see that given any positive constant c < 1 we can choose m = m(n)
so that for large enough n, we have m/n sufficiently small to satifty

c

(
1 +

√
cm

2e(1− c)n

)
< 1.

Once this inequality is satisfied, the sum over i in the last line above will be bounded above by a constant,
and it follows that the expectation for this m = m(n) will be O(n−1), which proves Lemma 14 . 2

As was previously stated, Lemma 13 follows from Lemma 14 and this is all that remained to prove
Theorem 1. 2

Corollary 16 If 0 < c < cmax, where cmax ≈ 0.6375 is the solution to

c

(
1 +

√
c

2e(1− c)

)
= 1,
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then the rate of convergence of Xn to Ψn,n is O(n−1).

Proof: If c < cmax, then the proof of Lemma 13 applies with m = n and we have a rate of convergence
of O(n−1) for Xn to Ψn,n. 2

4 Discussion
The proof provided here of Lemma 13 relies on the use of truncated random variables and also fails to
provide a bound on the distance between Xn and Ψn,n for a significant range of c values. If the proof of
Lemma 14 could be improved to provide some rate of convergence f(n) that holds for m = n and all
c < 1, then there would be no need for truncated random variables and the overall rate of convergence
would be no slower than f(n). However, it may be difficult to find such a proof because there is reason
to believe that the Chen-Stein method can not be applied to this problem. In [2], they provide numerical
evidence (pg. 413) that

∑
α∈Γn,β∈Γα

E(IαIβ) diverges with m = n for sufficiently large values of c. If this

is true, then for these values of c, the second moment of Xn diverges with n and the Chen-Stein method
will not be able to provide a rate of convergence for Xn to Ψn,n.
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