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Irregular edge coloring of 2-regular graphs†
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Let G be a simple graph and let us color its edges so that the multisets of colors around each vertex are distinct. The
smallest number of colors for which such a coloring exists is called the irregular coloring number of G and is denoted
by c(G). We determine the exact value of the irregular coloring number for almost all 2-regular graphs. The results
obtained provide new examples demonstrating that a conjecture by Burris is false. As another consequence, we also
determine the value of a graph invariant called the point distinguishing index (where sets, instead of multisets, are
required to be distinct) for the same family of graphs.
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1 Introduction
Consider a simple (without loops and multiple edges) undirected graphG. LetC be a color set,w : E(G)→
C an edge coloring, and let MSw(v) denote the multiset of colors of all the edges incident with a vertex v
in G. A coloring w is said to be irregular or vertex distinguishing if for any two distinct vertices u, v of G
the corresponding multisets hold MSw(u) 6= MSw(v). We ask for the minimal number of colors needed
to obtain an irregular edge coloring and we call it the irregular coloring number. Moreover, we denote by
c(G) the irregular coloring number of a given graph G. Note that such a coloring does not exist at all if G
contains an isolated edge or more than one isolated vertex. In such a case we set c(G) =∞.

The irregular coloring number has also another interesting interpretation, and was introduced by Aigner
and Triesch in [1] as a variant of another widely studied (in more than 40 papers, e.g. [9, 12, 14, 15, 16])
parameter, the irregularity strength of graphs. Namely, if we consider labelings of edges of a given graph
G with positive integers, c(G) can be defined as the minimal cardinality of such a subset of N (the set of
labels) that allows us to distinguish all the vertices ofG by the sums of labels of edges incident with them,
see [1] for details.

To provide an example, let us recall that in [1] the irregular coloring number was determined to be
equal to three for Kn (n ≥ 3) and Kn,n (n ≥ 2). Other results, mostly for connected graphs, such as
paths, cycles (see [1]) or complete multipartite graphs (see [17]), are also known. These are however
difficult to generalize in case of their nonconnected equivalents. On the other hand, a general bound
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from [1], c(G) ≤ |G| − 1 for graphs with c(G) < ∞ other than a triangle, is far from being sharp for
numerous families of graphs. In particular, Aigner, Triesch and Tuza proved in [2] that for k-regular
graphs, c(G) ≤ Cn 1

k , where C is a constant dependent only on k (k ≥ 2) and n is the order of the graph.
Again determining the exact value of the irregular coloring number, or at least the best possible constant
C, proved to be complicated, even for 2-regular graphs. A representative of such a family is simply a
disjoint union of cycles and can be denoted as G = Cm1

∪ . . .∪Cmt
, where Ci is a cycle of length i. The

following upper bound was established by Aigner et al..

Theorem 1 ([2]) Let G = Cm1
∪ . . . ∪ Cmt

be a simple 2-regular graph of order n =
∑t

i=1mi. Then

c(G) 6
9√
2

√
n+O(1).

It was then improved by Wittmann.

Theorem 2 ([17]) Let G = Cm1
∪ . . . ∪ Cmt

be a simple 2-regular graph of order n =
∑t

i=1mi. Then

c(G) 6
√

2n+O(1).

This bound was already best possible except for an additive constant term. On the other hand, the role of
this constant is crucial in face of a conjecture by Burris we mention below. Several exact results were then
obtained for some special 2-regular graphs. Among others, in [10] and [11] the irregular coloring number
was determined for unions of cycles of exclusively even lengths. Earlier, a particular, but very important
case (we refer to this result at the end of the paper, explaining its significance), was solved by Aigner and
Triesch, [1]. Namely, they showed that c(tC3) = min(min{r : b r3b

r−1
2 cc ≥ t, r 6≡ 5(mod 6)},min{r :

b r3b
r−1
2 cc − 1 ≥ t, r ≡ 5(mod 6)}), where tC3 consists of t disjoint triangles.

As usual, let δ(G) and ∆(G) stand for the minimum and the maximum, resp., degree of a given graph
G. Additionally, let nd (or nd(G)) denote the number of vertices of degree d in G. Note that if there
exists any irregular edge coloring of G with k colors, then, by the standard combinatorial formula for the
number of multisets of a given size, we must have that(

k + d− 1

d

)
> nd (1)

for each d > 1. The following Vizing-type conjecture was posed by Burris in her PhD thesis [7].

