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We initiate the study of a problem on searching and fetching, motivated by real-life surveillance and
search-and-rescue operations where unmanned vehicles, e.g. drones, search for victims in areas of a
disaster. In treasure-evacuation, we are interested in designing algorithms that minimize the time it
takes for a treasure (a victim) to be discovered and brought (fetched) to the exit (shelter) by any of
two robots (rescuers) which are performing in a distributed environment (the case of searching and
fetching with 1 robot has been previously considered).The communication protocol between the robots
is either wireless, where information is shared at any time, or face-to-face, where information can be
shared only if the robots meet. For both models we obtain upper bounds for fetching the treasure to
the exit. Our algorithms make explicit use of the distance between the treasure and the exit, which
is assumed to be known in advance, showing this way how partial information of the unknown input
can be beneficial. Our main technical contribution pertains to the face-to-face model. More specifically,
we demonstrate how robots can exchange information without meeting, effectively achieving a highly
efficient treasure-evacuation protocol which is minimally affected by the lack of distant communication.
Finally, we complement our positive results above by providing a lower bound in the face-to-face model.

Keywords: Disk, Exit, Robot, Search and Fetch, Treasure

1 Introduction
We introduce the study of a distributed problem on searching and fetching called treasure evac-
uation. Two robots are placed at the center of a unit disk, while an exit and a treasure lie at
unknown positions on the perimeter of the disk. Robots search with maximum speed 1, and they
detect a point of interest (either the treasure or the exit) only if they pass over it. The exit is
immobile, while the treasure can be carried by any of the robots. The goal of the search is for
at least one of the robots to bring (fetch) the treasure to the exit, i.e. evacuate the treasure, in
the minimum possible completion time. The robots do not have to evacuate, they only need to
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co-operate, possibly by sharing information, so as to learn the locations of the points of interest
and bring the treasure to the exit. Contrary to previous work, this is the first time an explicit
ordering on the tasks to be performed is imposed on two moving robots. This makes the problem
inherently different in nature and more difficult than similarly looking results.

Special to our problem is also the underlying advice-model we consider, i.e. that even though
the locations of the exit and the treasure are unknown, their distance is known and is considered
part of the input. Interestingly, finding an optimal algorithm turns out to be a challenging task
even when the robots have this knowledge. We propose treasure-evacuation protocols in two
communication models. In the wireless model robots exchange information instantaneously and
at will, while in the face-to-face model information can be exchanged only if the robots meet. We
aim at incorporating the knowledge of the exact distance between the exit and the treasure into
our algorithm designs. We offer algorithmic techniques such as planning ahead, timing according
to the explicit task ordering, and retrieval of unknown information through inference and not
communication.

Our problem is motivated by real-life surveillance and search-and-rescue operations where
unmanned vehicles, e.g. drones, search for victims in areas of a disaster. Indeed, consider a
group of rescuer-mobile-agents (robots), initially located strategically in a central position of a
domain. When alarm is triggered and a distress signal is received, robots need to locate a victim
(the treasure) and bring her to safety (the exit). Our problem shares similarities also with classic
and well-studied cops-and-robbers games; robots rest at a central position of a domain (say, in
the centre of a disk as in our setup) till an alarm is triggered by some “robber” (the treasure in
our case). Then, robots need to locate the stationary robber and subsequently bring him to jail
(the exit). Interestingly, search-and-fetch type problems resemble also situations that abound in
fauna, where animals hunt for prey which is then brought to some designated area, e.g. back
to the lair. As such, further investigation of similar problems will have applications to real-life
rescue operations, as well as to the understanding of animal behavior, as it is common in all
search problems.

1.1 Problem Definition & Contributions
A treasure and an exit are located at unknown positions on the perimeter of a unit-disk and at
arc distance α (in what follows all distances will be arc-distances, unless specified otherwise).
Robots, denoted by R1, R2, start from the center of the disk, and can move anywhere on the
disk at constant speed 1. Each of the robots detects the treasure or the exit only if its trajectory
passes over that point on the disk. Once detected, the treasure can be carried by a robot at
the same speed. We refer to the task of bringing the treasure to the exit as treasure-evacuation.
We use the abbreviations T,E for the treasure and the exit, respectively. For convenience, in
the sequel we will refer to the locations of the exit and the treasure as points of interest (PoI).
For a PoI I on the perimeter of the disk, we also write I = E (I = T ) to indicate that the exit
(treasure) lies in point I. For a point B, we also write B = null to denote the event that neither
the treasure nor the exit is placed on B.

