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Given a proper edge coloring ϕ of a graph G, we define the palette SG(v, ϕ) of a vertex v ∈ V (G) as the set

of all colors appearing on edges incident with v. The palette index š(G) of G is the minimum number of distinct

palettes occurring in a proper edge coloring of G. In this paper we give various upper and lower bounds on the

palette index of G in terms of the vertex degrees of G, particularly for the case when G is a bipartite graph with

small vertex degrees. Some of our results concern (a, b)-biregular graphs; that is, bipartite graphs where all vertices

in one part have degree a and all vertices in the other part have degree b. We conjecture that if G is (a, b)-biregular,

then š(G) ≤ 1 + max{a, b}, and we prove that this conjecture holds for several families of (a, b)-biregular graphs.

Additionally, we characterize the graphs whose palette index equals the number of vertices.

Keywords: edge coloring, palette index, cyclic interval edge coloring

1 Introduction

Given an edge coloring ϕ of a graph G, we define the palette SG(v, ϕ) (or just S(v, ϕ)) of a vertex

v ∈ V (G) as the set of all colors appearing on edges incident with v. The palette index š(G) of G is the

minimum number of distinct palettes occurring in a proper edge coloring ofG. This notion was introduced

quite recently by Horňák et al. (2014) and has so far primarily been studied for the case of regular graphs.

Denote by ∆(G) and χ′(G) the maximum degree and the chromatic index of a graph G, respectively.

By Vizing’s well-known edge coloring theorem χ′(G) = ∆(G) or χ′(G) = ∆(G)+ 1 for every graphG.

In the former case G is said to be Class 1, and in the latter case G is Class 2.

Trivially, š(G) = 1 if and only G is a regular Class 1 graph, and by Vizing’s edge coloring theorem it

holds that if G is regular and Class 2, then 3 ≤ š(G) ≤ ∆(G) + 1; the case š(G) = 2 is not possible, as

proved in Horňák et al. (2014).

Since computing the chromatic index of a given graph is NP-complete, as proved in Leven and Galil

(1983), determining the palette index of a given graph is NP-complete, even for 3-regular graphs. Note

further that this in fact means that even determining if a given graph has palette index 1 is an NP-complete

problem. Nevertheless, in Horňák et al. (2014) it was proved that the palette index of a cubic Class 2 graph

∗A preliminary version of some of the results in this paper appeared in the proceedings of the conference CSIT 2017, Yerevan,

Armenia
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is 3 or 4 according to whether the graph has a perfect matching or not. Bonvicini and Mazzuoccolo (2016)

investigated 4-regular graphs; they proved that š(G) ∈ {3, 4, 5} if G is 4-regular and Class 2, and that all

these values are in fact attained.

Vizing’s edge coloring theorem yields an upper bound on the palette index of a general graph G with

maximum degree ∆ and no isolated vertices, namely that š(G) ≤ 2∆+1 − 2. However, this is probably

far from being tight. Indeed, Avesani et al. (2018) described an infinite family of multigraphs whose

palette index grows asymptotically as ∆2; it is an open question whether there are such examples without

multiple edges. Furthermore, they suggested to prove that there is a polynomial p(∆) such that for any

graph with maximum degree ∆, š(G) ≤ p(∆). In fact, they suggested that such a polynomial is quadratic

in ∆. We thus arrive at the following conjecture:

Conjecture 1.1. There is a constantC, such that for any graphG with maximum degree∆, š(G) ≤ C∆2.

Very little is known about the palette index of non-regular graphs. Bonisoli et al. (2017) studied the

palette index of trees, and quite recently Horňák and Hudák (2018) completely determined the palette

index of complete bipartite graphs Ka,b with a ≤ 5.

In this note we study the palette index of some families of non-regular graphs. Before outlining the

results of this paper, let us briefly consider a connection to another kind of edge coloring.

An interval t-coloring of a graph G is a proper t-edge coloring such that for every vertex v of G the

colors of the edges incident with v form an interval of consecutive integers; if we also add the condition

that color 1 is considered as consecutive of color t, then we get a cyclic interval t-coloring. Note that any

graph G with an interval coloring admits a cyclic interval ∆(G)-coloring (by taking all colors modulo

∆(G)).

As noted in Avesani et al. (2018), if a graph G with maximum degree ∆ has an interval coloring, then

š(G) ≤ ∆2 −∆+ 1. Moreover, this upper bound holds for graphs with a cyclic interval ∆-coloring (as

implicit in the proof in Avesani et al. (2018)). In fact, it holds that for any graphG with maximum degree

∆, if G has a cyclic interval C∆-coloring, where C is some absolute constant, then the palette index of G

is bounded by a quadratic polynomial in ∆. An example of a family of graphs with this property (which

do not in general admit interval colorings) are complete multipartite graphs; such a graph G has a cyclic

interval coloring with at most 2∆(G) colors, as proved in Asratian et al. (2018b). Since there are at most

∆ different vertex degrees in a graph with maximum degree ∆, it follows that Conjecture 1.1 is true for

every complete multipartite graph.

Proposition 1.2. If G is a complete multipartite graph with maximum degree ∆, then š(G) ≤ 2∆2.

We do not know of any cyclically interval colorable graph G that requires more than 2∆(G) colors

for a cyclic interval coloring; thus we suggest that Conjecture 1.1 particularly holds for any graph with a

cyclic interval coloring. Note further that it is in fact an open problem to determine if there is a graph G

that requires more than ∆(G) + 1 colors for a cyclic interval coloring (cf. Casselgren et al. (2018)).

In the following, we shall present some further upper bounds on the palette index based on connections

with cyclic interval colorings; as it turns out, existence of cyclic interval colorings do in fact provide tight

upper bounds on the palette index of some families of graphs. Furthermore, motivated by the connection

with cyclic interval colorings, we consider the problem of determining the palette index of a natural

generalization of regular bipartite graphs, namely so-called (a, b)-biregular graphs, i.e., bipartite graphs

where all vertices in one part have degree a and all vertices in the other part have degree b. Note that
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regular bipartite graphs trivially have cyclic interval colorings; it has been conjectured in Casselgren and

Toft (2015) that this also holds for (a, b)-biregular graphs.

Conjecture 1.3. Every (a, b)-biregular graph admits a cyclic interval max{a, b}-coloring.(i)

The general problem of determining the palette index of a given (a, b)-biregular graph is NP-complete;

this follows e.g. from the complexity result in Asratian and Casselgren (2007). We would like to suggest

the following weakening of Conjecture 1.3, which is a strengthening of Conjecture 1.1 for biregular

graphs.

Conjecture 1.4. For any (a, b)-biregular graph G, š(G) ≤ 1 + max{a, b}.

Note that the upper bound in Conjecture 1.4 is in general tight, since š(G) = b + 1 if G is (1, b)-
biregular. However, as we shall see, the upper bound in Conjecture 1.4 can be slightly improved for some

values of a and b.

Let us now outline the main results of this paper. We shall present several results towards Conjectures

1.1 and 1.4. In the next section we prove a general upper bound on the palette index of bipartite graphs and

deduce that Conjecture 1.1 holds for bipartite graphs where all vertex degrees are in the set {1, 2, 3, 4, 2r−
4, 2r − 3, 2r − 2, 2r − 1, 2r}, for some r ≥ 1. Additionally, we demonstrate that Conjecture 1.1 is true

for general graphs G satisfying that ∆(G)− δ(G) ≤ 2, where δ(G) denotes the minimum degree of G.

In Section 3 we consider bipartite graphs with small vertex degrees. In particular, we obtain sharp

upper bounds on the palette indices of Eulerian bipartite graphs with maximum degree at most 6. We also

determine the palette index of grids.

