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Given a graph G, let vc(G) and vc+(G) be the sizes of a minimum vertex cover and a maximum minimal vertex cover

of G, respectively. We say that G is well covered if vc(G) = vc+(G) (that is, all minimal vertex covers have the same

size). Determining if a graph is well covered is a coNP-complete problem. In this paper, we obtain O∗(2vc)-time

and O∗(1.4656vc
+

)-time algorithms to decide well coveredness, improving results of 2015 by Boria et al. Moreover,

using crown decomposition, we show that such problems admit kernels having linear number of vertices. In 2018,

Alves et. al. proved that recognizing well covered graphs is coW[2]-hard when α(G) = n− vc(G) is the parameter.

Contrasting with such coW[2]-hardness, we present an FPT algorithm to decide well coveredness when α(G) and the

degeneracy of the input graph G are aggregate parameters. Finally, we use the primeval decomposition technique to

obtain a linear time algorithm for extended P4-laden graphs and (q, q− 4)-graphs, which is FPT parameterized by q,

improving results of 2013 by Klein et al.

Keywords: Well covered graphs, primeval decomposition, degenerate graphs, fixed parameter tractability, polyno-

mial kernel

1 Introduction

Let G = (V,E) be a graph. A subset C is called a vertex cover if every edge of G has an endpoint in C.

A subset I of G is called an independent set if every pair of distinct vertices of I are not adjacent in G. It

is well known that C is a vertex cover if and only if V − C is an independent set.

Let vc(G) be the size of a minimum vertex cover and let the independence number α(G) = n− vc(G)
be the size of a largest independent set in G.
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A vertex cover is minimal if it does not contain any distinct vertex cover of G. An independent set

is maximal if it is not properly contained in any other independent set of G. A graph G is called well

covered if all minimal vertex covers of G have the same size vc(G). That is, if vc(G) = vc+(G), where

vc+(G) is the size of a maximum minimal vertex cover. Clearly, vc(G) ≤ vc+(G) for every graph G.

Alternatively, a graph G is well covered if all maximal independent sets of G have the same size α(G).
The concept of well covered graph was introduced by Plummer (1970).

Well covered graphs are interesting because the greedy algorithm for producing a maximal independent

set (resp. a minimal vertex cover) always produces a maximum independent set (resp. a minimum vertex

cover). Recall that determining the independence number and the minimum vertex cover of a general

graph are NP-hard problems. Unfortunately, the problem of deciding if a graph is well covered is coNP-

complete. This was independently proved by Chvátal and Slater (1993) and by Sankaranarayana and

Stewart (1992). The problem remains coNP-complete even when the input graph is K1,4-free (see Caro

et al. (1996)).

Several papers investigate well coveredness in graph classes in order to obtain structural characteriza-

tions and polynomial time algorithms that recognize if a graph of such classes is well covered. See for

example Caro (1997); Dean and Zito (1994); Fradkin (2009); Finbow et al. (1993); Prisner et al. (1996);

Plummer (1993); Randerath and Vestergaard (2006); Tankus and Tarsi (1997).

We first consider some classes of graphs that have been characterized in terms of special properties of

the unique primeval decomposition tree associated to each graph of the class. The primeval decomposition

tree of any graph can be computed in time linear in the number of vertices and edges (see Jamison and

Olariu (1995)) and therefore it is the natural framework for finding polynomial time algorithms of many

problems. Klein et al. (2013) investigated the well coveredness of many classes of graphs with few P4’s,

such as cographs, P4-reducible, P4-sparse, extended P4-reducible, extended P4-sparse, P4-extendible,

P4-lite and P4-tidy. In this paper, we extend results of 2013 by Klein et al. (2013) for two superclasses of

those graph classes: extended P4-laden graphs and (q, q− 4)-graphs. We obtain linear time algorithms to

decide well coveredness for such graph classes. The algorithm for (q, q− 4)-graphs is FPT parameterized

by q.

We also obtain O∗(2vc)-time and O∗(1.4656vc
+

)-time FPT algorithms to decide well coveredness,

parameterized by vc(G) and vc+(G), respectively, improving results of 2015 by Boria et al. (2015).

Moreover, using crown decomposition, we show that such problems admit kernels having linear number of

vertices. Contrasting with the coW[2]-hardness of recognizing well covered graphs by Alves et al. (2018)

when α(G) = n− vc(G) is the parameter, we obtain an FPT algorithm to decide well coveredness when

α(G) and the degeneracy of the input graph G are aggregate parameters, implying the fixed-parameter

tractability, with respect to α(G), of graphs having bounded genus (such as planar graphs) and graphs

with bounded maximum degree.

