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A univariate graph polynomial P (G;X) is weakly distinguishing if for almost all finite graphs G there is a finite

graph H with P (G;X) = P (H ;X). We show that the clique polynomial and the independence polynomial are

weakly distinguishing. Furthermore, we show that generating functions of induced subgraphs with property C are

weakly distinguishing provided that C is of bounded degeneracy or treewidth. The same holds for the harmonious

chromatic polynomial.
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1 Introduction and Outline

Throughout this paper we consider only simple (i.e. finite, undirected loopless graphs without parallel

edges), vertex labelled graphs. Let P be a graph polynomial. A graph G is P -unique if every graph H
with P (G;X) = P (H ;X) is isomorphic to G. A graph H is a P -mate of G if P (G;X) = P (H ;X)
but H is not isomorphic to G. In [14] P -unique graphs are studied for the Tutte polynomial T (G;X,Y ),
the chromatic polynomial χ(G;X), the matching polynomial m(G;X) and the characteristic polynomial

char(P ;X).
A statement holds for almost all graphs if the proportion of graphs of order n for which it holds, tends

to 1, when n tends to infinity. A graph polynomial P is almost complete if almost all graphs G are P -

unique, and it is weakly distinguishing if almost all graphs G have a P -mate. In [3] it is conjectured

that almost all graphs are χ-unique and T -unique, in other words, both χ(G;X) and T (G;X,Y ) are

almost complete. There are plenty of trivial graph polynomials which are weakly distinguishing, like

X |V (G)| or X |E(G)|. However, one might expect that the prominent graph polynomials from the literature

are not weakly distinguishing. Here we show that various non-trivial graph polynomials are still weakly

distinguishing.

The degree polynomial Deg(G;x) of a graph G is the generating function of the degree sequence of

G. A graph G is Deg-unique, also called in the literature a unigraph, if it is determined by its degree

sequence. An updated discussion on how to recognize unigraphs can be found in [4].

A simple counting argument gives:

Theorem 1. Almost all graphs G have a Deg-mate.

The Independence and Clique polynomials of a graph G = (V (G), E(G)) contain much information

about G. Both were first studied in [11]. For a more recent survey on the independence polynomial see

[13].
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Theorem 2. The independence and clique polynomials are weakly distinguishing.

The proof uses estimates for the independence number α(G) and the clique number ω(G) for random

graphs, (see [2] and [7]) together with a counting argument.

This theorem can be generalized:

Definition 1. Let C be a graph property. We say that a function f : N → N is an independence (clique)

function for C if for every graph G ∈ C, the graph G has an independent set (clique) of size f(|V (G)|).
Denote by Ĉ the class of complement graphs Ḡ of graphsG ∈ C, andPC(G;X) =

∑

A⊂V (G):G[A]∈C X
|A|,

and PĈ(G;X) =
∑

A⊂V (G):G[A]∈Ĉ X
|A|.

Theorem 3. Let Q be a graph property that has an independence or a clique function f that satisfies that

for all n ∈ N , f(n) ≥ n/a for some fixed a ∈ N . Then PQ is weakly distinguishing.

This applies to the following cases:

• A graph G is k-degenerate if every induced subgraph of G has a vertex of degree at most k. It is

easy to see that every k-degenerate graph G of order n has an independent set of size
⌈

n
k+1

⌉

.

• Among the k-degenerate graphs we find the graphs of treewidth at most k, graphs of degree at most

k, and planar graphs.

• A k-colourable graphs G has an independent set of size at least
⌈

n
k

⌉

.

• Let C be a graph property. A function γ : V (G) → [k] is a C-colouring if every color class induces

a graph in C. Such coloring were studied in [9]. If we assume that C has an independence (clique)

function g(n), then the graphs which are C-colorable with at most k colors have an independence

(clique) function f(n) =
⌈

g(n)
k

⌉

.

Therefore, for C one of the properties above, the graph polynomials PC(G;X) are all weakly distin-

guishing.