We focus on the following online variants of treasure-evacuation with 2 robots, where the exact
distance α between T,E is known, but not their positions:
- In 2-TEw (Section 2), information between robots is shared continuously in the time horizon,
i.e. messages between them are exchanged instantaneously and at will with no restrictions and



Search-and-Fetch with 2 Robots on a Disk 3

no additional cost or delays.
- In 2-TEf2f (Section 3), the communication protocol between the robots is face-to-face (non-
wireless)—abbreviated F2F (or f2f), where information can be exchanged only if the robots meet
at the same point anywhere.

Part of our contribution is that we demonstrate how robots can utilize the knowledge of the
arc-distance α between the points of interest. We propose protocols that induce worst case
evacuation time 1 + π − α + 4 sin (α/2) for the wireless model and 1 + π − α/2 + 3 sin (α/2) for
the face-to-face model. The worst case cost for the two problems becomes 1 + 2

√
3 + π

3 ≈ 5.5113
(when α = 2π

3 ≈ 2.0944) and 1 + 2
√

2 +π− sec−1(3) ≈ 5.73906 (when α = 2 sec−1(3) ≈ 2.46192),
respectively. The upper bound in the face-to-face model, which is our main contribution, is the
result of a non-intuitive evacuation protocol that allows robots to exchange information about
the topology without meeting, effectively bypassing their inability to communicate from distance.
Note that our results induce upper bounds with respect to competitive analysis as well. Indeed,
the optimal solution, given that the input is known, equals optα = 1 + 2 sin (α/2), hence the
competitive ratio we achieve, for fixed α, can be computed by scaling the worst case performance
we achieve by optα. In both cases, the worst case competitive ratio becomes 1 + π, for α → 0.
Finally, we complement our results above by showing that any algorithm in the face-to-face model
needs time at least 1+π/3+4 sin (α/2), if α ∈ [0, 2π/3] and at least 1+π/3+2 sin (α)+2 sin (α/2),
if α ∈ [2π/3, π]. A graphical comparison of our results can be seen in Figure 1.

0.5 1.0 1.5 2.0 2.5 3.0
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4

5

Fig. 1: Comparison between the performance of the wireless algorithm (yellow curve), the performance
of the f2f algorithm (blue curve) and the provided lower bound (green curve) depicted on the vertical
axis, as a function of α (horizontal axis).

1.2 Problem and Model Motivation
From a technical perspective, our communication models are inspired by the recent works on
evacuation problems Czyzowicz et al. (2014, 2015a,b). Notably, the associated search problems
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are inherently different than our problem which is closer in nature to search-type, treasure-hunt,
and exploration problems. Also, our mathematical model features (a) a distributed setting (b)
with objective to minimize time, and (c) where different communication models are contrasted.
None among (a),(b),(c) are well understood for search games, and, to the best of our knowledge,
they have not been studied before in this combination.

Specific to the problem we study are the number of robots (2 and not arbitrarily many -
though our results easily extend to swarms of robots), the domain (disk), and the fact the
robots have some knowledge about the PoI. Although extending our results to more generic
situations is interesting in its own right, the nature of the resulting problems would require a
significantly different algorithmic approach. Indeed, our main goal is to study how limitations in
communication affect efficiency, which is best demonstrated when the available number of robots,
and hence computation power, is as small as possible, i.e. for two robots. In fact, it is easy to
extend our algorithms for the n-robot case.

Notably, search-and-fetch problems are challenging even for 1 robot as demonstrated in Geor-
giou et al. (2016). In particular, the work of Georgiou et al. (2016) implies that establishing
provably optimal evacuation protocols for 2-robots is a difficult task, even when the domain is
the disk. Indeed, the best-known trajectory for 1 robot in Georgiou et al. (2016), which is also
conjectured to be optimal, exhibits delicate “jumps” that effectively save an almost negligible
amount of the termination time, still they improve upon the naive approach. Nevertheless, we
view the disc domain that we study as natural. Indeed, a basic setup in search-and-rescue oper-
ations is that rescuer-robots inhabit in a base-station, and they stay inactive till they receive a
distress signal. As it is common in real-life situations, the signal may only reveal partial informa-
tion about the location of a victim, e.g. its distance from the base-station, along with the distance
between the points. When there are more than one PoI to be located, this kind of information
suggests that the points lie anywhere on co-centric circles. When the points are equidistant from
the base-station, robots need only consider a disk, as it is the case in our problem. We believe
that with enough technical and tedious work, our results can also extend to non-equidistant
points, however the algorithmic significance of the proposed distributed solutions may be lost in
the technicalities.