2 The size of a minimum vertex cover as parameter

We say that the running time of an FPT algorithm is O∗(f(k)), if it can be performed in O(f(k)·nc)-time,

for some constant c.
In 2015, Boria et al. (see Theorem 5 of Boria et al. (2015)) proved that the maximum minimal

vertex cover problem is FPT parameterized by vc(G) (the vertex cover number). They obtained an

O∗(2.8284vc)-time FPT algorithm to compute the maximum minimal vertex cover, which can be used

to decide well coveredness of a graph. Alves et al. (2018) investigated the well coveredness problem
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Fig. 1: Graph G with a minimum vertex cover C and three different partitions (A,B) of C. Only in the third partition,

A ∪ (N(B) \B) is a minimal vertex cover.

and proved that it is FPT parameterized by vc(G), by obtaining an FPT algorithm with time O∗(2nd) =
O∗(2vc+2vc), where nd(G) is the neighborhood diversity of G.

In the following, we improve these results and show that it is possible to enumerate all minimal vertex

covers in time O(2vc · (m+ n)).

Theorem 1 It is possible to enumerate in time O(2vc · (m + n)) all minimal vertex covers of a graph.

Consequently, there exists an O∗(2vc)-time FPT algorithm to decide well coveredness parameterized by

vc = vc(G).

Proof: Let C be a minimum vertex cover of G. Then all edges have an endpoint in C. Therefore, for

every partition of C in two sets A and B (A ∪B = C, A ∩B = ∅), A ∪ (N(B) \B) is a vertex cover of

G if there are no edges with both endpoints in B.

Moreover, for every minimal vertex cover C′ of G, A = C ∩C′ and B = C \C′ form a partition of C
such that C′ = A ∪ (N(B) \B), since C′ \ C ⊆ N(B) (because C′ is a vertex cover and is minimal).

Thus, we can enumerate all minimal vertex covers of G by checking for every partition (A,B) of C if

A∪ (N(B) \B) is a minimal vertex cover of G. See Figure 1 for an example with a graph G, a minimum

vertex cover C and three different partitions (A,B) of C. Only in the third partition, A ∪ (N(B) \B) is

a minimal vertex cover. In the first partition, A ∪ (N(B) \B) is not minimal and, in the second partition,

A ∪ (N(B) \ B) is not a vertex cover. Notice that verifying if a set is a minimal vertex cover can be

done in time O(m + n). Since there are 2|C| partitions of C, |C| = vc(G) and it is possible to obtain a

minimum vertex cover C in time O(2vc · (m+ n)), we are done. ✷

2.1 Polynomial kernel

Crown decomposition is a general kernelization technique that can be used to obtain kernels for many

problems (see Cygan et al. (2015)).

Definition 2 (Crown decomposition) A crown decomposition of a graph G is a partitioning of V (G) into

three parts C (Crown), H (Head) and R (Remainder), such that:
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• C is nonempty;

• C is an independent set;

• There are no edges between vertices of C and R. That is, H separates C and R;

• Let E be the set of edges between vertices of C and H . Then E contains a matching of size |H |. In

other words, G contains a matching of H into C.

The following lemma is the basis for kernelization using crown decomposition (see Cygan et al. (2015)).

Lemma 3 (Crown lemma) Let k be a positive integer and let G be a graph without isolated vertices and

with at least 3k + 1 vertices. There is a polynomial-time algorithm that either

• finds a matching of size k + 1 in G; or

• finds a crown decomposition of G.

Now, by using Crown lemma, we will present a kernelization algorithm for recognizing well covered

graphs, where the vertex cover number is the parameter. For simplicity, let k be the size of a minimum

vertex cover of G, i.e., k = vc(G).

Corollary 4 Let G be a graph without isolated vertices whose vertex cover number equals k, and with at

least 3k + 1 vertices. There is a polynomial-time algorithm that finds a crown decomposition of G such

that |H | ≤ k.

Proof: By Lemma 3 , there is a polynomial-time algorithm that either finds a matching of size k + 1 in

G; or finds a crown decomposition of G. As the size of a maximum matching of a graph is a lower bound

to its vertex cover number, G has no matching of size k + 1.

By definition, in a crown decomposition of G into C, H and R, there is a matching of H into C. As C
is an independent set, and there is no edge between C and R, it is easy to see that there exists a minimum

vertex cover of G that contains H . Thus, |H | ≤ k. ✷

Lemma 5 Let G be a graph without isolated vertices and let C, H and R be a crown decomposition of

G. If G is well covered then G[R] and G[C ∪H ] are well covered.

Proof: Suppose that G is well covered and G[R] is not well covered. Then, G[R] has two maximal

independent sets I1, I2 such that |I1| 6= |I2|. As C is an independent set that dominates H , it follows that

I1 ∪C and I2 ∪C are two maximal independent set of G having different cardinalities, contradicting the

fact that G is well covered.