A harmonious colouring of G with at most k colors is a proper colouring of G such that every pair of

colors occurs at most once along an edge. Let χharm(G; k) count the number of harmonious colourings

of G. It was observed in [12] that χharm(G; k) is a polynomial in k.

Theorem 4. Almost all graphs G have a χharm-mate.

The status of P -uniqueness remains open for T (G;X,Y ), χ(G;X),m(G;X) and char(G;X).

2 Preliminaries

Let G = (V,E) be a graph. Denote by G(n) the set of all non-isomorphic graphs with n vertices, and by

G the set of all non-isomorphic graphs.

Fact 5 ([10]). |G(n)| ≈ 2(
n
2)

n! for a sufficiently large n.
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Let P : G → Z[x] be a graph polynomial. For a graph G, we say two non-isomorphic graphs G and H
are called P -mates if P (G) = P (H).
Denote by UP (n) the set of P unique graphs with n vertices, by βP (n) the number of polynomials in

Z[x] such that there is a graph of order less or equal to-n that maps to that polynomial, and by βP,C(n)
the number of polynomials in Z[x] such that there is a graph of order less or equal to-n in C that maps to

that polynomial.

We denote by Kn the clique of size n, and by In the edgeless graph of size n.

Let G be a graph, and A ⊆ V (G). The induced subgraph of A in G, denoted G[A], is the graph with

vertex set A, and for v, u ∈ A, (u, v) ∈ E(G[A]) iff (u, v) ∈ E(G).

Definition 2. For a graph polynomial P , we say P is weakly distinguishing if limn→∞
|UP (n)|
|G(n)| = 0. For

a family of graphs C we say that P is weakly distinguishing on C if limn→∞
|UP (n)∩C|
|G(n)∩C| = 0

We wish to consider a particular type of graph polynomials:

Definition 3. Let Q be a graph property. For all graphs G, define PQ(G;x) =
∑

A⊂V (G):G[A]∈QX |A|.

3 The Degree Polynomial

Definition 4. For a graph G = (V,E) of order n and v ∈ V , denote by deg(v) the degree of v. Define

the Degree polynomial of G to be Deg(G, x) =
∑

v∈V xdeg(v).

Note that the degree of a vertex is bounded above by n− 1, so the degree of the polynomial Deg(G, x)
is at most n−1. For every 0 ≤ i ≤ n−1, the coefficient of xi in Deg(G, x) is an integer number between

0 and n. Thus, we get

βDeg(n) ≤ (n+ 1)n−1 ≤ (n+ 1)n

Now we are ready to prove theorem 1:

Theorem 1: Almost all graphs G have a Dg-mate.

Proof: Let G = (V,E) be a graph with |V (G)| = n. We now evaluate:

lim
n→∞

UDeg(n)

|G(n)| ≤ lim
n→∞

βDeg(n)

|G(n)| ≤ lim
n→∞

nn

|G(n)| = lim
n→∞

(n+ 1)nn!

2n(n−1)/2

≤ lim
n→∞

(n+ 1)n · (n+ 1)n

2n(n−1)/2
= lim

n→∞

(n+ 1)2n

2n(n−1)/2
= 0

4 A General Method for Proving Graph Polynomials are Weakly

Distinguishing

We wish to apply the same idea used in proving the degree polynomial is weakly distinguishing to a large

class of graph polynomials. We start with some lemmas. First, we show that if a graph polynomial P is

weakly distinguishing on a large subset of G, it is weakly distinguishing:

Lemma 6. Let P be a graph polynomial and C a family of graphs such that limn→∞ |C(n)|/|G(n)| = 1.