Finally, specific to our problem is the underlying advice model. Indeed, robots have access to
partial information (the exact distance of the hidden objects) about the unknown input (the exact
locations of the hidden objects). Partial knowledge of the input is interesting due to efficiency-
information tradeoffs that are naturally induced by online problems, and which are commonly
studied in competitive analysis, e.g. see Hipke et al. (1999); Czyzowicz et al. (2018a) and Georgiou
et al. (2016). In our search-and-fetch problem, the partial information of the distance of the
hidden objects demonstrates that robots with primitive communication capabilities are in fact
not much less powerful than in the wireless model.The reader may also view this piece of advice
as an algorithmic challenge in order to bypass the uncertainty regarding the locations of the PoI.
Notably, our algorithms adapt strategies as a function of the distance of the PoI, trying to follow
protocols that would allow them to detect the actual positions of the points without necessarily
visiting them. As an easy example, note that if a robot has explored already a contiguous arc
of length α + ε, the discovery of a PoI reveals the location of the other α-arc distant away
PoI (our algorithm makes use of distance α in a much more sophisticated way). As a result,
had we assumed that distances are unknown, robots may not be able to deduce such important
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information about the topology using partial exploration, and the problem would require an
inherently different algorithmic approach.

1.3 Related Work
Traditional search is concerned with finding an object with specified properties within a search
space. Searching in the context of computational problems is usually more challenging espe-
cially when the environment is unknown to the searcher(s) (see Ahlswede and Wegener (1987);
Alpern and Gal (2003); Stone (1975)). This is particularly evident in the context of robotics
whereby exploration is taking place within a given geometric domain by a group of autonomous
but communicating robots. The ultimate goal is to design an algorithm so as to accomplish the
requirements of the search (usually locating a target of unknown a priori position) while at the
same time obeying the computational and geographical constraints. The input robot configura-
tion must also accomplish the task in the minimum possible amount of time Berman (1998).

Search has a long history. There is extensive and varied research and several models have been
proposed and investigated in the mathematical and theoretical computer science literature with
particular emphasis on probabilistic search Stone (1975), game theoretic applications Alpern and
Gal (2003), cops and robbers Bonato and Nowakowski (2011), classical pursuit and evasion Nahin
(2012), search problems as related to group testing Ahlswede and Wegener (1987), searching
a graph Koutsoupias et al. (1996), and many more. A survey of related search and pursuit
evasion problems can be found in Chung et al. (2011). In pursuit-evasion, pursuers want to
capture evaders who try to avoid capture. Examples include Cops and Robbers (whereby the
cops try to capture the robbers by moving along the vertices of a graph), Lion and Man (a
geometric version of cops and robbers where a lion is to capture a man in either continuous
or discrete time), etc. Searching for a motionless point target has some similarities with the
lost at sea problem, Gluss (1961); Isbell (1967), the cow-path problem Beck (1964); Bellman
(1963), and with the plane searching problem Baeza-Yates and Schott (1995). This last paper
also introduced the “instantaneous contact model”, which is referred to as wireless model in
our paper. When the mobile robots do not know the geometric environment in advance then
researchers are concerned with exploring Albers and Henzinger (2000); Albers et al. (2002); Deng
et al. (1991); Hoffmann et al. (2001). Coordinating the exploration of a team of robots is a main
theme in the robotics community Burgard et al. (2005); Thrun (2001); Yamauchi (1998) and
often this is combined with the mapping of the terrain and the position of the robots within it
Kleinberg (1994); Papadimitriou and Yannakakis (1989).

Evacuation for grid polygons has been studied in Fekete et al. (2010) from the perspective
of constructing centralized evacuation plans, resulting in the fastest possible evacuation from
the rectilinear environment. There are certain similarities of our problem to the well-known
evacuation problem on an infinite line (see Baeza Yates et al. (1993) and the recent Chrobak et al.
(2015)) in that the search is for an unknown target. However, in this work the adversary has
limited possibilities since search is on a line. Additional research and variants on this problem can
be found in Demaine et al. (2006) (on searching with turn costs), Kao et al. (1996) (randomized
algorithm for the cow-path problem), Kao et al. (1998) (hybrid algorithms), Bampas et al. (2016)
(searching with different speeds), and many more.

A setting similar to ours is presented in the recent works Czyzowicz et al. (2014, 2018a, 2015a,b);
Lamprou et al. (2016); Brandt et al. (2017); Chuangpishit et al. (2018) where algorithms are pre-
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sented in the wireless and non-wireless (or face-to-face) communication models for the evacuation
of a team of robots. The “search domain” in Czyzowicz et al. (2014, 2018a, 2015a); Chuangpishit
et al. (2018) is a unit circle (while in Czyzowicz et al. (2015b) the search domain is a triangle
or square), however, unlike our search problem, in these papers all the robots are required to
evacuate from an unknown exit on the perimeter. Moreover, in none of these papers is there a
treasure to be fetched to the exit. Finally, in some more recent papers Czyzowicz et al. (2018c,b),
Czyzowicz et al. considered the problem of evacuating a distinguished (as in our case) mobile
(unlike our case) robot.