Now, suppose that G is well covered and G[C ∪H ] is not well covered. Then, G[C ∪H ] has a maximal

independent set I such that |I| 6= |C|. Clearly I \ C 6= ∅. Since G[C ∪ H ] has a matching M of H
into C, we know that each edge of M has at most one vertex in I . Thus, |I| < |C|. Let R∗ be the set of

vertices in R with no neighbors in I . Let SR and SR∗ be a maximum independent set of G[R] and G[R∗],
respectively. Note that |SR∗ | ≤ |SR|, then SR ∪ C and SR∗ ∪ I are two maximal independent set of G
having different cardinalities, contradicting the fact that G is well covered. ✷
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Lemma 6 Let G be a graph without isolated vertices and let C, H and R be a crown decomposition of

G such that R = ∅. If G is well covered then |C| =|H |.

Proof: It is well-known that there is a minimum vertex cover of G that contains H (see Cygan et al.

(2015)). As R = ∅ then H is a minimum vertex cover of G. By definition, in a crown decomposition of

G into C, H and R, there is a matching M of H into C. Suppose that there is an M -unsaturated vertex

w/∈ V (M) (w ∈ C). The vertex w has a neighbor in H , otherwise w is an isolated vertex. Let v be a

neighbor of w and let K be a minimal vertex cover of G such that v /∈ K . Note that N(v) ⊆ K . For

any vertex x ∈ H (including v) such that x /∈ K , there is a vertex xc ∈ C such that (x, xc) ∈ M , which

implies that xc ∈ K . Thus, K has size at least |H |. Since w is M -unsaturated and it is also a vertex in

K , then K is a minimal vertex cover of G of size greater than |H |, contradicting the fact that G is well

covered. ✷

Corollary 7 Let G be a well covered graph without isolated vertices whose vertex cover number equals k,

and with at least 3k + 1 vertices. There is a polynomial-time algorithm that finds a crown decomposition

of G such that

• |C| = |H | ≤ k; and

• G[C ∪H ] and G[R] are well covered.

• G[R] has no isolated vertex.

Proof: By Corollary 4 there is a polynomial-time algorithm that finds a crown decomposition of G such

that |H | ≤ k. By Lemma 5 we know that G[C ∪ H ] and G[R] are well covered. Let C′ = C, H ′ = H
and R′ = ∅ be a crown decomposition of G[C ∪H ]. By Lemma 6 follows that |C| = |H |.

Now, it remains to show that G[R] has no isolated vertex.

Suppose that G is well covered and G[R] has an isolated vertex ℓ. Any maximal independent set of

G[R] contains ℓ. Let S be a maximum independent set of G[R]. It is easy to see that S ∪C is a maximum

independent set of G. As ℓ is an isolated vertex in G[R] and G has no isolated vertex, then ℓ has a neighbor

u in H . Taking a maximal independent set S1 of G[C ∪ H ] that contains u, and a maximal independent

S2 of G[R \ N(u)], it follows that S1 ∪ S2 is a maximal independent set of G. Note that |S1| = |C|,
because G[C ∪H ] is well covered, but S2 has fewer vertices than S, since it does not contain ℓ. Then, G
is not well covered. ✷

Now, we show a kernel having at most 5k vertices to the problem of determining whether G is well

covered.

Theorem 8 Let G be a graph without isolated vertices whose vertex cover number equals k. It holds that

either

• G is not well covered; or

• G has at most 5k vertices.
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Proof: Suppose that G is well covered and has at least 3k+1 vertices. By Corollary 7 we can decompose

G into C, H and R such that |C|+ |H | ≤ 2k and G[R] is a well covered graph without isolated vertices.

Let C,H,R be a crown decomposition of G that maximizes the size of the crown C.

As G[R] is a well covered graph without isolated vertices, then either G[R] has at most 3k vertices; or

G[R] admits a crown decomposition into C′, H ′ and R′.

If G[R] has at most 3k vertices then G has at most 5k vertices.

Otherwise, G[R] admits a crown decomposition into C′, H ′ and R′ and the following holds:

• C ∪ C′ is nonempty;

• C ∪ C′ is an independent set, because C′ ⊆ R.

• There are no edges between vertices of C ∪ C′ and R′;

• G contains a matching of H ∪H ′ into C ∪ C′.

Therefore, C ∪ C′, H ∪ H ′ and R′ is also a crown decomposition of G. Since, by definition, C′ is

nonempty then C ∪ C′, H ∪ H ′ and R′ is a crown decomposition of G with a larger crown. Thus, we

have a contradiction. ✷

3 The size of a maximum minimal vertex cover as parameter

Following the results of Boria et al. (2015), there is also an FPT algorithm to compute a maximum minimal

vertex cover parameterized by vc+ = vc+(G) (the size of a maximum minimal vertex cover). Its time is

O∗(1.5397vc
+

). In the following, we obtain a faster FPT algorithm with time O∗(1.4656vc
+

) to decide

well-coveredness using the classical FPT algorithm for vertex cover (see Cygan et al. (2015)).

Theorem 9 Given a graph G and vc+(G), it is possible to decide whether G is well covered in time

O(1.4656vc+ · n2).