If limn→∞ |UP (n) ∩ C|/|G(n)| = 0 then P is weakly distinguishing.
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Proof:

|UP (n)|
|G(n)| =

|UP (n) ∩ C|+ |UP (n) ∩ (G(n) − C)|
|G(n)| =

|UP (n) ∩ C|
|G(n)| +

|UP (n) ∩ (G(n)− C)|
|G(n)|

When taking the limit, note that the left term in the sum converges to 0 by assumption, so it remains to

evaluate:

lim
n→∞

|UP (n) ∩ (G − C)|
|G(n)| ≤ lim

n→∞

|G(n) − C|
|G(n)| = 0

Lemma 7. Let f : N → R. If f(n) ≤ (logn)O(1) , then asymptotically

(

n

f(n)

)f(n)

≤ (
n

f(n)
)f(n)+nf(n) 1

(2π)f(n)/2 · nf(n)/2

Proof: By applying the Stirling approximation k! =
√
2πk(ke )

k we evaluate:

(

n

f(n)

)f(n)

= (
n!

f(n)!(n− f(n))!
)f(n)

≈ (

√
2πn(n/e)n

√

2πf(n)(f(n)/e)f(n)
√

2π(n− f(n))((n− f(n))/e)(n−f(n))
)f(n)

= (
nn

(f(n))f(n)(n− f(n)n−f(n)
·

√
n

√

2πf(n)(n− f(n)
)f(n)

≤ (
n

2πf(n) · f(n) )
f(n)/2 · nnf(n)

f(n)nf(n)

where the inequality is due to f(n) ≤ n− f(n) for a sufficiently large n .

(
n

2πf(n) · f(n) )
f(n)/2 · nnf(n)

f(n)nf(n)
= (

n

f(n)
)f(n)+nf(n) 1

(2π)f(n)/2 · nf(n)/2

Our main tool for proving graph polynomials are weakly distinguishing is theorem 3, which provides

a sufficient condition for a polynomial PQ to be weakly distinguishing. This condition is given in terms

of independence and clique functions (see definition 1). We will prove theorem 3 using the following

theorems:
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Theorem 8 (Frieze [7]). For a graph G , denote by α(G) the size of the largest independent set of vertices

in G . Then for almost all graphs of order n , α(G) ≈ 4 log n
2

Theorem 9 (Erdös and Bollobás [2]). For almost all graphs G of order n, ω(G) ≈ 2
log 2 · logn

We are now ready to prove theorem 3:

Theorem 3: Let Q be a graph property that has an independence or a clique function f that satisfies that

for all n ∈ N , f(n) ≥ n/a for some fixed a ∈ N . Then PQ is weakly distinguishing.

Proof: Assume f is an independence function. Set ǫ = 1/10 and let C = {G : α(G) ≤ 4 log n
2 + ǫ} .

By theorem 8, almost all graphs are in C. Note that if G ∈ C , and H is an induced subgraph of G with

H ∈ Q, then there is an independent set of size
|V (H)|

a in H , and hence in G, and so |V (H)| ≤ 4 log n
2 +ǫ.

This implies that PQ(G, x) =
∑4 log |V (G)|

2 +ǫ

k=1 bkx
k with 0 ≤ bk ≤

(

n
k

)

for all k, and so

βPQ,C(n) ≤
(

n

4 log |V (G)|
2 + ǫ

)4 log |V (G)|
2 +ǫ

hence by lemmas 6 and 7, PQ is weakly distinguishing.

If f is a clique function, the proof is similar using theorem 9.

5 Applications of the Method

5.1 The Clique and Independence Polynomials

Definition 5. Let G be a graph. For i ∈ N, denote ci(G) = |{A ⊆ V (G) : G[A] ∼= Ki}|. The clique

polynomial of G, Cl(G, x) is defined to be Cl(G, x) = 1 +
∑∞

i=1 ci(G)xi. Note that this is a graph

polynomial, and that the sum in the definition is finite. The clique number of G, denoted ω(G), is the

degree of the clique polynomial (i.e. this is the size of the largest clique subgraph of G).

Definition 6. Let G be a graph. For i ∈ N, denote si(G) = |{A ⊆ V (G) : G[A] ∼= Ii}|. The

independence polynomial of G, Ind(G, x) is defined to be Ind(G, x) = 1 +
∑∞

i=1 si(G)xi. Note that

this is a graph polynomial, and that the sum in the definition is finite. The independence number of G,

denotedα(G), is the degree of the independence polynomial (i.e. this is the size of the largest independent

set in G).