Conjecture 3 ([7]) Let G be a graph without isolated edges, containing at most one isolated vertex, and
let k be the minimum integer such that

(
k+d−1

d

)
> nd(G) for 1 6 d 6 ∆(G). Then c(G) = k or k + 1.

The aim of this paper is to determine the irregular coloring number for almost all (except a finite num-
ber) 2-regular graphs, see Corollary 12. Consequently, we will obtain infinitely many counterexamples
against Conjecture 3, which will lead to its reformulation in weaker versions, see Conjectures 13 and 14.

As another consequence of our reasoning we also determine the value of the graph invariant called the
point distinguishing chromatic index, χ0(G), for the same family of graphs. This parameter, introduced
by Harary and Plantholt [13], differs from c(G) only by the requirement that sets, Sw(v), instead of
multisets, MSw(v), are distinct for all the vertices of G, where w : E(G) → C is an edge coloring. One
can easily verify that both parameters coincide in the case of 2-regular graphs. For related problems see
[3, 5, 6, 8].
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2 Equivalent problem
The problem of determining the smallest number of colors for which there exists an irregular edge coloring
is in the case of 2-regular graphs equivalent to a different one. To state this new problem clearly we
have to first specify some notations. In our reasoning we will admit (simple) graphs containing possible
additional single loops at some of the vertices. Though these are actually pseudographs, we still call them
graphs. A loop at a vertex v of such a graph is then denoted by vv (since it is uniquely determined by v).
Analogously, an edge with ends u and v is denoted by uv (or vu).

A trail of length n in a graph G is an alternating sequence v0e0v1e1 . . . en−1vn of n+ 1 vertices and n
edges (or loops) ofG such that the ei = vivi+1, 0 ≤ i < n, are pairwise distinct. We usually identify such
a trail with the graph (subgraph) G′ spanned by its edges (and loops), i.e., where V (G′) = {v0, . . . , vn}
and E(G′) = {e0, . . . , en−1}. In some cases we will write G′ simply as a sequence of its “consecutive”
vertices v0v1 . . . vn (where we will usually identify all the sequences corresponding to the same graph
G′). Such a trail is called closed if v0 = vn, or open otherwise. Obviously, some special representatives
of trails are paths and cycles. Let us additionally assume that a single loop does not constitute a graph,
hence a single loop is neither a closed trail, nor a cycle. Note that a closed trail may be regarded as an
Eulerian graph, i.e., a connected graph with all the degrees being even integers (where a loop adds 2 to the
degree of a vertex), while an open trail is just a connected graph with exactly two vertices of odd degrees.
In general, we will call a graph even if the degrees of all its vertices are even integers.

Now given an irregular edge coloring w : E → {1, . . . , k} of a 2-regular graph G = Cm1 ∪ . . . Cmt ,
we define the graph H of such a coloring as follows. Let its vertex set contain all the colors, hence
V (H) = {1, . . . , k}, and let us draw an edge in H whenever colors i and j (i = j possibly) meet at some
vertex in G. In other words, E(H) = {Sw(v) : v ∈ V (G)}. Since our coloring is irregular, we never
draw an edge (or loop) twice in H . It is also easy to observe that when we traverse consecutive vertices of
a given cycle Cmi , we obtain a closed trail in H as a result. Therefore, H is just a sum of t closed trails
of lengths m1, . . . ,mt, hence is an even subgraph of size ‖G‖ of a graph Mk, where Mk is defined to be
the complete graph Kk with a single loop added at each vertex. Conversely, if we have an even subgraph
H of the graph Mk which can be written as a sum of t edge disjoint closed trails of lengths m1, . . . ,mt,
then reversing our process, i.e., traversing each of these closed trails and painting the consecutive edges
of the corresponding cycle from G with the colors of the vertices encountered in H , yields an irregular
edge coloring of G. Thus we have reduced our problem to the following one.