Proof: Let G be a graph and let the parameter k = vc+(G). The algorithm uses a search tree where each

node h has an associated graph Gh, a parameter kh and an associated “partial vertex cover” Ch in such

a way that every edge of G − Gh is covered by Ch. In the root r, the associated graph Gr is equal to

G, the parameter kr = k and Cr is the empty set ∅. In the following, we define Gh recursively for any

non-root node h of the search tree. We say that a node ℓ is a leaf if and only if its associated graph Gℓ has

maximum degree at most 2 or its associated parameter kℓ = 0.

Let h be a non-leaf node. Then Gh has a vertex xh with degree at least 3. Notice that there is no

minimal vertex cover containing NGh
[xh], since removing xh we also have a vertex cover. Then we have

two possibilities: (1) xh in the vertex cover; or (2) xh not in the vertex cover and consequently NGh
(xh)

in the vertex cover, if kh ≥ |NGh
(xh)|. We branch h according to these two possibilities.

In the first child h1, let Ch1
= Ch ∪ {xh}, kh1

= kh − 1 and Gh1
is obtained from Gh by removing

the vertex xh. In words, we include xh to the partial vertex cover Ch1
of Gh1

, and remove from Gh the

vertex xh to obtain Gh1
.

If kh ≥ |NGh
(xh)|, the nodeh has a second child h2 withCh2

= Ch∪NGh
(xh), kh2

= kh−|NGh
(xh)|

and Gh2
is obtained from Gh by removing NGh

[xh]. In words, we include NGh
(xh) to the partial vertex

cover Ch2
of Gh2

, and remove NGh
[xh] from Gh to obtain Gh2

.
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For each leaf ℓ with kℓ = 0 and Gℓ empty (no edges), we have that Cℓ is a vertex cover of G. For each

leaf ℓ with kℓ = 0 and Gℓ non-empty, we have that Cℓ has k vertices and is not a vertex cover of G (in this

case, such a leaf is ignored). For each leaf ℓ with kℓ > 0, Gℓ has maximum degree at most 2 and then it is

a simple graph consisting of paths, cycles or isolated vertices and it is possible to obtain a minimum and

a maximum superset of Cℓ which are minimal vertex covers of G in linear time, if they exist. With this,

we can obtain a minimum vertex cover (size vc(G)) and a maximum minimal vertex cover (size vc+(G))
by looking the vertex covers obtained by the leaves which are minimal. With this, we can decide if G is

well covered.

Let T (kh) be the number of leaves in the subtree with root h. Then T (kh) = T (kh1
)+T (kh2

) if h has

two children. Otherwise, T (kh) = T (kh1
). Moreover, for each leaf ℓ, T (kℓ) = 1. Since |N(xh)| ≥ 3,

then T (kh) ≤ T (kh − 1) + T (kh − 3). Using induction on k, we have that T (k) ≤ 1.4656k. Then the

search tree has at most 1.4656k leaves and consequently at most 2 · 1.4656k + 1 nodes, since each node

has at most two children. Since every non-leaf node takes time at most O(n2) and every leaf ℓ takes time

O(n2) to decide if Cℓ is a minimal vertex cover, we have that the total time is O(1.4656k ·n2) and we are

done.

Now consider a non-leaf nodeh such that all vertices ofGh have degree at most two. If Gh is connected,

then Gh is either a path or a cycle, and a minimum vertex cover and a maximum minimal vertex cover

can be computed in O(n2) time. If Gh is not connected, then it is a disjoint union of paths and cycles and

we have the same time to compute both parameters. ✷

Corollary 10 Let G be a graph without isolated vertices. The problem of determining whether G is well

covered admits a kernel having at most 5 · vc+(G) vertices.

Proof: It follows from Theorem 8 and the fact that vc+(G) ≥ vc(G). ✷

4 The size of a maximum independent set as parameter

The local-treewidth (see Eppstein (2000)) of a graph G is the function ltwG : N → N which as-

sociates with any r ∈ N the maximum treewidth of an r-neighborhood in G. That is, ltwG(r) =
maxv∈V (G){tw(G[Nr(v)]}, where Nr(v) is the set of vertices at distance at most r from v. We say

that a graph class C has bounded local-treewidth if there is a function fC : N → N such that, for all G ∈ C
and r ∈ N, ltwG(r) ≤ fC(r). It is known that graphs with bounded genus or bounded maximum degree

have bounded local-treewidth (see Eppstein (2000)). In particular, a graph with maximum degree ∆ has

ltwG(r) ≤ ∆r and a planar graph has ltwG(r) ≤ 3r − 1 (see Bodlaender (1998)).

In this section, we consider bounded local-treewidth graphs and d-degenerate graphs, both classes

include graphs with bounded genus and graphs with bounded maximum degree.

Theorem 11 Given a graph G having bounded local-treewidth, the problem of determining whether G is

well covered is FPT when parameterized by α = α(G). More precisely, it can be solved in O(f(α) · n2)
time.