The problem we consider is a direct generalization of the search-and-fetch problem of Georgiou
et al. (2016) with 1 robot. Unlike in our problem, searching only with 1 robot requires an
almost orthogonal approach in order to improve upon the naive strategies. Indeed, the best
known trajectory of Georgiou et al. (2016) employs alternating moves along chords and arcs
whose lengths depend on the distance of the hidden items. The induced gain is comparable
to the difference between the length of an arc and its corresponding chord, and even though
this quantity is not significant, it is conjectured that it is indeed the best one can achieve. In
contrast, when searching with 2 robots there are more significant gains by carefully synchronizing
the moves of the robots.

Our work is also an attempt to analyze theoretically search-and-fetch problems that have been
studied by the robotics community since the 90’s, e.g. see Jennings et al. (1997). A scenario
similar to ours (but only for 1 robot) has been introduced by Alpern in Alpern (2011), where the
domain was discrete (a tree) and the approach/analysis resembled that of standard search-type
problems Alpern and Gal (2003). In contrast, our problem is of distributed nature, and our focus
is to demonstrate how robots’ communication affects efficiency under the assumption that partial
information about the input is known.

2 Wireless Model
As a warm-up we present in this section an upper bound for the wireless model, which will also
serve as a reference for the more challenging face-to-face model. The algorithmic solution we
propose is simple and it is meant to help the reader familiarize with basic evacuation trajectories
that will be used in our main contribution pertaining to the face-to-face model.

Theorem 2.1. For every α ∈ [0, π], problem 2-TEw can be solved in time 1+π−α+4 sin (α/2).

To prove Theorem 2.1, we propose Algorithm 1 that achieves the promised bound. Intuitively,
our algorithm follows a greedy like approach, adapting its strategy as a function of the distance
α of the PoI. If α is small enough, then the two robots move together to an arbitrary point on the
disk and start exploring in opposing directions. Otherwise the two robots move to two antipodal
points and start exploring in the same direction. Exploration continues till a PoI is found. When
that happens, the robot that can pick up the treasure and fetch it to the exit in the fastest time
(if all locations have been revealed) does so, otherwise remaining locations are tried exhaustively.
Detailed descriptions of the evacuation protocol can be seen in Algorithm 1, complemented by
Figure 2.

Noticeably, the performance analysis we give is tight, meaning that for every α ≥ 0, there
are configurations (placements of the PoI) for which the performance of the algorithm is exactly
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1+π−α+4 sin (α/2). Most importantly, the performance analysis makes explicit that two specific
naive algorithms that do not adapt strategies together with α are bound to perform strictly worse
than our upper bound. Also, the achieved upper bound should be contrasted to the upper bound
for the face-to-face model (which is achieved by a much more involved algorithm), which at the
same time is only α/2− sin (α/2) more costly than the bound we show in the wireless model.

Algorithm 1 takes advantage of the fact that robots can communicate to each other wirelessly.
This also implies that lack of message transmission is effectively another method of information
exchange. In what follows point A will always be the starting point of R2, and A′ denotes its
antipodal point. For the sake of the analysis and w.l.o.g. we will assume that R2 is the one that
first finds a PoI I = {E, T}, say at time x :=

_
AI. We call B,C the points that are at clockwise

and counter-clockwise arc-distance α from I respectively. Figure 2 depicts the PoI encountered.

𝛼𝛼 

𝑂𝑂 

𝐵𝐵 

𝐴𝐴 

𝐶𝐶 𝛼𝛼 

𝐼𝐼 𝛼𝛼 

𝑂𝑂 

𝐵𝐵 

𝐴𝐴 

𝐶𝐶 

𝛼𝛼 

𝐼𝐼 

𝐴𝐴′ 

𝛼𝛼 ≤ 2𝜋𝜋/3 𝛼𝛼 > 2𝜋𝜋/3 

Fig. 2: The points of interest for our Algorithm 1.

The description of Algorithm 1 is from the perspective of the robot that finds first a PoI, that
we always assume is R2. Next we assume that the finding of any PoI is instantaneously observed
by the two robots. Also, if at any moment, the positions of the PoI are learned by the two
robots, then the robots attempt a “confident evacuation” using the shortest possible trajectory.
This means for example that if the treasure is not picked up by any robot, then the two robots
will compete in order to pick it up and return it to the exit, moving in the interior of the disk.