Section 4 concerns biregular graphs and Conjecture 1.4. We prove that this conjecture holds for all

(2, r)-biregular and (2r − 2, 2r)-biregular graphs. Additionally, we establish that it holds for all (a, b)-
biregular graphs such that

• (a, b) ∈ {(3, 6), (3, 9)};

• (a, b) ∈ {(4, 6), (4, 8), (4, 12), (4, 16)};

• (a, b) ∈ {(5, 10), (6, 9), (6, 12)};

• (a, b) ∈ {(8, 12), (8, 16), (12, 16)}.

Finally, as mentioned above, š(G) = 1 if and only if G is regular and Class 1; in Section 5 we charac-

terize the graphs whose palette index is at the opposite end of the spectrum; that is, we give a complete

characterization of the graphs whose palette index equals the number of vertices.

2 General upper bounds

As noted earlier, Vizing’s edge coloring theorem yields an upper bound of the palette index of a general

graph, and König’s edge coloring theorem shows that this general upper bound can be slightly improved

for bipartite graphs: š(G) ≤ 2∆ − 1 for any bipartite graph G with maximum degree ∆ and no isolated

vertices. In the following we shall give an improvement of this general upper bound for bipartite graphs.

Throughout, we assume that all graphs in this section do not contain any isolated vertices.

(i) See e.g. Asratian et al. (2018b), for further information on the status of this conjecture.
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We shall need a classic result from factor theory. A 2-factor of a multigraph G (where loops are

allowed) is a 2-regular spanning subgraph of G.

Theorem 2.1. (Petersen’s Theorem). Let G be a 2r-regular multigraph (where loops are allowed). Then

G has a decomposition into edge-disjoint 2-factors.

For a graph G, denote by D(G) the set of all degrees in G, and by Dodd(G) (Deven(G)) the set of all

odd (even) degrees in G. A graph is even (odd) if all vertex degrees of the graph are even (odd).

Theorem 2.2. If G is an even bipartite graph, then

š(G) ≤
∑

d∈D(G)

(∆(G)
2
d
2

)

.

Proof: For the proof, we construct a new multigraph G⋆ as follows: for each vertex u ∈ V (G) of

degree 2k, we add
∆(G)

2 − k loops at u
(

1 ≤ k <
∆(G)

2

)

. Clearly, G⋆ is a ∆(G)-regular multigraph.

By Petersen’s theorem, G⋆ can be represented as a union of edge-disjoint 2-factors F1, . . . , F∆(G)
2

. By

removing all loops from 2-factors F1, . . . , F∆(G)
2

of G⋆, we obtain that the resulting graph G is a union

of edge-disjoint even subgraphs F ′
1, . . . , F

′
∆(G)

2

. Since G is bipartite, for each i
(

1 ≤ i ≤ ∆(G)
2

)

, F ′
i is a

collection of even cycles in G, and we can properly color the edges of F ′
i alternately with colors 2i − 1

and 2i; the obtained coloring α is a proper edge coloring of G with colors 1, . . . ,∆(G).
Now, if u ∈ V (G) and dG(u) = 2k, then there are k even subgraphs F ′

i1
, F ′

i2
, . . . , F ′

ik
such that

dF ′

i1
(u) = dF ′

i2
(u) = · · · = dF ′

ik

(u) = 2, and thus SG(u, α) = {2i1 − 1, 2i1, 2i2 − 1, 2i2, . . . , 2ik −

1, 2ik}. This implies that for vertices u ∈ V (G) with dG(u) = 2k, we have at most
(∆(G)

2
k

)

distinct

palettes in the coloring α.

In the next two sections, we shall see that Theorem 2.2 can in fact be used to deduce sharp upper bounds

on the palette index of some classes of bipartite graphs.

From a given bipartite graph G we can construct an even supergraph G′ by taking two vertex-disjoint

copies G1 and G2 of G and for every odd-degree vertex of G1 joining it by an edge with its copy in G2.

By applying the preceding proposition to G′ we immediately obtain the following.

Corollary 2.3. If G is a bipartite graph, then

š(G) ≤
∑

d∈Dodd(G)

(

⌈

∆(G)
2

⌉

d+1
2

)

× (d+ 1) +
∑

d∈Deven(G)

(

⌈

∆(G)
2

⌉

d
2

)

.

Proof: Consider the graph G′ defined above, and a proper edge coloring α of G′ defined as in the proof

of Theorem 2.2. For each palette SG′(v, α) in G′, where v ∈ Dodd(G), there are at most (dG(v) + 1)
possible palettes in the restriction of α to G.

Using Corollary 2.3, we deduce an improvement of the general upper bound 2∆(G) − 1 on the palette

index of any bipartite graph.
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Corollary 2.4. For any bipartite graph G, š(G) ≤ (∆(G) + 2)2⌈∆(G)/2⌉.

As noted above, the palette index of a regular Class 1 graph is 1. We note that Corollary 2.3 implies

that Conjecture 1.1 holds for bipartite graphs that are “almost regular” in the sense that if G is a bipartite

graph where all vertex degrees are in the set {1, 2, 3, 4, 2r−4, 2r−3, 2r−2, 2r−1, 2r}, for some r ≥ 4,

then G satisfies Conjecture 1.1. For general graphs, a slightly weaker proposition is true.

Proposition 2.5. If a graphG satisfies that ∆(G) − δ(G) ≤ 2, then š(G) ≤ ∆2(G) + ∆(G) + 1.

The proof of this proposition is along the same lines as the proof of Theorem 5.9 in Asratian et al.

(2018a); for the sake of completeness, we provide a brief sketch here.

Proof (sketch): If ∆(G) − δ(G) ≤ 1, or G is Class 1, then the proposition clearly holds; indeed if G is

Class 1, then š(G) ≤
(

∆(G)
2

)

+∆(G) + 1 ≤ ∆2(G) + ∆(G) + 1.

So assume that ∆(G) = δ(G) + 2, and that G is Class 2. Set k = ∆(G) and denote by Vi the set of

vertices in G that have degree i.

Let M be a maximum matching ofG[Vk]. Set H = G−M . Note that inH no two vertices of degree k

in H are adjacent, so by a well-known result due to Fournier (1973),H is Class 1. Let M ′ be a minimum

matching inH covering all vertices of degree k inH ; such a matching exists sinceH is Class 1. Note that

the graph J = H −M ′ has maximum degree at most k − 1. Let M ′′ be a maximum matching in Jk−1,

where Jk−1 is the subgraph of J induced by the vertices of degree k − 1 in J . Let M̂ =M ∪M ′ ∪M ′′.

The rest of the proof is based on the following two claims, the proofs of which are omitted (for details,

see Asratian et al. (2018a)).

Claim 1. The subgraph of G induced by M̂ is 2-edge-colorable.

Claim 2. The graphG− M̂ is (k − 1)-edge-colorable.

Let ψ be a proper (k−1)-edge coloring ofG−M̂ using colors 1, . . . k−1, and let ϕ be a proper 2-edge

coloring of the subgraph of G induced by M̂ using colors k and k + 1. Denote by α the edge coloring of

G obtained by taking the two edge colorings ψ and ϕ together.

Since a vertex of degree k−2 inG is incident with at most one edge from M̂ , there are 2
(

k−1
k−3

)

+(k−1)

possible palettes under α; a vertex of degree k − 1 in G is incident with at most one edge from M̂ and

thus there are most 2(k − 1) + 1 possible palettes under α; a vertex of degree k in G is incident with one

or two edges from M̂ and thus there are at most 2 + (k − 1) possible palettes.