Proof: In the following, we express the well coveredness problem in First Order logic. We use lower case

variables x, y, z, . . . (resp. upper case variables X,Y, Z, . . .) to denote vertices (resp. subsets of vertices)

of a graph. The atomic formulas are x = y, x ∈ X and E(x, y) which denotes the adjacency relation in
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a given graph. We say that a logic formula is FO (first order) if it is formed from atomic formulas with

Boolean connectives ∧, ∨, ¬, →, ↔ and element quantifications ∃x and ∀x.

Consider the formula Indep(X) which is true if and only if X is an independent set:

Indep(X) := ∀x, y (x ∈ X ∧ y ∈ X) → ¬E(x, y)

Also consider the formula Maximal(X) which is true if X is not properly contained in an independent

set.

Maximal(X) := ∀y ∃x (y 6∈ X) → (x ∈ X) ∧ E(x, y),

where (y 6∈ X) := ¬(y ∈ X).
Given a graph G, it is not well covered if and only if G has a maximal independent set Y and a

maximum independent set X ′ with |X ′| ≥ |Y |+ 1. Thus X ′ has a subset X with |X | = |Y |+ 1, which

is clearly independent.

With this, given a positive integer k, let WellCovk be the following first order formula, which is true

if and only if the graph G does not have two independent sets X and Y with |X | = k, |Y | = k− 1 and Y
being maximal:

WellCovk := ∀x1, . . . , xk ∀y1, . . . , yk−1





∧

1≤i<j≤k

xi 6= xj



 ∧ Indep({x1, . . . , xk})

→ ¬
(

Indep({y1, . . . , yk−1}) ∧ Maximal({y1, . . . , yk−1}
)

Notice that WellCovk contains 2k − 1 variables.

Now let α = α(G). As mentioned before, if G is not well covered, then there are independent sets X
and Y with 2 ≤ |X | ≤ α, |Y | = |X | − 1 and Y being maximal. With this, let WellCov be the following

first order formula, which is true if and only if G is well covered:

WellCov :=
∧

2≤k≤α

WellCovk.

Then the well covered decision problem is first order expressible. Moreover, WellCov contains at

most α2 variables and then the size of the expression WellCov is a function of α. We then can apply the

Frick-Grohe Theorem (see Chapter 14 of Downey and Fellows (2013)) to prove that the well coveredness

decision problem is FPT with parameter α(G) in time O(n2) for graphs with bounded local treewidth. ✷

The last theorem is a general result for bounded local treewidth graphs. We can obtain specific FPT al-

gorithms (parameterized by α(G)) for d-degenerate graphs, such as planar graphs, bounded genus graphs

and bounded maximum degree graphs. A graph is called d-degenerate if every induced subgraph has a

vertex with degree at most d. The degeneracy of a graph G is the smallest d such that G is d-degenerate.

For example, outerplanar graphs, planar graphs and graphs with bounded maximum degree ∆ have de-

generacy at most 2, 5 and ∆, respectively.

Theorem 12 The problem of determining whether a given graph G is well covered is FPT when parame-

terized by α = α(G) and the degeneracy of G. More precisely, it can be solved in O((d+ 1)α · (m+ n))
time.
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Proof: Let G be a d-degenerate graph. The algorithm uses a search tree T with height α = α(G) where

each node h of T has an associated graph Gh. The associated graph of the root r of T is the original graph

Gr = G. A leaf is a node such that its height is α or its associated graph is empty.

Let h be a non-leaf node with associated graph Gh. We branch h according to a vertex v with minimum

degree in the associated graph of h. Let NGh
[v] = {u1, . . . , uℓ}, where ℓ = |NGh

[v]| ≤ d+1. With this,

the node h will have ℓ+ 1 child nodes h1, h2, . . . , hℓ in the search tree. In the child node hi (1 ≤ i ≤ ℓ),
let Ghi

= Gh initially and remove NGh
[ui] from the associated graph Ghi

, which is also d-degenerate.

If there are two leaf nodes with different heights, return NO (since G has a maximal independent set

which is not maximum and then G is not well covered). Otherwise, return YES. Notice that the tree

height is at most α(G) and each node has at most d+1 child nodes. Therefore, the search tree has at most

(d+ 1)α nodes and the total time is O((d + 1)α · (m+ n)), since every node takes time O(m+ n). ✷

With this, we obtain the following corollary for graphs with bounded genus.

Corollary 13 Given a graph G with bounded genus, the problem of determining whether G is well cov-

ered can be solved in O(7α · (m+ n)) time.

Proof: Observe that if G has genus equals 0 then G is a planar graph, thus G is 5-degenerate and it is done

by Theorem 12. Now, assume that the genus g of G is bounded by a constant c ≥ 1. Since G has bounded

genus g, we can assume that n ≥ 12g, otherwise we can verify well coveredness in constant time.