Correctness of Algorithm 1 is straightforward, since the two robots follow a “greedy-like evac-
uation protocol” (still, they use different starting points depending on the value of α). Also, the
performance analysis of the algorithm, effectively proving Theorem 2.1, is a matter of a straight-
forward case-analysis. We note that our worst-case analysis is tight, in that for every α ≥ 0
there exist configurations in which the performance of Algorithm 1 is exactly as promised by
Theorem 2.1. Moreover, we may assume that α > 0 as otherwise the problem is solved when one
PoI is found.

Note that our algorithm performs differently when α ≤ 2π/3 and when α > 2π/3. Let x :=
_
AI

be the time that R2 has spent searching till first PoI I is discovered. Then it must be that
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Algorithm 1 Wireless Algorithm

Step 1. If α ≤ 2π/3, the two robots move together to an arbitrary point on the ring and start
exploring in opposing directions, else they move to arbitrary antipodal points A,A′ on the
cycle and start moving in the same direction.

Step 2. Let I be the first PoI discovered by R2, at time x :=
_
AI. Let B,C be the points that

are at clockwise and counter-clockwise arc-distance α from I, respectively.
Step 3. If x ≥ α/2 then robots learn that the other PoI is in B, else R2 moves to B, R1 moves

to C.
Step 4. Evacuate

x ≤ α/2 and x ≤ π − α for the cases α ≤ 2π/3 and α > 2π/3 respectively (see also Figure 2).
This will be used explicitly in the proof of the next two lemmata. We also assume that R2 always
moves clockwise starting from point A. R1 either moves counter-clockwise starting from A, if
α ≤ 2π/3, or it moves clockwise starting from the antipodal point A′ of A, if α > 2π/3. In
every case, the two robots move along the perimeter of the disk till time x when R2 transmits
the message that it found a PoI.

The performance of Algorithm 1 is described in the next two lemmata which admit proofs
by case analyses. Each of them examines the relative position of the starting point of robot R2
(which finds a PoI first) and the two PoI.
Lemma 2.2. Let A be the starting point of R2 which is the first to discover a PoI I. Let also
the other PoI be at C, where

_
CI= α. If A lies in the arc

_
CI, then the performance of Algorithm

1 is 1 + π − α+ 4 sin (α/2), for all α ∈ [0, π].

Proof: For the case analysis, we refer to Figure 3. Note that robots spend time 1 to reach the
periphery of the disk. Below we calculate the remaining time until evacuation. At time x the
cases are as follows.

(I = E,B = null, C = T & α ≤ 2π/3): Let R1 be at point D, i.e.
_
DA= x, see also Figure 3i.

Then R1 moves along the chord CD, it locates the treasure and returns it to the exit I,
with total cost

_
DA +DC + CI =x+ 2 sin (α/2− x) + 2 sin (α/2)

(Lemma A.1g)
≤ π − α+ 4 sin (α/2) .

(I = E,B = null, C = T & α > 2π/3): Let R1 be at point D, i.e.
_
DA′= x, see also Figure 3ii.

Then R1 moves along the chord CD, it locates the treasure and returns it to the exit I,
with total cost

_
DA′ +DC + CI ≤x+ 2 sin (π − α− x/2) + 2 sin (α/2)

(x≤π−α)
≤ π − α+ 4 sin (α/2) .
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Fig. 3: The performance of the wireless algorithm, when the starting point A lies in the arc
_
CI of the

two PoI. The trajectory of R2 is depicted with the dotted purple curve, while the trajectory of R1 with
the solid red curve.

(I = T,B = null, C = E & α ≤ 2π/3): When R2 finds the treasure, it picks it up, and start
moving along chord IB, see also Figure 3iii. Meanwhile, R1 at time x is at some point, say,
D, and crosscuts through CD to check the possible point C. When R1 visits C, R2 learns
where the exit is, so starting from point, say, K, it moves along the line segment KC and
evacuates. Note that K lies always in the the line segment IB, since CD ≤ CI = IB).
The total cost then is

_
AI +IK +KC =

_
AI +CD +KC

≤
_
AI +CD + max{CI,CB}

= x+ 2 sin (α/2− x) + max{2 sin (α/2) , 2 sin (α)}
(Lemma A.1i)

≤ x+ 2 sin (α/2− x) + 2 sin (α)
(Lemma A.1g)

≤ π − α+ 4 sin (α/2) .
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(I = T,B = null, C = E & α > 2π/3): When R2 finds the treasure, it picks it up, and start
moving along chord IB, see also Figure 3iv. Meanwhile, R1 at time x is at some point, say,
D, and crosscuts through CD to check the possible point C. When R1 visits C, R2 learns
where the exit is, so starting from point, say K, it moves along the line segment KC and
evacuates. Note that K lies always in the the line segment IB, since

CD =2 sin (π/2− α/2− x)
(Lemma A.1f)

≤ 2 sin (α/2) =
_
IB .