Finally, let us remark that every graph where all vertex degrees are in the set {1, 2, r− 2, r − 1, r}, for

some r ≥ 5, also satisfies Conjecture 1.1.

3 Bipartite graphs with small vertex degrees

In this section we consider bipartite graphs with small vertex degrees. As above, throughout this section

we assume that all graphs do not contain any isolated vertices. We begin this section by noting some

immediate implications of Theorem 2.2.

Corollary 3.1. If G is an Eulerian bipartite graph with ∆(G) = 4, then š(G) ≤ 3.
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If G is bipartite, Eulerian, has maximum degree 4, and there is a vertex of degree 4 in G which is

adjacent to at least three vertices of degree two, then š(G) ≥ 3; for instance š(K2,4) ≥ 3, so the upper

bound in Corollary 3.1 is sharp.

Corollary 3.2. If G is a bipartite graph with ∆(G) = 4, then š(G) ≤ 11. Moreover, if G has no pendant

vertices, then š(G) ≤ 7.

Proof: Starting from two copies ofG, we can create an Eulerian bipartite graphG′ with maximum degree

4 containing G as a subgraph. Let ϕ be a proper 4-edge coloring of G′ constructed as in the proof of

Theorem 2.2, and let us consider the restriction of this edge coloring to G. Vertices of degree 4 all have

the same palette, vertices of degree 2 in G have at most 2 distinct possible palettes; vertices of degree 3 in

G have at most 4 distinct palettes, and similarly for vertices of degree 1.

We note that the preceding corollary is sharp, which follows by considering a disjoint union of K1,4,

K2,4, and K3,4: the palette indices of these graphs are 5, 3 and 5, respectively, as observed in Horňák and

Hudák (2018); in fact, in any proper edge coloring of this graph the vertices of degree 1 have four distinct

palettes, vertices of degree 2 have at least two distinct palettes, vertices of degree three have four different

palettes, and vertices of degree four have at least one palette. Hence, the palette index of the disjoint union

of these complete bipartite graphs is at least 11.

From Corollary 3.2 we deduce an upper bound on the palette index of bipartite graphs with maximum

degree 5.

Corollary 3.3. If G is a bipartite graph with ∆(G) = 5, then š(G) ≤ 23. Moreover, if G has a perfect

matching, then š(G) ≤ 12.

Proof: Let M be minimal matching in G covering all vertices of degree 5; such a matching exists e.g. by

König’s edge coloring theorem. By Corollary 3.2,G−M has a proper edge coloring with 4 colors and at

most 11 distinct palettes; by assigning a new color 5 to all edges of M , we obtain a proper edge coloring

of G with at most 23 distinct palettes, because for any palette in G −M , we obtain at most 2 different

palettes in G, and additionally, the palette {5}.

The second part follows by applying Corollary 3.2 to the graphG−M ′, whereM ′ is a perfect matching

in G.

For Eulerian bipartite graphs with maximum degree six we have the following immediate consequence

of Theorem 2.2.

Corollary 3.4. If G is an Eulerian bipartite graph with ∆(G) = 6, then š(G) ≤ 7.

Consider a graph that is the disjoint union of K2,6 and K4,6. Horňák and Hudák (2018) proved that

š(K2,6) = 4, and š(K4,6) = 4 , which, as above, implies that the upper bound in the preceding corollary

is sharp.

Note further that the preceding corollary shows that Conjecture 1.4 holds for (4, 6)-biregular graphs.

For Eulerian bipartite graphs G with maximum degree 8, Theorem 2.2 implies that š(G) ≤ 15. Using

a result from Asratian et al. (2018b) we deduce that in fact a better upper bound holds:

Proposition 3.5. If G is an Eulerian bipartite graph with maximum degree 8, then š(G) ≤ 13.

The proof is omitted since it immediately follows from the proof of Theorem 3 in Asratian et al.

(2018b).
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Our final result in this section concerns a particular family of bipartite graphs. The grids G(m,n) are

Cartesian products of paths on m and n vertices, respectively. Here, we determine the exact value of the

palette index of G(m,n).

Theorem 3.6. For any m,n ≥ 2,

š(G(m,n)) =















1, if m = n = 2,

2, if min{m,n} = 2 and max{m,n} ≥ 3,

3, if m,n ≥ 3 and mn is even,

5, if m,n ≥ 3 and mn is odd.

Proof: Let V (G(m,n)) =
{

v
(i)
j : 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

and

E(G(m,n)) =
{

v
(i)
j v

(i)
j+1 : 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1

}

∪
{

v
(i)
j v

(i+1)
j : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n

}

.

First we show that if mn is even, then

š(G(m,n)) =







1, if m = n = 2,

2, if min{m,n} = 2 and max{m,n} ≥ 3,

3, if m,n ≥ 3 and mn is even.

Trivially, š(G(2, 2)) = š(C4) = 1. So, without loss of generality we may assume that max{m,n} ≥ 3
and m is even. Define an edge coloring α of G(m,n) as follows:

(1) for i = 1, . . . ,m, j = 1, . . . , n− 1, let

α
(

v
(i)
j v

(i)
j+1

)

=

{

2, if j is odd,

1, if j is even;

(2) for i = 1, . . . , m2 , j = 1, . . . , n− 1, let

α
(

v
(2i−1)
j v

(2i)
j

)

=

{

1, if j = 1,

3, otherwise;

(3) for i = 1, . . . , m2 − 1, j = 1, . . . , n, let

α
(

v
(2i)
j v

(2i+1)
j

)

=

{

3, if j = 1 or j = n,

4, otherwise;

(4) for i = 1, . . . , m2 , let

α
(

v
(2i−1)
n v

(2i)
n

)

=

{

2, if n is odd,

1, if n is even,

It is easy to see that α is proper edge coloring ofG(m,n) with colors 1, 2, 3, 4, such that for each vertex

v ∈ V (G(m,n)), S(v, α) ∈ {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}}. This shows that if max{m,n} ≥ 3 and mn

is even, then



8 Carl Johan Casselgren , Petros A. Petrosyan

š(G(m,n)) =

{

2, if min{m,n} = 2 and max{m,n} ≥ 3,

3, if m,n ≥ 3 and mn is even.

Next we consider the case m,n ≥ 3 and mn is odd. We first prove the upper bound, i.e. that

š(G(m,n)) ≤ 5. Without loss of generality we may assume that m ≤ n. Let us first show that

š(G(3, n)) ≤ 5.

Define an edge coloring β of G(3, n) as follows:

1) for i = 1, 2, 3, j = 1, . . . , n− 1, let

β
(

v
(i)
j v

(i)
j+1

)

=































2, if i = 1 and j is odd,

1, if i = 1 and j is even,

2, if i = 2 and j is odd,

4, if i = 2 and j is even,

4, if i = 3 and j is odd,

2, if i = 3 and j is even;

2) j = 2, . . . , n− 1, let

β
(

v
(1)
j v

(2)
j

)

= 3 and β
(

v
(2)
j v

(3)
j

)

= 1;

3) β
(

v
(1)
1 v

(2)
1

)

= β
(

v
(2)
n v

(3)
n

)

= 1, β
(

v
(1)
n v

(2)
n

)

= 2 and β
(

v
(2)
1 v

(3)
1

)

= 3.

It is not difficult to see that β is proper edge coloring of G(3, n) with colors 1, 2, 3, 4 such that for each

vertex v ∈ V (G(3, n)), S(v, β) ∈ {{1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}}.