Theorem 2 is now a direct corollary of theorem 3:

Theorem 2: Almost all graphs G have an Ind-mate and a Cl-mate.

Proof: For the independence polynomial, note that Ind(G, x) = PQ(G;x), were Q is the property

consisting of edgeless graphs. Note that the identity function on N is an independence function for Q, and

clearly it satisfies the condition in theorem 3 for a = 1. Hence the independence polynomial is weakly

distinguishing.

Similarly, for the clique polynomial note that Cl(G, x) = PQ(G;x), were Q is the property of complete

graphs. Note that the identity function on N is a clique function for Q, and clearly it satisfies the condition

in theorem 3 for a = 1. Hence the clique polynomial is weakly distinguishing.
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5.2 Generating Functions

Theorem 3 can be applied to many graph classes to produce weakly distinguishing graph polynomials. Of

particular interest are k-degenerate classes and amongst them classes of bounded treewidth.

For a graph G, and v ∈ V (G) denote by NG(v) the closed neighbourhood of v in G, i.e. NG(v) =
{v} ∪ {u ∈ V (G) : {v, u} ∈ E(G)}
Definition 7. For k ∈ N, a graph G is said to be k-degenerate if every induced subgraph of G has a vertex

of degree at most k.

The following propositions 9.1, 10.1 and lemma 10 are well known results about degenerate graphs and

treewidth. For completeness, we include their proofs:

Proposition 9.1. A graphG = (V,E) is k degenerate if and only if there is a enumeration {v1, v2, ..., vn} =
V such that for all 1 ≤ i ≤ nthe degree of vi in the subgraph of G induced by V −{v1, v2, ..., vi−1} is at

most k.

Proof: Let G = (V,E) be a k degenerate graph. From the definition, there is a vertex v ∈ V with degree

at most k. Denote this vertex by v1. Define vi inductively: from the definition, the subgraph induced by

V −{v1, ..., vi−1} has a vertex with degree at most k. Define vi to be this vertex. Clearly, the enumeration

{v1, ..., vn} = V has the desired property.

Conversely, let {v1, ..., vn} an enumeration as in the theorem, and let H be a subgraph of G induced by

U ⊆ V . Denote u = vi the vertex in H who’s index in the enumeration is the smallest. Note that the

degree of u in G[U ∪ {vj |j ≥ i}] is at most k, and H is a subgraph of G[U ∪ {vj |j ≥ i}], hence the

degree of u in H is at most k. So G is k degenerate, as required.

Lemma 10. A graph with treewidth at most k has a vertex with degree at most k.

Proof: Let G be a graph, and (T,X) a tree decomposition of G with width k. Note that T has a leaf, and

there is a vertex v in the bag corresponding to this leaf that is not in the bag corresponding to its neighbour.

Thus every neighbour of v in G is in the same bag. But the bag is of size at most k + 1, so v is of degree

at most k.

Proposition 10.1. A graph G with treewidth at most k is k degenerate.

Proof: Let H be an induced subgraph of G. If H = G, then H has a vertex of degree at most k by the

previous lemma. If H is a proper subgraph, note that H has treewidth at most k, so H has a vertex of

degree at most k. So G is k degenerate.

The following proposition shows that a k degenerate graph has a large independent set:

Proposition 10.2. Every k degenerate graph G has an independent set of size
⌈

|V |
k+1

⌉

.

Proof: Let G = (V,E) be a k degenerate graph, and {v1, ..., vn} be an enumeration as in proposition 9.1.

Let I0 = ∅, and H0 = G. We construct an independent set inductively as follows. There exists 1 ≤ l ≤ n
and an increasing sequence i1, i2, ..., il in {1, 2, ..., n} with i1 = 1 such that for all 1 ≤ j ≤ l

Ij = Ij−1 ∪ {vij}
Hj = G[V (Hj−1)−NG(vj)]
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with Il an independent set in G and l ≥
⌈

n
k+1

⌉

.