Observation 4 For any 2-regular graph G = Cm1 ∪ . . . Cmt , the irregular coloring number is equal to
the smallest k for which there exists a subgraph of the graph Mk that is an edge disjoint sum of closed
trails of lengths m1, . . . ,mt. 2

3 Necessary condition
Consider a problem defined by Observation 4, where we want to determine the smallest possible k com-
plying with the stated requirements for G = Cm1

∪ . . . Cmt
. Note that an obvious necessary condition

for such a k is a requirement that there is at least one even subgraph of size m1 + . . . + mt in Mk. We
must however require something more from such a subgraph. The number of its possible loops might be
limited. It is because closed trails of length 3 cannot contain loops, a closed trail of length 4 may have
at most one loop, the one of length 5, two loops, etcetera. A general function L on the maximal possible
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number of loops in a closed trail of length m (m ≥ 3) is the following.

L(m) =

 0, for m = 3,
1, for m = 4,
bm2 c, for m ≥ 5.

We may then denote that in total

L(m1, . . . ,mt) = L(m1) + . . .+ L(mt).

On the other hand, we have only k loops available in Mk. Combining these two facts, we obtain the
following function Lk on the maximal possible number of loops in the required even subgraph of Mk.

Lk(m1, . . . ,mt) = min{k, L(m1, . . . ,mt)}.

Finally, we obtain the following necessary condition.

Observation 5 For any collection of lengths m1, . . . ,mt, mi ≥ 3, and any k, if there exists an even
subgraph of size m1 + . . .+mt in Mk containing at most Lk(m1, . . . , mt) loops, then

(1◦) m1 + . . .+mt ≤
(
k
2

)
− k

2 + Lk(m1, . . . ,mt) if k is even,

(2◦) m1 + . . . + mt ≤
(
k
2

)
+ Lk(m1, . . . ,mt) if k is odd and either k 6≡ 5(mod 6) or mi ≥ 4 for at

least one i,

(3◦) m1 + . . .+mt ≤
(
k
2

)
and m1 + . . .+mt 6=

(
k
2

)
− 1 if k ≡ 5(mod 6) and mj = 3 for all j.

Proof: There are
(
k
2

)
edges and k loops in Mk. Since the subgraph whose existence we assumed cannot

have more than Lk(m1, . . . ,mt) loops, the bound from (2◦) is obvious. In (1◦) on the other hand, the
degree of each vertex inMk is odd. Since our aim is to find an even subgraph ofMk, we must additionally
remove at least as many edges (loops do not change the degrees of the vertices) as there are in a perfect
matching, that is k

2 , from Mk. In (3◦) in turn, which is a very special case, we have m1 = . . . = mt = 3,
hence Lk(m1, . . . ,mt) = 0, and there is no even subgraph of Kk (Mk without loops) containing all
except exactly one (that is

(
k
2

)
− 1) of its edges. 2

Now, consider for instance the lengths 3, 3, 6, 6 and k = 6. Then L6(3, 3, 6, 6) = 6 and
(
6
2

)
− 6

2 + 6 =
18, hence our necessary condition (see (1◦)) is fulfilled. Nevertheless, as one can easily check, it is not
enough for the existence of the edge disjoint closed trails of specified lengths in M6. Surprisingly, it
occurs that for k large enough the necessary conditions from Observation 5 are also sufficient. This fact,
which also allows us to determine the exact value of the irregular coloring number for almost all 2-regular
graphs, is the main result of this paper, see Theorem 11 and Corollary 12.

It is worth noting that for the general case, not only starting from a given (large) n, it is known that
c(G) ≤

⌈√
2n
⌉

+1 for any 2-regular graph, even if we require the coloring to be proper. This bound is off
by at most two from the real value, and is a consequence of the following Corollary 1.2 from Balister [3],
with two additional simple cases that must be verified separately, i.e., G = C8 and C4 ∪ C4.
Theorem 6 ([3]) Let L =

∑t
i=1mi, mi ≥ 3; then we can write some subgraph of KN as an edge-

disjoint union of closed trails of lengths m1, . . . ,mt if and only if either

(1) N is odd, L =
(
N
2

)
or L ≤

(
N
2

)
− 3, or

(2) N is even, L ≤
(
N
2

)
− N

2 .
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4 The idea and lemmas
The main idea of the proof of Theorem 11 is based on the following result concerning simple graphs due
to Balister.