If m ≥ 5, then we define a proper edge coloring of G(m,n) in the following way: let H = G(m,n)−
{

v
(m−3)
i v

(m−2)
i : 1 ≤ i ≤ n

}

. The graph H consists of two components H1 and H2, where H1 is iso-

morphic to G(m − 3, n), and H2 is isomorphic to G(3, n). Let α′ be a proper edge coloring of H1

corresponding to the coloring α of G(m − 3, n) defined above, and let β′ be a proper edge coloring of

H2 corresponding to the edge coloring β of G(3, n) defined above. Suppose further that these edge col-

orings are chosen in such a way that vertices v
(m−3)
1 , v

(m−3)
2 , . . . , v

(m−3)
n of H1 have the same palettes

as vertices v
(m−2)
1 , v

(m−2)
2 , . . . , v

(m−2)
n of H2. Thus, by coloring all edges of G(m,n) with one endpoint

in H1 and one endpoint in H2 with color 4, we obtain a proper edge coloring of G(m,n) with 5 palettes;

thus š(G(m,n)) ≤ 5.

We now turn to the lower bound. Since m,n ≥ 3 and mn is odd, the graph G(m,n) contains vertices

of degree 2, 3 and 4; hence š(G(m,n)) ≥ 3.

Next, we prove that š(G(m,n)) ≥ 4. Let γ be a proper edge coloring of G(m,n) with three dis-

tinct palettes. This implies that for each vertex v ∈ V (G(m,n)) with degree four, we have S(v, γ) =
{a, b, c, d}. Let Ma,Mb,Mc and Md be the color classes of γ corresponding to the colors a, b, c and d.

Now, there are precisely (m − 2)(n − 2) vertices of degree four in G(m,n), and since (m − 2)(n − 2)
is an odd number, the edges with colors a, b, c and d cannot only be incident with vertices of degree four.

This implies that for each color x ∈ {a, b, c, d}, there exists an edge ex with color x joining vertices with
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degrees 4 and 3. Thus, all colors a, b, c and d appear in palettes of vertices of degree 3, which implies that

š(G(m,n)) ≥ 4.

Finally, we show that if mn is odd, then š(G(m,n)) = 5. Suppose, to the contrary, that š(G(m,n)) =
4, and let φ be a proper edge coloring of G(m,n) with four distinct palettes. Throughout the rest of the

proof, denote by Mi the color class i under φ, i.e., the set of edges with color i under φ.

Let us first prove that the number of 3-element palettes under φ is at least two. Since there are at most

two palettes of size 4, the set A of colors appearing in palettes of size 4 satisfies 4 ≤ |A| ≤ 8. Moreover,

A clearly has a partition {A1, A2, A3, A4} such that 1 ≤ |Ai| ≤ 2, and each palette of size 4 contains

exactly one color fromAi, i = 1, 2, 3, 4. Furthermore, sincemn is odd, there is an odd number of vertices

of degree 4 in G(m,n). Therefore, for every i ∈ {1, 2, 3, 4}, there is a color ai ∈ Ai and an edge colored

ai that joins vertices of degree 3 and 4. We thus conclude that each of the colors a1, a2, a3, a4 appears in

a palette of size 3, and it follows that the number of palettes of size 3 is at least two.

Now, since there are at least two palettes of size 3, there must be exactly one palette of size 4 and one

palette of size 2. Without loss of generality we assume that for each vertex v ∈ V (G(m,n)) with degree

four, we have S(v, φ) = {1, 2, 3, 4}, and for each color x ∈ {1, 2, 3, 4}, there exists an edge ex with

color x joining vertices with degrees 4 and 3. Thus, all colors 1, 2, 3 and 4 appear in palettes of vertices

of degree three.

Since two distinct palettes occur at vertices of degree three, at most six colors 1, . . . , 6 are used in the

coloring φ. Suppose first that disjoint palettes occurs at vertices of degree three. If three colors from

{1, 2, 3, 4} appear in one such palette, i.e., if for each vertex v ∈ V (G(m,n)) with degree three, either,

say, S(v, φ) = {1, 2, 3} or S(v, φ) = {4, 5, 6}, then since both m and n are odd, vertices of degree two

only have one possible palette under φ, and neither of colors 5 and 6 appear at vertices of degree 4, this

implies that all vertices with degree three have the same palette, which is a contradiction. If instead two

colors from {1, 2, 3, 4} appear in both palettes, e.g. if for each vertex v ∈ V (G(m,n)) with degree three,

either S(v, φ) = {1, 2, 5} or S(v, φ) = {3, 4, 6}, then, again, this implies that all vertices with degree

three have the same palette, which is a contradiction.

Suppose now instead that the two distinct palettes at vertices of degree three contain exactly one com-

mon color. We first consider the case when this common color is in {1, 2, 3, 4}. Assume, without loss of

generality, that this color is 3, and consider the color class M3. The edges in M3 either cover all vertices

of the graph or all vertices except those with degree two; but this is impossible, since mn and mn− 4 are

both odd numbers.

Suppose now instead that the common color of the different palettes of vertices of degree three is not

in {1, 2, 3, 4}. We assume that this common color is 5, and since all colors in {1, 2, 3, 4} appear on edges

incident with vertices of degree 3, we may assume, that for each vertex v ∈ V (G(m,n)) with degree

three, either S(v, φ) = {1, 2, 5} or S(v, φ) = {3, 4, 5}. This means that the color class M5 covers all

vertices of the cycle C of G(m,n) containing all vertices of degree 3 and 2 in G(m,n), because any

path in G(m,n) between vertices of degree 2, whose intermediate vertices all have degree 3, has even

length. Now, since all vertices with degree two have the same palette, we may assume that for each vertex

v ∈ V (G(m,n)) with degree two, S(v, φ) = {a, b}. Since color 5 appears at each vertex of C, we obtain

that a = 5. Without loss of generality we may assume that b = 1. Let us now consider the color class

M3. Clearly,

|M3| =
1

2
((m− 2)(n− 2) + l) ,

where l is the number of vertices of C with the palette {3, 4, 5}. Since (m− 2)(n− 2) is odd, we get that



10 Carl Johan Casselgren , Petros A. Petrosyan

l is odd too. Let r3 and r4 be the number of edges of C with colors 3 and 4, respectively. Now we can

count the number of vertices of C with the palette {3, 4, 5} using r3 and r4. Since, all vertices of degree

two have the palette {1, 5}, and color 5 does not appear on any edge incident with a vertex of degree four,

l = 2r3 + 2r4; but this contradicts the fact that l is odd.

Finally, let us consider the case when the two distinct palettes at vertices of degree three contain two

common colors. Suppose without loss of generality that for each vertex v ∈ V (G(m,n)) with degree

three, either S(v, φ) = {1, 2, 3} or S(v, φ) = {2, 3, 4}. Let us consider vertices with degree two in

G(m,n); all such vertices v have the same palette S(v, φ) = {a, b}. If {a, b}∩ {2, 3} 6= ∅, then the color

class Ma (or Mb) is a perfect matching of G(m,n), which is a contradiction. So, we may assume that

{a, b} = {1, 4}. Let us consider the color class M2. Clearly,

|M2| =
1

2
((m− 2)(n− 2) + k + l) ,

where k is the number of vertices of C with the palette {1, 2, 3}, and l is the number of vertices of C with

the palette {2, 3, 4}. Since (m − 2)(n − 2) is odd, we get that k + l is odd too. On the other hand, it is

easy to see that k + l = 2(m− 2 + n− 2), which is a contradiction.

4 Biregular graphs

In this section we consider (a, b)-biregular graphs. Our primary aim here is to show that Conjecture 1.4

holds for several families of biregular graphs.