Indeed, I1 = {v1} and H1 = G[V (G) − NG(v1)]. Clearly, I1 is an independent set, and note that

|V (H1)| ≥ n− (k+1) and no vertex in H1 is a neighbour of the vertex in I1. Now, given an independent

set Ij and an induced subgraph Hj of G such that |V (Hj)| ≥ n − j(k + 1) and no vertex of Hj is a

neighbour of a vertex in Ij , select vij+1 ∈ V (Hj) with minimal index. Now Ij+1 is an independent set,

no vertex of Hj+1 is a neighbour of a vertex in Ij+1, and since degHj
(vij+1 ) ≤ k,

|V (Hj+1)| ≥ |V (Hj)| − (k + 1) ≥ n− (j + 1)(k + 1).

The induction stops when no more vertices can be selected, i.e. when V (Hl) = ∅. From the induction,

we have that 0 = |V (Hl)| ≥ n− l(k + 1) and hence l ≥
⌈

n
k+1

⌉

as required.

Combining this proposition with theorem 3, we can show that many non trivial graph polynomials are

weakly distinguishing:

Corollary 10.1. Fix k ∈ N, and let Q be a class of k degenerate graphs. Then PQ is weakly distinguish-

ing.

Corollary 10.2. Fix k ∈ N, and let Q be a class of graphs with treewidth at most k. Then PQ is weakly

distinguishing.

6 The Harmonious and k-Harmonious Polynomials

Definition 8. For a graph G, a harmonious colouring in k colours is a function f : V (G) → [k] such

that f is a proper colouring, and for all i, j ∈ [k], G[f−1(i) ∪ f−1(j)] has at most one edge. Denote by

χharm(G, λ) the number of λ harmonious colourings of G. Then χharm is a polynomial in λ, as shown

in [12] and [8]. χharm is called the harmonious polynomial.

For more on the harmonious polynomial, see [5]. Theorem 4 was observed without proof in [5].

Theorem 4: Almost all graphs G have a χharm-mate.

Proof: Let C be the class of graphs G that have the property that for every two vertices v, u ∈ V (G),
there is a vertex w ∈ V (G) such that w is a neighbour of both v and u. This property is one of Gaifman’s

extension axioms, and hence from Fagin’s proof of the 0/1-law for first order logic, almost all graphs are

in C(see [6] for details).

Note that any harmonious colouring of a graph G ∈ C of order n has to assign a different colour to each

vertex of G, and so for λ ∈ N the evaluation of the harmonious polynomial of G at λ is χharm(G, λ) =
λ(λ − 1)(λ − 2)...(λ − n + 1). Since this is true for every λ ∈ N, by interpolation it is true for every

λ ∈ R, and so every two graphs in C of the same order have the same harmonious polynomial. Hence,

there is an n0 such that all graphs in C of order greater than n0 have an χharm-mate. Thus the harmonious

polynomial is weakly distinguishing.

This result can be easily generalised.

Definition 9. For a fixed k ∈ N and a graph G, we say that a proper colouring of G with λ colours

f : V (G) → [λ] is k-harmonious if for every S ⊆ [λ] such that |S| = k, S appears as the colour set of a
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clique in the graph at most once, i.e. if {v1, v2, ..., vk}, {u1, ..., uk} ⊆ V (G) induce complete graphs of

size k and f({v1, v2, ..., vk}) = f({u1, ..., uk}), then {v1, v2, ..., vk} = {u1, ..., uk}.

For λ ∈ N define hk(G, λ) = |{f : V (G) → [λ] : f is proper and k-harmonious}|. hk(G, λ) is a

polynomial in λ (again, by [12]). We will prove that hk is weakly distinguishing.

We start with a lemma:

Lemma 11. Let C be the class of graphs G with the property that for every two vertices v, u ∈ V (G)
there are vertices w1, ..., wk ∈ V (G) such that {u,w1, ..., wk} and {v, w1, ..., wk} induce a complete

graph. Then almost all graphs are in C.