Theorem 7 ([4]) There exist absolute constant N and ε > 0 such that for any even simple graph G on n
vertices with n ≥ N and δ(G) ≥ (1 − ε)n, and for any collection of integers m1, . . . ,mt with mi ≥ 3
and

∑t
i=1mi = |E(G)|, one can write G as the edge-disjoint union of closed trails T1, . . . , Tt with Ti of

length mi for i = 1, . . . , t. In addition, given any fixed v ∈ V (G), we can also ensure that T1 meets v.

Note that if we want to prove the sufficiency of the conditions (1◦)-(3◦) from Observation 5, then given
the lengths m1, . . . ,mt, mi ≥ 3, of the cycles of a 2-regular graph and the corresponding k complying
with (1◦)-(3◦), our aim is to construct a subgraph of Mk which is an edge disjoint sum of closed trails of
the given lengths (compare also with Observation 4). A natural approach is now to first find a (“small”)
number of necessary closed trails in Mk “covering” all the loops we should use in our construction. If
we are able to do it using not too many (bounded by a constant) edges at each vertex, then after removing
them (together with all the loops) from Mk, we will be able to use Theorem 7 above for the resulting
graph and the remaining set of lengths, provided that k is large enough.

A realization of the first part of this plan is contained in Lemma 10. It is preceded by the following two
auxiliary lemmas. First of them will help us to “close” open trails of odd lengths by joining their ends
with paths of length two. The second, in turn, will be used later in the construction of closed trails of
lengths four taking form of the triangles with single loops.

Lemma 8 LetG be a simple graph of order n ≥ 51 and with minimum degree δ ≥ n−11, and let U be a
set of at most n

2 disjoint pairs of its vertices {{x1, y1}, . . . , {xk, yk}} (xi 6= yi). Then there exist vertices
z1, . . . , zk such that xiziyi, i = 1, . . . , k, form a set of k edge disjoint paths of length 2 in G, and that G′

obtained from G by removal of all the edges of these paths has minimum degree δ′ ≥ n− 14.

Proof: It is sufficient to choose pairwise distinct z1, . . . , zk such that xiziyi, i = 1, . . . , k, are the edge
disjoint paths in G. Assume then that U ′ is a maximal subset of U for which we can find vertices zi (or
equivalently paths of length two) complying with these requirements, and let Z ′ be the set of the middle
vertices of the obtained paths. Suppose that U ′ 6= U (hence |U ′| = |Z ′| ≤ n

2 −1) and let {x, y} ∈ UrU ′.
Now, to complete the proof, it is sufficient to get a contradiction by finding a path complying with our
requirements for this pair of vertices. Note that any element z ∈ M := NG(x) ∩ NG(y) constitute a
middle vertex of some path of length 2 in G with endpoints x and y. A given such z cannot be used
in construction of the desired path by one of the two following reasons. First of all we need to exclude
z ∈ Z ′ (since zi must be pairwise distinct). Second, we need to eliminate the ends of these (at most two)
potential paths from U ′ in which x or y might be a middle vertex (since the paths are supposed to be
edge disjoint), i.e., at most four vertices. Consequently, we are still left with at least |M | − |Z ′| − 4 ≥
(2δ − n)− (n

2 − 1)− 4 ≥ n− 22− (n
2 − 1)− 4 > 0 appropriate candidates for z, a contradiction. 2

Lemma 9 Let G be a simple graph of order n ≥ 34 and with minimum degree δ ≥ n − 5, and let
W = {v1, . . . , vl} be a subset of its vertices. Then there exist l edge disjoint triangles, H1, . . . ,Hl, in G
such that vi is a vertex of Hi for each i, and that G′ obtained from G by removal of all the edges of these
triangles has minimum degree δ′ ≥ n− 11.
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Proof: It is sufficient to show our assertion in the case when W = V (G). By the Dirac condition, the
graph G contains a Hamilton cycle C. To prove the theorem, for each vertex vi ∈ W = V (G) we will
choose a distinct edge ei = uiwi of the cycle C such that ∆i = viuiwi forms a triangle in G (then
each vertex will belong to exactly three of these triangles), viui, viwi /∈ E(C), and that the triangles
obtained are edge disjoint. Let W ′ be a maximal size subset of W for which we can choose such edges
(or equivalently triangles). Denote by E′ the set of these edges (E′ ⊆ E(C)), and let H be the set of the
corresponding triangles. For a given vertex v′, let Tv′ denote the set of the edges of C whose ends span
in G triangles together with v′, each containing exactly one edge of C. Then |Tv′ | ≥ n− 2(n− δ)− 2 =
2δ − n − 2. It is because each vertex which is not adjacent with v′ meets, hence excludes, at most two
of the n edges of C, and we additionally exclude the two edges of C which might span, together with v′,
triangles containing more than one edge of C in G. Analogously, for a given edge e′ = u′w′ of C, let Te′
denote the set of the vertices spanning in G triangles together with e′, each containing exactly one edge
of C, hence |Te′ | ≥ |NG(u′) ∩NG(w′)| − 2 ≥ 2δ − n− 2.