Let G be a graph embedded in a surface of genus g without crossing edges (for example, toroidal graphs

have g = 1). From the Euler’s formula for surfaces of genus g, we have that m = n+ f − 2 + 2g, where

f is the number of faces of G. Moreover, we can assume that all faces of G are triangles (otherwise

we can increase the number of edges) and then every edge is part of two faces: 3f = 2m. Thus, m =
n + (2/3)m− 2 + 2g and then m = 3n+ 6g − 6. As n ≥ 12g, it follows that m ≤ (3.5)n − 6. Since

the sum of vertex degrees is 2m ≤ 7n− 12, then G has a vertex of degree less than 7. As bounded genus

is a hereditary property, it holds that each subgraph of G either has at most 12g vertices, or has a vertex

of degree at most six. Therefore, by applying similar ideas in the proof of Theorem 12, we can determine

whether G is well covered in O(7α · (m+ n)) time. ✷

5 Well coveredness of graphs with few P4’s

In this section, we obtain linear time algorithms for extended P4-laden graphs and (q, q − 4)-graphs. A

cograph is a graph with no induced P4 (see Corneil et al. (1981)). A graph G is P4-sparse if every set

of five vertices in G induces at most one P4 (see Jamison and Olariu (1992)). A graph G is (q, q − 4)
for some integer q ≥ 4 if every subset with at most q vertices induces at most q − 4 P4’s (see Babel

et al. (2001)). Cographs and P4-sparse graphs are exactly the (4, 0)-graphs and the (5, 1)-graphs. Babel

et al. (2001) obtained polynomial time algorithms for several optimization problems in (q, q − 4)-graphs.

A graph is extended P4-laden if every induced subgraph with at most six vertices contains at most two

induced P4’s or is {2K2, C4}-free. This graph class was introduced by Giakoumakis (1996).

A motivation to develop algorithms for extended P4-laden graphs and (q, q− 4)-graphs lies on the fact

that they are on the top of a widely studied hierarchy of classes containing many graphs with few P4’s,

including cographs, P4-sparse, P4-lite, P4-laden and P4-tidy graphs. See Figure 2. Klein et al. (2013)

obtained linear time algorithms to determine well coveredness for P4-tidy graphs.
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Extended P4-laden (q, q − 4)-graph

P4-tidy P4-laden (7, 3)-graph

P4-extendible Extended P4-sparse P4-lite

Extended P4-reducible P4-sparse

P4-reducible

Cograph

q > 7

Fig. 2: Hierarchy of graphs with few P4’s. In gray, the classes investigated by Klein et al. (2013).

Given graphs G1 = (V1, E1) and G2 = (V2, E2), the union of G1 and G2 is the graphG1∪G2 = (V1∪
V2, E1∪E2) and the join of G1 andG2 is the graphG1∨G2 = (V1∪V2, E1∪E2∪{uv : u ∈ V1, v ∈ V2}).

A pseudo-split is a graph whose vertex set has a partition (R,C, S) such that C induces a clique, S
induces an independent set, every vertex of R is adjacent to every vertex of C and non-adjacent to every

vertex of S, every vertex of C has a neighbor in S and every vertex of S has a non-neighbor in C. Notice

that the complement of a pseudo-split is also a pseudo-split.

A spider is a pseudo-split with partition (R,C, S) such that C = {c1, . . . , ck} and S = {s1, . . . , sk}
for k ≥ 2 and either si is adjacent to cj if and only if i = j (a thin spider), or si is adjacent to cj if and

only if i 6= j (a thick spider). Notice that the complement of a thin spider is a thick spider, and vice-versa.

A quasi-spider is obtained from a spider by substituting a vertex of C ∪ S by a K2 or a K2.

A graph G is p-connected if, for every bipartition of the vertex set, there is a crossing P4 (that is, an

induced P4 with vertices in both parts of the bipartition). A p-component of G is a maximal p-connected

subgraph. A graph H is separable if its vertex set can be partitioned in two graphs (H1, H2) such that

every induced P4 wxyz with vertices of H1 and H2 satisfies x, y ∈ V (H1) and w, z ∈ V (H2). We write

H → (H1, H2). It was proved that, if G and G are connected and G is not p-connected, then G has a

separable p-component H → (H1, H2) such that every vertex of G−H is adjacent to every vertex of H1

and non-adjacent to every vertex of H2 (see Jamison and Olariu (1995)).

Giakoumakis (1996) proved that every p-connected extended P4-laden graph is pseudo-split or quasi-

spider (R,C, S) with R = ∅, or is isomorphic to C5, P5 or P5. The following theorem suggests a natural

decomposition for extended P4-laden graphs, which can be obtained in linear time.

Theorem 14 (Giakoumakis (1996)) A graph G is extended P4-laden if and only if exactly one of the
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following conditions is satisfied:

• G is the disjoint union or the join of two extended P4-laden graphs;

• G is pseudo-split or quasi-spider (R,C, S) such that G[R] is extended P4-laden;

• G is isomorphic to C5, P5 or P5;

• G has at most one vertex.