König’s edge coloring theorem implies that š(G) ≤ 1 +
(

b
a

)

for every (a, b)-biregular graph G where

a ≤ b. In particular, this implies that if G is (b − 1, b)-biregular or (1, b)-biregular, then š(G) ≤ 1 + b,

which means that Conjecture 1.4 holds for all such graphs. In fact, the latter family of graphs show that

the upper bound in Conjecture 1.4 is in general sharp.

The next lemma will be used frequently.

Lemma 4.1. If G is an (a, b)-biregular graph with a < b, then š(G) ≥ 1 + ⌈ b
a⌉.

Proof: Let G be an (a, b)-biregular (a < b) graph with bipartition (X,Y ) so that a|X | = b|Y |. Consider

an arbitrary proper edge coloring of G. Since any palette of size a appears on at most |Y | vertice, the

number of palettes of size a is bounded from below by
⌈

|X|
|Y |

⌉

=
⌈

b
a

⌉

. This implies that š(G) ≥ 1 +

⌈ b
a⌉.

The smallest (a, b)-biregular graph is the complete bipartite graphKa,b; the lower bound in the preced-

ing lemma was obtained in Horňák and Hudák (2018) for the case of complete bipartite graphs. Further-

more, for complete bipartite graphs, we have the following; the upper bound shows that Conjecture 1.4

holds for complete bipartite graphs. If a and b are positive integers (a ≤ b), then we denote the interval of

integers from a to b by [a, b] = {a, a+ 1, . . . , b}.

Theorem 4.2. If a < b (a, b ∈ N), then

1 +
⌈

b
a

⌉

≤ š (Ka,b) ≤ 1 + b
gcd(a,b) .

Proof: The lower bound follows from Lemma 4.1.
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We set d = gcd(a, b) and now show that š (Ka,b) ≤ 1 + b
d . Let

V (Ka,b) = {u1, . . . , ua, v1, . . . , vb} and E (Ka,b) = {uivj : 1 ≤ i ≤ a, 1 ≤ j ≤ b}.

Also, let G be a subgraph of Ka,b induced by vertices {u1, . . . , ud, v1, . . . , vd}; so G is isomorphic to the

graph Kd,d.

We define an edge coloring α of G as follows: for 1 ≤ i ≤ d and 1 ≤ j ≤ d, let

α (uivj) =

{

i+ j − 1 (mod d), if i+ j 6= d+ 1,

d, if i+ j = d+ 1.

The coloring α is a proper edge coloring of G and SG(ui, α) = SG(vi, α) = [1, d] for 1 ≤ i ≤ d.

Next we construct a proper b-edge coloring of Ka,b. Before we give the explicit definition of the

coloring, we need two auxiliary functions f and h. For i ∈ N, we define f(i) = 1+ (i− 1) (mod d) and

for i, j ∈ N, we define

h(i, j) =
(⌊

i−1
d

⌋

+
⌊

j−1
d

⌋)

(mod b
d).

Now we define an edge coloring β of Ka,b by, for 1 ≤ i ≤ a and 1 ≤ j ≤ b, setting

β(uivj) = α
(

uf(i)vf(j)
)

+ dh(i, j).

Let us verify that β is a proper b-edge coloring of Ka,b with exactly 1 + b
a palettes. By the definition

of β and taking into account that SG(ui, α) = SG(vi, α) = [1, d] for 1 ≤ i ≤ d, we have

S(ui, β) = [1, b] for 1 ≤ i ≤ a,

and

S
(

v(j−1)d+1, β
)

= S
(

v(j−1)d+2, β
)

= · · · = S (vjd, β) =

a

d
−1
⋃

i=0

{aid+ 1, . . . , aid+ d},

for 1 ≤ j ≤ b
d , and where ai =

(

i+
⌈

j−1
d

⌉)

(mod b
d ). This implies that β is a proper b-edge coloring

of Ka,b with 1 + b
d distinct palettes.

From the preceding theorem, we deduce the following, which was first obtained in Horňák and Hudák

(2018).

Corollary 4.3. If gcd(a, b) = a (a < b), then š (Ka,b) = 1 + b
a .

In Horňák and Hudák (2018) the palette index of the complete bipartite graphs K2,2r was determined;

the following generalization follows from Theorem 2.2. Here, and in the following , we assume r to be a

positive integer.

Corollary 4.4. If G is a (2, 2r)-biregular graph, then š(G) = r + 1.

Proof: The upper bound follows from Theorem 2.2. The lower bound follows from the fact that assuming

that at most r − 1 palettes occur at vertices of degree 2 implies that G has a proper edge coloring with

2r − 2 colors.

Similarly, we have the following:
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Corollary 4.5. If G is a (2r − 2, 2r)-biregular graph, then š(G) ≤ r + 1.

This upper bound is sharp e.g. for complete bipartite graphs of small order, since š(K2,4) = 3 and

š(K4,6) = 4.

We remark that the two previous corollaries do not only hold for biregular graphs, but for any bipartite

graph where the vertex degrees lie in the set {2, 2r} and {2r − 2, 2r}, respectively.

Our next result on biregular graphs is an easy consequence of a result on interval colorings. In Hanson

et al. (1998); Kamalian and Mirumian (1997), it was proved that every (2, 2r+ 1)-biregular graph has an

interval coloring using 2r + 2 colors.

Proposition 4.6. If G is a (2, 2r + 1)-biregular graph, then r + 2 ≤ š(G) ≤ 2r + 2.

Proof: Let f be an interval coloring of G using exactly 2r+2 colors. By taking all colors modulo 2r+1,

we obtain a cyclic interval (2r + 1)-coloring of G; such a coloring yields at most 2r + 2 distinct palettes

in G.

The lower bound can be proved as in the proof of Corollary 4.4.

We note that the upper bound in the preceding proposition is sharp, since š(K2,3) = 4; in fact it is not

hard to see that the upper bound in Proposition 4.6 is sharp for all (2, 3)-biregular graphs.

Next, we shall establish that Conjecture 1.4 holds for some families of biregular graphs with small

vertex degrees. In fact, we shall deduce these results from more general propositions.

Corollary 2.3 implies that Conjecture 1.1 holds for all (3, 3r)-biregular and (3r − 3, 3r)-biregular

graphs; the upper bound from Corollary 2.3 can be slightly improved as follows.

Proposition 4.7. Let G be a bipartite graph.

(i) If G is (3, 3r)-biregular (r ≥ 2), then r + 1 ≤ š(G) ≤ r2 + 1.

(ii) If G is (3r − 3, 3r)-biregular graph (r ≥ 2), then š(G) ≤ r2 + 1.

Proof: Let us first note that the the lower bound in (i) follows from Lemma 4.1.

We shall prove the upper bound in (i); the proof of the upper bound in (ii) is similar. Consequently, let

G be a (3, 3r)-biregular bipartite graph with bipartition (X,Y ), and let us show that š(G) ≤ r2 + 1.

Define a new graphH fromG by replacing each vertex y ∈ Y by r vertices y(1), y(2), . . . , y(r) of degree

3, where each y(i) is adjacent to three neighbors of y in G, and y(i) and y(j) have disjoint neighborhoods

if i 6= j. Clearly, H is a cubic bipartite graph, and so by Hall’s matching theorem, H contains a perfect

matching M .

In the graph G, M induces a subgraph F in which each vertex y ∈ Y has degree r and each vertex

x ∈ X has degree 1. Let us consider the graph G′ = G − E(F ). Since G′ is a (2, 2r)-biregular graph,

by proceeding as in the proof of Theorem 2.2 it can be shown that G′ has a proper 2r-edge coloring α

such that for each y ∈ Y , S(y, α) = [1, 2r], and for each x ∈ X , S(x, α) = {2i − 1, 2i} for some i

(1 ≤ i ≤ r). Let us now define an edge coloring β of F as follows: for each vertex y ∈ Y , we color the

edges of F incident with y with colors 2r + 1, 2r + 2, . . . , 3r.