Suppose now that the theorem is false, hence W ′ 6= W (W = V (G)), and let v ∈ W rW ′. Then
at least one edge of C, say e = uw, does not belong to any of the triangles from H. Note that by the
maximality of W ′, there cannot exist an edge xy ∈ Tv rE′ such that vxy is a triangle in G which is edge
disjoint with all the triangles from H. Denote then by F the set of these edges xy ∈ Tv ∩ E′ for which
the triangle vxy is edge disjoint with all the triangles from H except the one containing xy. Observe that
if x′y′ ∈ Tv r F , then x′y′ must be incident with one of at most two triangles of H containing v, hence
there can be at most 4 such edges in Tv . Consequently, |F | ≥ |Tv| − 4 ≥ 2δ − n − 6. Analogously, by
the maximality of W ′, there cannot exist a vertex z ∈ Te rW ′ such that zuw is a triangle in G which is
edge disjoint with all the triangles from H. Denote by U the set of these vertices z ∈ Te ∩W ′ for which
the triangle zuw is edge disjoint with all the triangles from H. Observe that if z′ ∈ Te r U , then zu or
zw must be an edge of a triangle fromH, hence there are at most 6 such vertices in Te. It is because each
of the vertices u, w is incident with at most three edges of the triangles fromH which do not belong to C
(contained in at most two triangles fromH for each of them). Consequently, |U | ≥ |Te|−6 ≥ 2δ−n−8,
hence |F |+ |U | ≥ 4δ− 2n− 14 ≥ 2n− 34 ≥ n = |W | > |W ′|. Therefore, since F ⊆ E′ and U ⊆W ′,
the setH must contain a triangle ∆j = vjujwj such that vj ∈ U and ujwj ∈ F . Then, by the definitions
of F and U , ∆′ = vujwj and ∆′′ = vjuw form triangles in G which are edge disjoint with the ones from
H r {∆j}. Moreover, ∆′ and ∆′′ are also edge disjoint, since by the definition of U , the edges e = uw
and ujwj must be independent. The obtained collection of triangles, (Hr{∆j})∪{∆′,∆′′}, contradicts
the maximality of W ′. 2

Lemma 10 Let n ≥ 51 and let m1, . . . ,mt ≥ 4 be integers such that s =
∑t

i=1 L(mi) ≤ n. Then for
any γ = 0, 1, 2 there exists a subgraph G′ of Mn of maximum degree at most 12 (not taking loops into
account) containing exactly s loops, which is an edge disjoint union of closed trails T1, . . . , Tt of lengths
m1, . . . ,mt−1,mt + γ, respectively.

Proof: In other words, we need to find t edge disjoint closed trails T1, . . . , Tt of specified lengths in Mn,
such that their sum G′ is a graph of maximum degree at most 12 (not taking loops into account) which
contains s loops.

First partition the sequence m1, . . . ,mt−1 (note that we omit mt) into three subsequences e1, . . . , er,
f1, . . . , fl, o1, . . . , ok containing all its even elements of lengths at least 6, all elements equal to four, and
all odd elements, respectively (hence ei ≡ 0(mod 2), ei ≥ 6, fi = 4 and oi ≡ 1(mod 2) for all i).
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Let G = Mn, G = (V,E), and let V = {a1, . . . , an}. Then C = a1 . . . ana1 forms a Hamil-
ton cycle in G. We begin our construction from the first of the subsequences. Note that

∑r
i=1

ei
2 =∑r

i=1 L(ei) ≤ n − L(mt). Therefore, we can construct the first r closed trails one after another by
simply taking consecutive blocks of ei

2 , i = 1, . . . , r, vertices on the Hamilton cycle C together with
the edges of this cycle joining these vertices, then closing each of the obtained paths up by adding the
edge joining its ends, and finally attaching all the loops adjacent with it. This way, the first trail E1 of
length e1 is of the form a1a1a2a2 . . . aL(e1)aL(e1)a1 and contains loops at the vertices a1, . . . , aL(e1).
Subsequently, the trail E2 of length e2 is defined by the sequence aL(e1)+1 aL(e1)+1 aL(e1)+2 aL(e1)+2

. . . aL(e1)+L(e2)aL(e1)+L(e2)aL(e1)+1, etcetera.