For every q ≥ 4, the (q, q−4)-graphs are self-complementary and have a nice structural decomposition

in terms of union and join operations, spider graphs and separable p-components. Babel and Olariu (1998)

proved that every p-connected (q, q−4)-graph is a spider (R,C, S) with R = ∅ or has less than q vertices.

Theorem 15 (Babel and Olariu (1998)) Let q ≥ 4. If G is a (q, q − 4)-graph, then one of the following

holds:

• G = G1 ∪G2 is the union of two (q, q − 4)-graphs G1 and G2;

• G = G1 ∨G2 is the join of two (q, q − 4)-graphs G1 and G2;

• G is a spider (R,C, S) such that G[R] is a (q, q − 4)-graph.

• G contains a separable p-component H → (H1, H2) with |V (H)| < q such that G − H is a

(q, q − 4)-graph and every vertex of G −H is adjacent to every vertex of H1 and not adjacent to

any vertex of H2;

• G has less than q vertices.

This decomposition can be obtained in linear time (see Babel and Olariu (1998)). Linear time algo-

rithms are obtained by Babel et al. (2001) for several optimization problems in (q, q − 4)-graphs using

this decomposition.

Klein et al. (2013) characterized well coveredness for the union and join operations.

Theorem 16 (Theorems 6 and 7 of Klein et al. (2013)) Let G1 and G2 be two graphs. Then G1 ∪G2 is

well covered if and only if G1 and G2 are well covered. Moreover, G1 ∨G2 is well covered if and only if

G1 and G2 are well covered and α(G1) = α(G2).

In the following, we characterize well coveredness for pseudo-split graphs. It is worth mentioning

that Alves et al. (2018) obtained a characterization for well-covered split graphs which is similar to the

following, but different, since pseudo-split graphs have the part R which must be considered.

Lemma 17 Let G be a pseudo-split graph with partition (R,C, S). Then G is well covered if and only if

R = ∅ and every vertex of C has exactly one neighbor in S.

Proof: Recall that C induces a clique, S induces an independent set and every vertex of C has a neighbor

in S. Suppose that R 6= ∅. Then, for every vertex r ∈ R, S ∪ {r} is an independent set of G with |S|+ 1
vertices. Moreover, for any vertex c ∈ C, we have that S ∪ {c} \N(c) is a maximal independent set of G
with at most |S| vertices. Thus G is not well covered.
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Now assume that R = ∅. Let I be a maximal independent set of G. Clearly |I∩C| ≤ 1 since C induces

a clique. Suppose that I ∩ C = ∅. Then I = S (because I is maximal) and consequently |I| = |S|. Now

suppose that |I ∩C| = 1 and let c ∈ I ∩C. Then S \N(c) ⊆ I (because I is maximal), and consequently

|I| is the number of non-neighbors of c in S plus one. Then G is well covered if and only if c has exactly

one neighbor in S for every c ∈ C. Since they are the only possible maximal independent sets, we are

done. ✷

In the following, we characterize well coveredness for quasi-spiders.

Lemma 18 Let G be a quasi spider with partition (R,C, S). Then G is well covered if and only if R = ∅
and G is a thin spider with a vertex possibly substituted by a K2.

Proof: Recall that C induces a clique, S induces an independent set and every vertex of R is adjacent to

each vertex of C and non-adjacent to each vertex of S. Let C = {c1, . . . , ck} and S = {s1, . . . , sk} for

k ≥ 2.

From Lemma 17, we have that a thin spider is well covered if and only if R = ∅. The same is valid if

a vertex of C ∪ S is substituted by a K2. However, if a vertex of C ∪ S is substituted by a K2, then we

obtain two independent sets with sizes k and k + 1, and consequently G is not well covered.

From Lemma 17, we have that a thick spider is well covered if and only if R = ∅ and k = 2, and

consequently G is also a thin spider with R = ∅. Moreover, the same is valid if any vertex of C ∪ S is

substituted by a K2 or a K2. ✷

In the following, we determine well coveredness for separable p-components H with less than q ver-

tices.

Lemma 19 Let q ≥ 4 be a fixed integer and G be a graph with a separable p-component H with sep-

aration H → (H1, H2) with less than q vertices such that G − H 6= ∅, every vertex of G − H is

adjacent to all vertices of H1 and non-adjacent to all vertices of H2. Then G is well covered if and only if

G−H and H2 are well covered and every maximal independent set of H with a vertex of H1 has exactly

α(G−H) + α(H2) vertices.