Finally, we define an edge coloring γ of G as follows:
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1) for every e ∈ E(G′), let γ(e) = α(e);

2) for every e ∈ E(F ), let γ(e) = β(e).

Clearly, γ is a proper edge coloring of G with colors 1, 2, . . . , 3r such that for each y ∈ Y , S(y, γ) =
[1, 3r], and for each x ∈ X , S(x, γ) = {2i − 1, 2i, 2r + j} for some i, j ∈ [1, r]. This implies that

š(G) ≤ r2 + 1.

We remark that the lower bound in part (i) of Proposition 4.7 is sharp by Corollary 4.3. Hence, this also

holds for parts (i) and (ii) of the following consequence of Proposition 4.7.

Corollary 4.8. Let G be a bipartite graph.

(i) If G is (3, 6)-biregular, then 3 ≤ š(G) ≤ 5.

(ii) If G is (3, 9)-biregular, then 4 ≤ š(G) ≤ 10.

(iii) If G is (6, 9)-biregular, then š(G) ≤ 10.

The preceding result shows that Conjecture 1.4 holds for some biregular graphs with vertex degrees

divisible by three. Let us now turn to biregular graphs with vertex degrees divisible by four. In Section 3,

we deduced that Conjecture 1.4 holds for (4, 6)-biregular graphs. IfG is a (4, 4r)-biregular or (4r−4, 4r)-
biregular graph, then Theorem 2.2 implies that š(G) ≤ 1+r(2r−1). Our next proposition yields a slightly

better bound.

Proposition 4.9. Let G be a bipartite graph.

(i) If G is (4, 4r)-biregular (r ≥ 2), then r + 1 ≤ š(G) ≤ r2 + 1.

(ii) If G is (4r − 4, 4r)-biregular (r ≥ 2), then š(G) ≤ r2 + 1.

Proof: As in the proof of the preceding proposition, the lower bound in (i) follows from Lemma 4.1.

Let us prove the upper bound in part (i); part (ii) can be proved similarly. Consequently, let G be a

(4, 4r)-biregular bipartite graph with bipartition (X,Y ) and let us show that š(G) ≤ r2 + 1.

Without loss of generality, we may assume that G is connected (otherwise, we color every component

of G as below). Since G is bipartite and all vertex degrees in G are even, G has a closed Eulerian trail C

with an even number of edges. We color the edges of G with colors “Red” and “Blue” by traversing the

edges of G along the trail C; we color an odd-indexed edge in C with color Red, and an even-indexed

edge in C with color Blue. Let ER and EB be the sets of all Red and Blue edges in G, respectively; then

E(G) = ER ∪ EB and ER ∩EB = ∅. Define the subgraphsGR and GB of G as follows:

V (GR) = V (GB) = V (G) and E (GR) = ER, E (GB) = EB .

Since G is (4, 4r)-biregular, each of the subgraphs GR and GB of G is a (2, 2r)-biregular bipartite

graph with bipartition (X,Y ). Hence, by proceeding as in the proof of the preceding proposition, we

deduce that GR has a proper 2r-edge coloring α such that for each y ∈ Y S(y, α) = [1, 2r], and for each

x ∈ X S(x, α) = {2i − 1, 2i} for some i ∈ [1, r]. Similarly, GB has a proper 2r-edge coloring β such

that for each y ∈ Y S(y, β) = [1, 2r], and for each x ∈ X S(x, β) = {2j − 1, 2j} for some j ∈ [1, r].
We define a new edge coloring β′ ofGB from β as follows: for every e ∈ E(GB), let β′(e) = β(e)+ 2r;
then β′ is a proper edge coloring of GB with colors 2r + 1, 2r + 2, . . . , 4r. Moreover, for each y ∈ Y ,
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S(y, β′) = [2r + 1, 4r], and for each x ∈ X , S(x, β′) = {2(r + j)− 1, 2(r + j)} for some j ∈ [1, r].

Finally, we define an edge coloring γ of G as follows:

1) for every e ∈ E(GR), let γ(e) = α(e);

2) for every e ∈ E(GB), let γ(e) = β′(e).

Clearly, γ is a proper edge coloring of G with colors 1, 2, . . . , 4r such that for each y ∈ Y , S(y, γ) =
[1, 4r], and for each x ∈ X , S(x, γ) = {2i− 1, 2i, 2(r+ j)− 1, 2(r+ j)} for some i and j (i, j ∈ [1, r]).
This implies that š(G) ≤ r2 + 1.

Once again, we remark that the lower bound in part (i) of Proposition 4.9 is sharp by Corollary 4.3, so

this also holds for parts (i)-(iii) of the following consequence of Proposition 4.9.

Corollary 4.10. Let G be a bipartite graph.

(i) If G is (4, 8)-biregular, then 3 ≤ š(G) ≤ 5.

(ii) If G is (4, 12)-biregular, then 4 ≤ š(G) ≤ 10.

(iii) If G is (4, 16)-biregular, then 5 ≤ š(G) ≤ 17.

(iv) If G is (8, 12)-biregular, then š(G) ≤ 10.

(v) If G is (12, 16)-biregular, then š(G) ≤ 17.

Our next result establishes an upper bound on the palette index of (5, 5r)-biregular graphs.

Proposition 4.11. If G is a (5, 5r)-biregular (r ≥ 2) bipartite graph, then r + 1 ≤ š(G) ≤ r3 + 1.

Proof: The lower bound follows from Lemma 4.1, so let us prove the upper bound.

LetG be a (5, 5r)-biregular bipartite graph with bipartition (X,Y ), and let us show that š(G) ≤ r3+1.

As in the proof of Proposition 4.7, we define a new graph H from G by replacing each vertex y ∈ Y by

r vertices y(1), y(2), . . . , y(r) of degree 5, where each y(i) is adjacent to five neighbors of y in G, and y(i)

and y(j) have disjoint neighborhoods if i 6= j. Clearly, H is a 5-regular bipartite graph, and by Hall’s

matching theorem,H contains a perfect matching M .

In the graph G, M induces a subgraph F in which each vertex y ∈ Y has degree r and each vertex

x ∈ X has degree 1. Let us consider the graph G′ = G − E(F ). Since G′ is (4, 4r)-biregular, by pro-

ceeding as in the proof of Proposition 4.9, we can construct a proper 4r-edge coloring α of G′ such that

for each y ∈ Y , S(y, α) = [1, 4r] and for each x ∈ X , S(x, α) = {2i− 1, 2i, 2(r+ j)− 1, 2(r+ j)} for

some i, j ∈ [1, r]. Let us now define an edge-coloring β of F as follows: for each vertex y ∈ Y , we color

the edges of F incident with y with colors 4r + 1, 4r + 2, . . . , 5r.

Finally, we define an edge coloring γ of G as follows:

1) for every e ∈ E(G′), let γ(e) = α(e);

2) for every e ∈ E(F ), let γ(e) = β(e).
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Clearly, γ is a proper edge coloring of G with colors 1, 2, . . . , 5r such that for each y ∈ Y , S(y, γ) =
[1, 5r], and for each x ∈ X ,

S(x, γ) = {2i− 1, 2i, 2(r + j)− 1, 2(r + j), 4r + k}

for some i, j, k ∈ [1, r]. This implies that š(G) ≤ r3 + 1.

We remark that it is possible to prove a similar upper bound for (5r − 5, 5r)-biregular graphs. From

the preceding proposition we deduce the following.

Corollary 4.12. If G is a (5, 10)-biregular graph, then 3 ≤ š(G) ≤ 9.