In return, the cost becomes

_
AI +IK +KC =

_
AI +CD +KC

≤
_
AI +CD + max{CI,CB}

= x+ 2 sin (π/2− α/2− x) + max{2 sin (α/2) , 2 sin (α)}
(Lemma A.1i)

≤ x+ 2 sin (π/2− α/2− x) + 2 sin (α/2)
(Lemma A.1h)

≤ π − α+ 4 sin (α/2) .

Lemma 2.3. Let A be the starting point of R2 which is the first to discover a PoI I. Let also the
other PoI be at B, where

_
IB= α. If A lies outside the arc

_
IB, then the performance of Algorithm

1 is 1 + π − α+ 4 sin (α/2), for all α ∈ [0, π].

Proof: For the case analysis below, we rely on Figure 4. As before, robots spend time 1 to reach
the periphery of the disk. Below we calculate the remaining time until evacuation. At time x the
cases we consider are as follows.

(C = null & α ≤ 2π/3): After R2 discovers I it will move along chord IB to discover the other
PoI, see also Figure 4i. In particular, since I is visited before C we have x ≤ α/2. If the
treasure is in B, then the total cost would be

_
AI +2IB =x+ 2 sin (α/2)

≤α/2 + 4 sin (α/2)

≤π − α+ 4 sin (α/2) ,

(since α ≤ 2π/3), while if the treasure is in I, then the cost would be π − α+ 2 sin (α/2).

(C = null & α > 2π/3): After R2 discovers I it will move along chord IB to discover the other
PoI, see also Figure 4ii. In particular, since I is visited before C we have that x ≤ π−α. If
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Fig. 4: The performance of the wireless algorithm, when the starting point A lies outside the arc
_
IB of

the two PoI. The trajectory of R2 is depicted with the dotted purple curve, while the trajectory of R1
with the solid red curve.

the treasure is in B, then the two robots are competing as to which will reach the treasure
first. Even if R2 reaches the treasure first, the cost would be

_
AI +2IB = x+ 2 sin (α/2) ≤

π − α + 4 sin (α/2) , while if R1 reaches the treasure first, the total time will be even less
than our promised upper bound. Finally, if the treasure is I, then the cost would be by
2 sin (α/2) less than our promised upper bound.

It follows from Lemmata 2.2, 2.3 that, for all α ∈ [0, π], the overall performance of Algorithm
1 is no more than 1 + π − α+ 4 sin (α/2) concluding Theorem 2.1.

3 Face-to-face Model
The main contribution of our work pertains to the face-to-face model and is summarized in the
following theorem.
Theorem 3.1. For every α ∈ [0, π], problem 2-TEf2f can be solved in time 1 + π − α/2 +
3 sin (α/2).

Next we give the high-level intuition of the proposed evacuation-protocol, i.e. Algorithm 2,
that proves the above theorem (more low level intuition, along with the formal description of the
protocol appears in Section 3.1).

Denote by β the upper bound provided by the theorem above. It should be intuitive that
when the distance of the PoI α tends to 0, there is no significant disadvantage due to lack of
communication. And although the wireless evacuation-time might not be achievable, a protocol
similar to the wireless case should be able to give efficient solutions. Indeed, our face-to-face
protocol is a greedy algorithm when α is not too big, i.e. the two robots try independently to
explore, locate the PoI and fetch the treasure to the exit without coordination (which is hindered
anyways due to lack of communication). Following the worst case analysis, it is easy to observe
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that as long as α does not exceed a special threshold, call it α0 (which we define formally later
and which is approximately 1.22353), the evacuation time is β, and the analysis is tight.

When α exceeds the special threshold α0, the lack of communication has a more significant
impact on the evacuation time. To work around it, robots need to exchange information which
is possible only if they meet. For this reason (and under some technical conditions), robots agree
in advance to meet back in the center of the disk to exchange information about their findings,
and then proceed with fetching the treasure to the exit. Practically, if the rendezvous is never
realized, e.g. only one robot reaches the center up to some time threshold, that should deduce
that PoI are not located in certain parts of the disk, potentially revealing their actual location.
In fact, this protocol works well, and achieves evacuation time β, as long as α does not exceed a
second threshold, which happens to be 2π/3.