Proof: At first, notice that, from any maximal independent sets I of G − H and I2 of H2, we obtain

a maximal independent set I ∪ I2 of G. Thus, if either G − H or H2 is not well covered, then G is

not well covered. Moreover, any maximal independent set of H with a vertex of H1 is also a maximal

independent set of G, since every vertex of H1 is adjacent to all vertices in G − H . Thus, if there is a

maximal independent set I1 of H containing a vertex of H1 with |I1| 6= α(G−H)+α(H2), then G is not

well covered. Finally, notice that any maximal independent set of G with a vertex in G −H is obtained

from a maximal independent set of G−H and a maximal independent set of H2, and we are done. ✷

Theorem 20 Let G be a graph. If G is a (q, q − 4)-graph, we can determine well coveredness in linear

time O(2qq2 · (m+ n)). If G is extended P4-laden, we can determine well coveredness in linear time.

Proof: Taking a primeval decomposition T of G, it is easy to see that one can construct a bottom-up

dynamic programming according to the following rules:
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1. if G is isomorphic to C5 or P5 then G is well covered;

2. if G is isomorphic to P5 then it is not well covered;

3. If G = G1 ∪G2 is the union of two (q, q − 4)-graphs or two extended P4-laden graphs, then G is

well covered if and only if G1 and G2 are well covered; (see Theorem 16)

4. if G = G1 ∨ G2 is the join of two (q, q − 4)-graphs or two extended P4-laden graphs, then G is

well covered if and only if G1 and G2 are well covered and α(G1) = α(G2);

5. If G is pseudo-split or quasi-spider, we are done by Lemmas 17 and 18;

6. if G is a (q, q−4)-graph and has a separable p-connected componentH , then we have from Lemma

19 that well coveredness can be decided by verifying well coveredness for H2 and checking all

maximal independent sets of H containing a vertex of H1.

Note that we can apply a linear-time preprocessing in order to check the well coveredness of every

leaf node of T . After that, in a bottom-up dynamic programming according to a post-order of T , the

well coveredness of nodes representing cases 1,2,3 and 4 can be checked in constant time. For a node

representing case 5, to check if R = ∅ can be done in constant time, and if so, this node is a leaf. Finally,

for nodes representing case 6, the well coveredness of H2 can be tested in time O(2qq2), since there are

at most 2q sets in H2 and each one can be tested in time O(q2). We have the same time for maximal

independent sets of H containing a vertex of H1. ✷
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V. Chvátal and P. J. Slater. A note on well-covered graphs. volume 55 of Annals of Discrete Mathematics,

pages 179 – 181. Elsevier, 1993.

D. Corneil, H. Lerchs, and L. Stewart-Burlingham. Complement reducible graphs. Discrete Applied

Mathematics, 3(3):163 – 174, 1981.

B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics,

101(1):77 – 114, 2000.

B. Courcelle, J. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of

bounded clique width. Theory of Computing Systems, 33:125–150, 2000.

M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.

Parameterized algorithms Springer International, 2015.

N. Dean and J. Zito. Well-covered graphs and extendability. Discrete Mathematics, 126(1):67 – 80, 1994.

R. Downey and M. Fellows. Fundamentals of Parameterized Complexity (Texts in Computer Science).

Springer-Verlag London, 2013. ISSN 1864-0941.

D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27:275–291, 2000.

A. Finbow, B. Hartnell, and R. Nowakowski. A characterization of well covered graphs of girth 5 or

greater. Journal of Combinatorial Theory, Series B, 57(1):44 – 68, 1993.

A. O. Fradkin. On the well-coveredness of cartesian products of graphs. Discrete Mathematics, 309(1):

238 – 246, 2009.

V. Giakoumakis. P4-laden graphs: A new class of brittle graphs. Information Processing Letters, 60(1):

29 – 36, 1996.

M. C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes. International Journal

of Foundations of Computer Science, 11(03):423–443, 2000.

B. Jamison and S. Olariu. A tree representation for P4-sparse graphs. Discrete Applied Mathematics, 35

(2):115 – 129, 1992.

B. Jamison and S. Olariu. P-components and the homogeneous decomposition of graphs. SIAM Journal

on Discrete Mathematics, 8(3):448–463, 1995.

S. Klein, C. P. de Mello, and A. Morgana. Recognizing well covered graphs of families with special

P4-components. Graphs and Combinatorics, 29:553–567, 2013.

M. D. Plummer. Some covering concepts in graphs. Journal of Combinatorial Theory, 8(1):91 – 98, 1970.



FPT algorithms to recognize well covered graphs 15

M. D. Plummer. Well-covered graphs: a survey. Quaestiones Mathematicae, 16(3):253–287, 1993.

E. Prisner, J. Topp, and P. D. Vestergaard. Well covered simplicial, chordal, and circular arc graphs. J.

Graph Theory, 21(2):113–119, 1996.

B. Randerath and P. D. Vestergaard. Well-covered graphs and factors. Discrete Applied Mathematics, 154

(9):1416 – 1428, 2006.

R. S. Sankaranarayana and L. K. Stewart. Complexity results for well-covered graphs. Networks, 22:247

– 262, 1992.

D. Tankus and M. Tarsi. The structure of well-covered graphs and the complexity of their recognition

problems. Journal of Combinatorial Theory, Series B, 69(2):230 – 233, 1997.