Again, by Corollary 4.3, the lower bound in the preceding corollary (and in Proposition 4.11) is sharp.

This also applies to the next proposition which concerns (r, 2r)-biregular graphs.

Proposition 4.13. If G is an (r, 2r)-biregular (r ≥ 2) bipartite graph, then 3 ≤ š(G) ≤ 2⌈
r

2 ⌉ + 1.

Proof: As in the proofs of the preceding propositions, the lower bound follows from Lemma 4.1. Let G

be an (r, 2r)-biregular bipartite graph with bipartition (X,Y ), and let us show that š(G) ≤ 2⌈
r

2 ⌉ + 1. We

consider two cases.

Case 1. r is even: Let r = 2k (k ∈ N). Since G is (2k, 4k)-biregular, it has a decomposition into k

(2, 4)-biregular graphs G1, . . . , Gk; this follows by splitting vertices of degree 2k into two vertices of

degree k, vertices of degree 4k into four vertices of degree k, and taking perfect matchings in the resulting

k-regular bipartite graph. As in the proof of Theorem 2.2 it can be shown that each graph Gi has a

proper 4-edge coloring αi such that for each y ∈ Y , S (y, αi) = [4i − 3, 4i], and for each x ∈ X , either

S (x, αi) = {4i− 3, 4i− 2} or S (x, αi) = {4i− 1, 4i} (1 ≤ i ≤ k). Let us now define an edge-coloring

β of G as follows: for 1 ≤ i ≤ k and for every e ∈ E(Gi), let β(e) = αi(e).
Clearly, β is a proper edge coloring of G with colors 1, 2, . . . , 4k such that for each y ∈ Y , S(y, β) =

[1, 4k], and for each x ∈ X , S(x, β) is one of 2k possible palettes. This implies that š(G) ≤ 2k + 1.

Case 2. r is odd: Let r = 2k+ 1 (k ∈ N). Since G is (2k + 1, 4k+ 2)-biregular, it has a (1, 2)-biregular

subgraph F ; this follows by splitting vertices of degree 4k + 2 into two vertices of degree 2k + 1, and

taking a perfect matching in the resulting (2k + 1)-regular bipartite graph. Let us consider the graph

G′ = G − E(F ). Since G′ is a (2k, 4k)-biregular graph, it follows from the proof in Case 1 that G′ has

a proper 4k-edge coloring α such that for each y ∈ Y , S(y, α) = [1, 4k] and for each x ∈ X , S(x, α) is

one of 2k possible palettes. Let us now define an edge coloring β of F as follows: for each vertex y ∈ Y ,

we color the edges of F incident with y with colors 4k + 1 and 4k + 2.

Finally, we define an edge coloring γ of G as follows:

1) for every e ∈ E(G′), let γ(e) = α(e);

2) for every e ∈ E(F ), let γ(e) = β(e).

Clearly, γ is a proper edge coloring of G with colors 1, 2, . . . , 4k + 2 such that for each y ∈ Y ,

S(y, γ) = [1, 4k + 2], and for each x ∈ X ,

either S(x, γ) = S(x, α) ∪ {4k + 1} or S(x, γ) = S(x, α) ∪ {4k + 2};
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thus there are at most 2k+1 possible choices for the palette S(x, γ). This implies that š(G) ≤ 2k+1 +
1.

Corollary 4.14. Let G be a bipartite graph.

(i) If G is (6, 12)-biregular, then 3 ≤ š(G) ≤ 9.

(ii) If G is a (8, 16)-biregular, then 3 ≤ š(G) ≤ 17.

Our final result for biregular graphs shows that a slightly weaker form of Conjecture 1.4 holds for

(3, 5)-biregular graphs.

Proposition 4.15. If G is a (3, 5)-biregular bipartite graph, then 5 ≤ š(G) ≤ 7.

Proof: Let G be a (3, 5)-biregular bipartite graph with parts X and Y . Since G is (3, 5)-biregular, we

have that |X | = 5k and |Y | = 3k for some positive integer k.

By Lemma 4.1, we obtain that š(G) ≥ 3. Moreover, if š(G) = 3, then in a proper edge coloring

attaining this value, vertices in X in G must have two distinct palettes. If ϕ is such a coloring, then the

vertices of degree five all have the same palette under ϕ. This implies that ϕ is a proper 5-edge coloring,

and so there is some color appearing at all vertices of degree three in G. However, this contradicts that ϕ

is a proper 5-edge coloring. Hence, š(G) ≥ 4.

Now assume that š(G) = 4. Using similar counting arguments as before, it follows that vertices in X

must have at least two distinct palettes. Vertices in Y must also have at least two distinct palettes, because

suppose there is only one palette {1, 2, 3, 4, 5} of size 5 and three palettes of size 3; then, since there are

three palettes of size 3 and no color can appear in all these three palettes, there is exactly one color, say

1, that appears in exactly one palette of size 3, say {1, 2, 3}; the remaining palettes of size three are then

{2, 4, 5} and {3, 4, 5}. Now, since |X | = 5k and |Y | = 3k, we have that the number of vertices inX with

the palette {1, 2, 3} is 3k. But then colors 4 and 5 appear at all 3k vertices of Y but only at 2k vertices in

X , a contradiction. Hence, the vertices in Y have at least two distinct palettes, and so, there are exactly

two palettes of vertices in X and two palettes of vertices in Y .

Now, if the two distinct palettes of vertices in X are not disjoint, then at most 5 colors are used in a

proper edge coloring ofGwith a minimum number of palettes, which contradicts that two distinct palettes

appear at vertices in Y . Thus there is a proper edge coloring ϕ with 4 distinct palettes, and where the two

palettes of vertices in X are disjoint, say {1, 2, 3} and {4, 5, 6}. Now, since exactly 6 colors are used in

ϕ, and since only two distinct palettes appear at vertices of Y , some color appears at all vertices of Y , say

color 1. This implies that the number of vertices in X with the palette {1, 2, 3} is |Y | = 3k. However,

some color in {4, 5, 6} must also appear at all vertices in Y , which implies that the number of vertices in

X with the palette {4, 5, 6} is 3k, a contradiction because |X | = 5k. Hence š(G) ≥ 5.

Let us now show that š(G) ≤ 7. By Hall’s matching theorem, G has a matching M that saturates all

the vertices of degree 5. The graph G′ = G−M is a bipartite graph with ∆(G′) = 4. As in the proof of

Corollary 3.2, G′ has a proper edge coloring α with colors 1, 2, 3, 4 such that the vertices of degree 2 in

G′ have 2 possible palettes and the vertices of degree 3 in G′ have 4 possible palettes.

We now define a proper edge coloring β of G as follows:

1) for every e ∈ E(G′), let β(e) = α(e);
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2) for every e ∈M , let β(e) = 5.

In the coloring β the vertices of degree 5 in G all have the same palette, the vertices of degree 3 in G

that are covered by M have again 2 possible palettes and the rest of the vertices of degree 3 in G have 4
possible palettes. This implies that š(G) ≤ 7.

We remark that the lower bound in the preceding proposition is sharp since š(K3,5) = 5, as proved by

Horňák and Hudák (2018).

5 Graphs with large palette index

For every graph G we clearly have š(G) ≤ |V (G)|. In this section we shall characterize the graphs G

with largest possible palette index in the sense that G satisfies š(G) = |V (G)|. Throughout this section

we only consider graphs with no multiple edges.

Denote by K̂
j
3 the graph obtained from K3 and K1,j by identifying the central vertex of K1,j with a

vertex of K3. Moreover, we denote by K̂
j+
3 the graph obtained from K3 and K1,j by adding an edge

between the central vertex of K1,j and some vertex of K3.