The hardest case is when the two PoI are further than 2π/3 apart. Intuitively, in such a case
there is always uncertainty as to where the PoI are located, even when one of them is discovered.
At the same time, the PoI, hence the robots, might be already far apart when some or both PoI
are discovered. As such, meeting at the center of the disk to exchange information would be
time consuming and induces evacuation time exceeding β. Our technical contribution pertains
exactly to this case. Under some technical conditions, the treasure-finder might need to decide
which of the two possible exit-locations to consider next. In this case, the treasure-holder follows
a trajectory not towards one of the possible locations of the exit, rather a trajectory closer to
that of its peer robot aiming for a rendezvous. The two trajectories are designed carefully so that
the location of the exit is revealed no matter whether the rendezvous is realized or not.

3.1 Algorithm & Correctness
In our main Algorithm 2, robots R1, R2 that start from the centre of the circle, move together
to an arbitrary point A on the circle (which takes time 1). Then they start moving in opposing
directions, say, counter-clockwise and clockwise respectively till they locate some PoI.

In what follows we describe only the trajectory of R2 which is meant to be moving clock-wise
(R1 performs the completely symmetric trajectory, and will start moving counter clock-wise). In
particular all point references in the description of our algorithm, and its analysis, will be from
the perspective of R2’s trajectory which is assumed to be the robot that first visits either the exit
or the treasure at position I. By B,C,D we denote the points on the circle with

_
DC=

_
CI=

_
IB= α

(see Figure 5). As before, and in what follows, I ∈ {E, T} represents the position on the circle
that is first discovered in the time horizon by any robot (in particular by R2), and that holds
either the treasure or the exit. Finally, O represents the centre of the circle, which is also the
starting point of the robots.

According to our algorithm, R2 starts moving from point A till it reaches a PoI I at time
x :=

_
AI. At this moment, our algorithm will decide to run one of the following subroutines with

input x. These subroutines describe evacuation protocols, in which the treasure must be brought
to the exit. Occasionally, the subroutines claim that robots evacuate (with the treasure) from
points that is not clear that hold an exit. As we will prove correctness later, we comment on
these cases by writing that “correctness is pending”.

A1(x) (Figure 6 i): If I = T , pick up the treasure and move to B along the chord IB. If B = E
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Fig. 5: The points of interest from the perspective of R2, when α ≤ 2π/3 on the left, and when α ≥ 2π/3
on the right.

evacuate, else go to C along the chord BC and evacuate.
(Figure 6 ii): If I = E move to B along the chord IB. If B = T , pick up the treasure,
and return to I along the chord BI and evacuate. If B = null, then go to C along the
chord BC. If the treasure is found at C, pick it up, and move to I along the chord CI and
evacuate (else abandon the process).

A2(x) (Figure 6 iii): At the moment robots leave point A, set the timer to 0.
If I = T , pick up the treasure and go to the centre O of the circle. Wait there till the time
t0 := max{x, α − x + 2 sin (α/2)} + 1. If R1 arrives at O by time t0, then go to C and
evacuate (correctness is pending). Else (if R1 does not arrive at O by time t0) go to B and
evacuate (correctness is pending).
(Figure 6 iv): If I = E, move to B along the chord IB. If B = T , pick up the treasure,
and return to I along the chord BI and evacuate. If B = null, then go to the centre O and
halt.

A3(x) (Figure 6 v): If I = T pick up the treasure. If R1 is already at point I go to C and
evacuate (correctness pending). If R1 is not at point I, then move along chord ID for
additional time y := α/2− x+ sin (α/2) + sin (α), and let K be such that IK = y. If R1 is
at point K, then go to B and evacuate (correctness is pending), else (if R1 is not at point
K) go to C and evacuate (correctness pending).
(Figure 6 vi): If I = E, move to B along the chord IB. If B = T , pick up the treasure, and
return to I along the chord BI and evacuate. If B = null, then move along chord BC until
you hit C (or you meet the other robot- whatever happens first) and halt at the current
point, call it K.