For convenience, we restate and prove the lemma in probabilistic language:

Lemma 12. Fix p ∈ (0, 1) and let G ∈ G(n, p) (i.e. G is a graph with n vertices and every edge is in the

graph with probability p, independently of the others). Then limn→∞ P(G ∈ C) = 1

Proof: For a graph G, denote by Yk(G) the number of k cliques in G. For fixed u, v ∈ V (G), denote

by Gu,v the subgraph of G induced by the common neighbours of v and u. Note that E(|V (Gu,v)|) =
(n− 2)p2, so from the multiplicative Chernoff bound,

P[|V (Gu,v)| ≤
1

9
(n− 2)p2] ≤

(

e−9/10

(1/9)1/9

)(n−2)p2

< e−
1

200 (n−2)p2

Hence, from the union bound

P[∃u, v ∈ V (G)s.t.|V (Gu,v)| ≤
1

9
(n− 2)p2] ≤

(

n

2

)

e−
1

200 (n−2)p2

Denote this number rp(n), and note that limn→∞ rp(n) = 0.

Next, assume that ∀u, v ∈ V (G), |V (Gu,v)| > 1
9 (n − 2)p2. Fix u, v ∈ V (G). Then Gu,v is a

random graph with more than 1
9 (n − 2)p2 vertices, and hence P[Yk(Gu,v) < 1] ≤ P[Yk(G

′) < 1] were

G′ ∈ G(19 (n− 2)p2, p). From theorem 2 in [1], we have:

P[Yk(G
′) < 1] ≤ P

[

Yk(G
′) ≤ 9

10

(

1

9
(n− 2)p2

)3/2
]

≤ exp

[

−(1/100 + α

√

1

9
(n− 2)p2)

]

for some constant α > 0. Hence, if we denote A = {G : ∃u, v ∈ V (G)s.t.|V (Gu,v)| ≤ 1
9 (n− 2)p2},

from the union bound we have:

P [∃u, v ∈ V (G)s.t.Yk(Gu,v) < 1|G 6∈ A] ≤
(

n

2

)

exp

[

−(1/100+ α

√

1

9
(n− 2)p2)

]

Denote the right side of this inequality by r′(n), and note that r′(n) → 0 as n → ∞.
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To conclude, we have that

P[G 6∈ C] = P[G ∈ A ∩ Cc] + P[G ∈ Ac ∩ Cc] ≤
≤ P[G ∈ A] + P[G ∈ Ac]P[G ∈ Cc|G ∈ Ac] = rp(n) + (1− rp(n))r

′
p(n)

and both these terms tend to 0 as n tends to infinity.

We can now prove:

Theorem 13. For a fixed k ∈ N, hk is weakly distinguishing.

Proof: Let C be the same as in the lemma. Similarly to the previous theorem, note that if G ∈ C,

then for λ ∈ N any k-harmonious colouring f : V (G) → [λ] of G must assign a different colour

to every vertex (otherwise, if v, u ∈ V (G) are such that f(v) = f(u), and w1, ..., wk ∈ V (G) are

such that {u,w1, ..., wk} and {v, w1, ..., wk} induce a complete graph in G, then f({u,w1, ..., wk}) =
f({v, w1, ..., wk})), and thus hk(G, λ) = λ(λ− 1)(λ− 2)...(λ−n+1). By the same reasoning as in the

proof of theorem 4, hk is weakly distinguishing.

7 Conclusion

We have shown for many graph propertiesQ that the polynomialsPQ are weakly distinguishing, including

the well studied clique and independence polynomials. We have also shown that the harmonious and k-

harmonious polynomials are weakly distinguishing.

Our results relied on the fact that the number of polynomials that can be the PQ polynomial of a graph is

small, and on the fact that almost all graphs have properties that imply their harmonious and k-harmonious

polynomials are trivial. This does not seem to be the case for the Tutte and the chromatic polynomials, so

the original question of whether they, as well as the characteristic and matching polynomials, are weakly

distinguishing remains open.

Problem. Find a graph property Q such that the fraction of PQ unique graphs is strictly positive.

Problem. Let P be a graph polynomial, G,H two graphs, and write G ∼P H if P (G) = P (H). What

can be said about the sizes of the equivalence classes of ∼P ?
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