Now take L(mt) consecutive (after those already used) vertices on the Hamilton cycle C and join them
with a path (in particular we may have a path reduced to one point when L(mt) = 1), adding to this
path all the loops encountered. To create a closed trail of length mt + γ from this open trail, we join
its ends with a path avoiding the edges of the cycle C (and the edges already used) of length at most
γ + 3 ≤ 5. Since we still have a very dense graph (even after removing the edges already used in our
construction and all the edges of C), it is easy to find such a path using a greedy algorithm (taking at each
step the first “suitable” vertex/edge). This way we have already constructed the closed trails containing∑r

i=1 L(ei) +L(mt) consecutive loops of the Hamilton cycle. Moreover, each vertex of G meets at most
4 edges (and at most one loop) from the sum of these trails.

Let v1, . . . , vl be the subsequent l consecutive vertices on the Hamilton cycle C (with loops at them
unused), and denoteW = {v1, . . . , vl}. Then vl = aq for some q ≤ n. Let us temporarily remove fromG
the edges aq+1aq+2, aq+2aq+3, . . . , an−1an (we may need them in the further part of our construction),
all the edges of the closed trails already constructed and all the (n) loops. Denote the graph obtained by
G1. Note that δ1 ≥ n − 5, where δ1 is the minimum degree of G1. Let H be the collection of triangles
in G1 guaranteed by Lemma 9. Joining these triangles with the loops at v1, . . . , vl, resp., we obtain the
desired closed trails of length four (f1, . . . , fl = 4) in G.

Remove fromG1 the edges of the triangles fromH and denote the graph obtained byG2. By Lemma 9,
which we have used, its minimum degree is at least n−11. Now add back the edges aq+1aq+2, aq+2aq+3,
. . . , an−1an together with the loops incident with them to this graph. We will use some of them to create
open trails of lengths o1 − 2, . . . , ok − 2, which will be then completed to form the desired closed trails.
Again we do it by simply taking the proper consecutive bits of C together with all the incident loops. For
instance, the first of such open trails is of the form aq+1aq+1aq+2aq+2 . . . aL(o1)aL(o1) (since o1 is odd,
L(o1) = o1−1

2 ). Let {{x1, y1}, . . . , {xk, yk}} be the pairs of the corresponding ends of these open trails,
and let us remove all the edges of these trails and all the remaining loops. Since we have just removed only
some part of the edges (and loops) which we had formerly added back to G2, we still have δ3 ≥ n− 11,
where δ3 is the minimum degree of the obtained graph G3. By Lemma 8 we can now easily find k edge
disjoint paths of length 2 that complete our construction of the trails of lengths o1, . . . , ok. Moreover,
these paths can be chosen in such a way that if we remove their edges from G3, then the minimum degree
of the graph obtained will be at least n − 14. Since initially all the vertices of G had degree n − 1
(not taking loops into account), then the graph obtained as a sum of all the closed trails constructed has
maximum degree at most 13 (not taking loops into account) and exactly s loops. Finally, since such a
graph is even, its maximum degree cannot in fact exceed 12 (not taking loops into account). 2
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5 Main result
Theorem 11 There exists an absolute constant K such that for any k ≥ K the following conditions are
sufficient for existence of a subgraph of Mk which is an edge disjoint union of closed trails of lengths
m1, . . . ,mt, where mi ≥ 3.

(1◦) m1 + . . .+mt ≤
(
k
2

)
− k

2 + Lk(m1, . . . ,mt) if k is even,

(2◦) m1 + . . . + mt ≤
(
k
2

)
+ Lk(m1, . . . ,mt) if k is odd and either k 6≡ 5(mod 6) or mi ≥ 4 for at

least one i,

(3◦) m1 + . . .+mt ≤
(
k
2

)
and m1 + . . .+mt 6=

(
k
2

)
− 1 if k ≡ 5(mod 6) and mj = 3 for all j.