Theorem 5.1. IfG is a graph with no isolated vertices, then š(G) = |V (G)| if and only ifG is isomorphic

to K3, K1,j with j ≥ 2, K̂
j
3 with j ≥ 1, or one of K̂

j+
3 and K3 ∪K1,j with j ≥ 3.

Proof: Sufficiency is straightforward, so let us prove necessity. Let G be a graph with š(G) = |V (G)|.
By the pigeonhole principle, there are at least two vertices in G that have equal degrees; let us first

prove that any such pair of vertices have vertex degrees 1 or 2. Suppose that G contains two vertices u

and v of equal degree greater than 2. It is straightforward to verify that there is a partial edge coloring of

G such that an edge of G is colored if and only if it is incident with u or v, and such that u and v have the

same palettes. However, any proper extension of such a partial edge coloring of G (not necessarily using

a minimum number of colors) produces at most |V (G)| − 1 distinct palettes. Thus if two vertices in G

have equal degree, then they both have degree 1 or 2.

Let us first assume that there are two vertices u and v of degree 2 in G. Unless u and v are contained

in a cycle of length 3, there is a similar partial edge coloring as in the preceding paragraph. Moreover,

if three vertices of G have degree 2, and these vertices are not contained in a component isomorphic to

K3, then š(G) < |V (G)|. Hence, either G contains a component isomorphic to K3 or G contains two

vertices of degree 2 that lie on a cycle of length three, and no other vertex ofG has degree 2. Let F be the

component of G containing u and v. We shall prove that if F ≇ K3, then F ∼= K̂
j
3 or F ∼= K̂

j+
3 .

Suppose first that F does not contain any vertices of degree 1. Let w be a vertex of maximum degree

in F and assume that ∆(F ) ≥ 3. Now, since F has no more than one vertex of degree d for each

d ∈ {3, . . . ,∆(F )−1}, the degree of w is at most 2+ |{3, . . . ,∆(F )−1}| = ∆(F )−1, a contradiction.

We conclude that if F ≇ K3, then F must contain some vertex of degree 1.

Assume, consequently, that F contains some vertex of degree 1. If two vertices of degree 1 in F have

distinct neighbors, then there is a proper edge coloring of F where these two vertices have the same

palette, contradicting that š(G) = |V (G)|. Hence, all vertices of degree 1 in F are adjacent to a fixed

vertex y of F . Since F contains vertices of degree 1, and u and v both have degree 2, ∆(F ) ≥ 3.

Moreover, since all vertices of degree greater than 3 in F have distinct degrees, there is a unique vertex

w of maximum degree ∆(F ) in F . Furthermore, it follows from the same argument that w is adjacent to
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some vertex of degree 1 in F . Thus, all vertices of degree 1 in F are adjacent to w. If all vertex degrees

in F are in the set {1, 2,∆(F )}, then G ∼= K̂
j
3 .

Suppose that there is some vertex x of degree k, 3 < k < ∆(F ) in F . Without loss of generality, we

assume that x has second largest degree in F . Since all vertices of degree 1 in F are adjacent to w, x

must be adjacent to u, v, w and exactly k − 3 ≥ 1 vertices of distinct degrees in the set {3, . . . , k − 1}.

Therefore, x is adjacent to a vertex y of degree k − 1. However, y can be adjacent only to vertices of

degrees in the set {3, . . . , k − 2} ∪ {k,∆(F )}, so that its degree is at most k − 2, a contradiction. We

conclude that there is no vertex of degree greater than 3 in F except for w. Moreover, if all vertex degrees

of F are in the set {1, 2, 3,∆(F )}, where ∆(F ) > 3, then F ∼= K̂
j+
3 , because all vertices of degree 1 in

F are adjacent to w.

We conclude that u and v must lie in a component F of G that is isomorphic to K3, K̂
j
3 or K̂

j+
3 .

Suppose that G has more than one component, and let H be a component of G−V (F ). Now, since the

palette index of G is |V (G)|, H does not contain any vertex of degree 2. Thus any two vertices of equal

degree in H have degree 1. Moreover, by the pigeonhole principle at least two vertices of H have equal

degree, and it is easy to see that if two vertices x and y of degree 1 in H are not adjacent to the same

vertex, then š(G) < |V (G)|. We conclude that there are at least two vertices of degree one in H that are

adjacent to the same vertex in H (unless H consists of a single edge). Since all other vertex degrees in H

are different, all vertices of degree 1 in H are adjacent to the vertex of maximum degree in H . Moreover,

it follows, as in the preceding paragraph, that the only vertex degrees in H are ∆(H) and 1; and so, H is

isomorphic to a star.

Now, if there are vertices of degree 1 in different components of G, then clearly š(G) < |V (G)|. Thus,

if G− V (F ) is non-empty, then F ∼= K3 and G− V (F ) is a star.

We conclude that G is isomorphic to K3, K̂
j
3 , K̂

j+
3 or to the disjoint union of K3 and a star.

The case when there are no two vertices of degree 2 in G, can be dealt with similarly by first deducing

that two vertices in G have degree 1, and, as before, all such vertices of G are adjacent to the vertex of

maximum degree in G. By proceeding as above it is now easy to prove that the only vertex degrees in G

are 1 and ∆(G), and that G must be connected. Hence, G is isomorphic to a star.

Although the preceding theorem only holds for graphs with no isolated vertices, we note that if G is a

graph with no isolated vertices and š(G) = |V (G)|, then š(G ∪K1) = |V (G ∪K1)|.
Consider a non-regular graph G which is the union of two regular edge-disjoint Class 1 graphs H1 and

H2 satisfying that V (H1) ⊆ V (H2). Since both H1 and H2 are Class 1 and G is non-regular, we have

that š(G) = 2. It is not difficult to see that the converse holds as well. Indeed, assume that G is a graph

with š(G) = 2, and let φ be a proper edge coloring of G attaining this minimum.

It follows from a result of Horňák et al. (2014) that G is not regular, and thus exactly two different

vertex degrees appear in G; d1 and d2, say, where d1 > d2. For i = 1, 2, let Ci(φ) be the set of all colors

appearing on edges incident with vertices of degree di under φ. If C2(φ) * C1(φ), then there is some

color j ∈ C2(φ) which does not appear at any vertex of degree d1 in G, and since |C1(φ)| > |C2(φ)|,
there is some color k which does not appear on any edge incident with a vertex of degree d2. Hence, by

recoloring all edges with color j by color k, we obtain, from φ, a proper edge coloring φ′ of G with two

distinct palettes, and such that

|C2(φ
′) \ C1(φ

′)| < |C2(φ) \ C1(φ)|.
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We conclude that we may assume that C2(φ) ⊆ C1(φ). Now, let H1 be the edge-induced subgraph of G

induced by all edges with colors in C1(φ)\C2(φ), and letH2 be the edge-induced subgraph ofG induced

by all edges with colors in C2(φ). The graph H1 is a regular Class 1 graph and the graph H2 is a regular

Class 1 graph. Moreover, since C2(φ) ⊆ C1(φ), V (H1) ⊆ V (H2). We have thus proved the following.

Proposition 5.2. IfG is a graph, then š(G) = 2 if and only ifG is a non-regular graph which is the union

of two regular edge-disjoint Class 1 graphsH1 and H2, satisfying that V (H1) ⊆ V (H2).

A partial characterization of graphs with palette index 3 was obtained in Bonvicini and Mazzuoccolo

(2016). We would like to pose the following question.

Problem 5.3. Is it possible to characterize graphs G satisfying that š(G) = |V (G)| − 1?
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