Proof: Let N and ε be the constants from Theorem 7. Assume that N0 ≥ N is the smallest integer such
that k− 16 ≥ (1− ε)k for each k ≥ N0, and let K = max{N0, 51}. We shall prove that this K complies
with our requirements.

Assume that the lengths m1, . . . ,mt are ordered in such a way that all threes are placed at the end
of the sequence. Let n =

∑t
i=1mi, L = Lk(m1, . . . ,mt), and assume that k ≥ K complies with the

assumptions of the theorem, hence (1◦)-(3◦) are fulfilled. We will first use Lemma 10 to find inMk closed
trails “covering” all the loops we want to use in our construction. In most of the cases this will be exactly
L loops, but in some special situations we shall limit this number to L− 1 or L− 2.

Assume first that k is odd. Below we define the value of a constant L′ (L′ ≤ L), dependent on the
given cases. This in fact will be the number of loops which we will use while applying Lemma 10. Let
L′ = L if n−

(
k
2

)
≤ L− 3 and L′ = n−

(
k
2

)
otherwise. Note that L′ ≥ 0 in all these cases. It is obvious

for L′ = L. For L′ = L − 1, on the other hand, if we had L′ < 0, hence L = 0, then n =
(
k
2

)
+ 0 − 1

would have to be divisible by 3 (because if L = 0, then mi = 3 for all i). Consequently, we would get
a contradiction with (3◦), since

(
k
2

)
− 1 is divisible by 3 (k odd) only for k ≡ 5(mod 6). Finally, for

L′ = L−2, if we had L′ < 0, then we would analogously as above either obtain
(
k
2

)
−2 = 3t (for L = 0)

or
(
k
2

)
+ 1− 2 = 3t+ 1 (for L = 1). In both cases we obtain a contradiction with the fact that

(
k
2

)
− 2 is

never divisible by three. Let s be the least integer (s ≥ 0) such that

L(m1) + . . .+ L(ms) ≥ L′.

Let m′s ≤ ms be the least integer so that
∑s−1

i=1 L(mi) + L(m′s) = L′, and set γ = ms − m′s if
ms −m′s ≤ 2, or γ = 0 otherwise. By Lemma 10 there exists a subgraph G′ of Mk of maximum degree
at most 12 (not taking loops into account) containing exactly L′ loops, which is an edge disjoint union
of closed trails T1, . . . , Ts of lengths m1, . . . ,ms−1,m

′
s + γ, respectively. Let G′′ be a graph obtained

from Mk by removing all the edges of G′ and all the (k) loops. Since Mk (k odd) is an even graph, G′′

is an even graph as well. Moreover, δ(G′′) ≥ k − 13. Note that by our construction (by the choice of L′

actually), either ms −m′s − γ +
∑t

i=s+1mi = ||G′′||, or ms −m′s − γ +
∑t

i=s+1mi ≤ ||G′′|| − 3,
hence there exists mt+1 such that ms −m′s − γ +

∑t+1
i=s+1mi = ||G′′|| and mt+1 = 0 or mt+1 ≥ 3.

By Theorem 7, G′′ can be written as the union of closed trails of lengths ms −m′s − γ,ms+1, . . . ,mt+1

(where we ignore the lengths equal to 0 if there are any), such that the closed trail of length ms −m′s − γ
contains any fixed vertex v of the formerly constructed closed trail Ts. By joining these two trails together,
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we obtain a one of length ms, hence complete the construction. (Note that the closed trail of length mt+1

plays only a technical role in our reasoning.)
Assume now that k is even. This time we shall use exactly L loops while applying Lemma 10. Let then

analogously as above s be the least integer (s ≥ 0) such that

L(m1) + . . .+ L(ms) ≥ L.

Letm′s ≤ ms be the least integer so that
∑s−1

i=1 L(mi)+L(m′s) = L, and let γ = ms−m′s ifms−m′s ≤ 2,
or γ = 0 otherwise. By Lemma 10 there exists a subgraph G′ of Mk of maximum degree at most 12 (not
taking loops into account) containing exactly L loops, which is an edge disjoint union of closed trails
T1, . . . , Ts of lengths m1, . . . ,ms−1,m

′
s + γ, respectively. Let G′′ be a graph obtained from Mk by

removing all the edges ofG′ and all the (k) loops. Note thatms−m′s−γ+
∑t

i=s+1mi ≤ ||G′′||−k
2 , where

the degrees of all the vertices inG′′ are odd. Let us definemt+1 = ||G′′||−k
2−(ms−m′s−γ+

∑t
i=s+1mi)

if this number equals at least 3, or set mt+1 = 0 (for definiteness) otherwise. Consequently,

ms −m′s − γ +

t+1∑
i=s+1

mi ∈ {||G′′|| −
k

2
, ||G′′|| − k

2
− 1, ||G′′|| − k

2
− 2}. (2)

In order to apply now Theorem 7, we need to first modify the graph G′′ by removing some edges from it,
so that it is even and have a proper size (i.e.,ms−m′s−γ+

∑t+1
i=s+1mi). If the sum in (2) equals ||G′′||− k

2 ,
we simply remove a perfect matching, that is k

2 independent edges, from G′′. Its existence is guaranteed
e.g. by the Dirac condition for hamiltonicity (G′′ still has “large” minimum degree compared to its order).
In the remaining two cases, we first remove a star K1,3 (for ||G′′|| − k

2 − 1), or two independent stars
K1,3 (for ||G′′|| − k

2 − 2), and then a matching of the remaining (all except the ones in the stars) vertices
from G′′. Since then we obtain a simple even graph of the desired size and with the minimum degree
δ ≥ k − 16, we analogously as above finish our proof by first applying Theorem 7 to this graph, and then
joining the obtained closed trails of lengths ms −m′s − γ and m′s + γ. 2

6 Conclusions
By Observation 4, Observation 5 and Theorem 11 we obtain the following corollary.

Corollary 12 Let G = Cm1
∪ . . .∪Cmt

be a 2-regular graph and let k be the smallest integer for which
(1◦)-(3◦) hold. If k ≥ K, then c(G) = k (hence also χ0(G) = k). 2

Consequently, we have determined the exact value of c(G) for all 2-regular graphs of order n >
(
K−1
2

)
+

(K − 1) =
(
K
2

)
(where we must have taken the worst case (2◦) into account), hence for all except a finite

number. One can calculate that then c(G) ∈ {d
√

2ne− 1, d
√

2ne, d
√

2ne+ 1}, what can be conveniently
confronted with the result by Wittmann, see Theorem 2.

We must point out here that K from Corollary 12 above is very large. It is due to its dependency on the
size of N , which is very large, and ε, which is extremely small, from Theorem 7 of Balister. In particular
ε ≤ 10−24, hence K ≥ 16 · 1024, see [4] for more details and references.

As we have already mentioned our result also provides many counterexamples disproving Conjecture 3.
These include the case already pointed out in the introduction, i.e., G = tC3 with 3t =

(
r+1
2

)
− 1 for
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any r ≡ 4(mod 6), where we should have c(G) ∈ {r, r + 1} according to Conjecture 3, while in fact,
c(G) = r + 2, see [1] or Corollary 12. Many other counterexamples can however be derived from
Corollary 12 (e.g., G = tC3 with

(
r+1
2

)
− r+1

2 < 3t 6
(
r+1
2

)
for r ≡ 5(mod 6) or r ≡ 1(mod 6)).

Nevertheless, we suspect that one of the following conjectures, the first of which implies the other, should
hold.

Conjecture 13 Let G be a graph without isolated edges, containing at most one isolated vertex, and let k
be the minimum integer such that

(
k+d−1

d

)
> nd(G) for 1 6 d 6 ∆(G). Then c(G) ∈ {k, k + 1, k + 2}.

Conjecture 14 There exists an absolute constant A such that for each graph G without isolated edges
which contains at most one isolated vertex, if k is the minimum integer such that

(
k+d−1

d

)
> nd(G) for

1 6 d 6 ∆(G), then k ≤ c(G) ≤ k +A.

It is worth noting at the end that the question whether the conjecture by Burris holds for graphs with
∆(G) ≥ 3 remains open. A limited number of (small) examples with ∆(G) = 3 we have verified did not
give a negative answer to that question.
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