It is worthwhile discussing the intuition behind the subroutines above. First note that if a
robot ever finds a treasure, it picks it up. The second important property is that each robot
simulates A1 either till it finds the treasure or till it fails to find the treasure after finding the
exit. At a high level, A1 greedily tries to evacuate the treasure. This means that if the treasure is
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Fig. 6: The non-wireless algorithm for two robots with performance 1 + π − α/2 + 3 sin (α/2).

found first, then the robot tries successively the possible locations of the exit (using the shortest
possible paths) and evacuates. If instead the exit is found, then it successively tries the (at most)
two possibilities of the treasure location, and if the treasure is found, it returns it to the exit.
A2 and A3 constitute our main technical contribution. Both algorithms are designed so that

in some special cases, in which the exact locations of the PoI are not known, the two robots
schedule some meeting points so that if the meeting (rendezvous) is realized or even if it is not,
the treasure-holder can deduce the actual location of the exit. In other words, we make possible
for the two robots to exchange information without meeting. Indeed after finding the treasure,
in A2, R2 goes to the centre of the ring and waits some finite time till it makes some decision of
where to move the treasure, while in A3, R2 moves along a carefully chosen (and non-intuitive)
chord, and again for some finite time, till it makes a decision to move to a point on the ring. If
instead the exit is found early, then the trajectories in A2, A3 are designed to support the other
robot which might have found the treasure in case the latter does not follow A1.

The next non-trivial and technical step would be to decide when to trigger the subroutines
above. Of course, once this is determined, i.e. once the trajectories are fixed, correctness and
performance analysis is a matter of exhaustive analysis.

We are ready to define our main non-wireless algorithm. We remind the reader that the
description is for R2 that starts moving clockwise. R1 performs the symmetric trajectory by
moving counter-clockwise.
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Our main algorithm uses parameter x(α) := 3α/2−π−sin (α/2)+2 sin (α) , which we abbreviate
by x whenever α is clear from the context. By Lemma A.1a, α0 ≈ 1.22353 is the unique root of
x(α) = 0, while x is positive for all α ∈ (α0, π), and negative for all α ∈ [0, α0).

Algorithm 2 Non-Wireless Algorithm

Step 1. Starting from A, move clockwise until a PoI I is found at time x :=
_
AI.

Step 2. Proceed according to the following cases:

• If α > 2π/3 and I = T and α > x ≥ α− x, then run A3(x).
• If α > 2π/3 and I = E and x ≤ x, then run A3(x).
• If α0 ≤ α ≤ 2π/3 and I = T and α > x ≥ α− x, then run A2(x).
• If α0 ≤ α ≤ 2π/3 and I = E and x ≤ x, then run A2(x).
• In all other cases, run A1(x).

Lemma 3.2. For every α ∈ [0, π], Algorithm 2 is correct, i.e. a robot brings the treasure to the
exit.

Proof: First, observe that the treasure is always picked up. Indeed, if the first PoI I that is
discovered (by any robot) is the treasure, then the claim is trivially true. If the first PoI I found,
say, by R2 is an exit, then R2 (in all subroutines) first tries the possible location B for the
treasure, and if it fails it tries location C (in other words it always simulates A1 till it fails to
find the treasure after finding the exit). Meanwhile R1 moves counter-clockwise on the ring, and
sooner or later will reach C or B. So at least one of the robots will reach the treasure first. In
what follows, let R2 be the one who found first the treasure (and picks it up). We examine three
cases.

If R2 is following subroutine A1, then the treasure is brought to the exit. Indeed, in that case
R2 expects no interaction from R1 and greedily tries to evacuate (see subcases i,ii in Figure 6).

If R2 is following subroutine A2, then it must be that α0 ≤ α ≤ 2π/3, and α − x ≤ x < α,
and that it has not found any other PoI before (by Lemma A.1a we have α − x < α and x > 0,
for all α > α0). Figure 6 subcase iii depicts this scenario, where I = T . Note that from R2’s
perspective, the exit can be either in B or in C, and R2 chooses to go to the center. This takes
total time x+ 1. If the exit was at point C, then R1 would have found it in time α− x ≤ x and
that would make it to follow A2. So, R1 would first check point D (where the treasure is not
present), and that would make it to go to the centre arriving at time α− x+ 2 sin (α/2) + 1 (an
illustration of this trajectory is shown in Figure 6 subcase iv, if R1 was moving clockwise). R2
is guaranteed to wait at the center till time t0 (which is the maximum required time that takes
each robot to reach the centre). In that case, R2 meets R1 at the center (because R1 did find
the exit in C), and R2 correctly chooses C as the evacuation point. Finally, if instead the exit
was not in C, then R1 would not make it to the centre by time t0. That can happen only if the
exit is at point B, and once again R2 makes the right decision to evacuate from B.

In the last case, R2 is following subroutine A3, and so it must be that α > 2π/3, that α− x ≤
x < α, and that it has not found any other PoI before. Figure 6 subcase v depicts this scenario.
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Note that the exit could be either in C or in D.
If the exit is in C, then α − x ≤ x, and R1 would follow A3 too. This means, R1 would go

to point D (where there is no treasure), and that would make it travel along the chord DI (an
illustration of this trajectory is shown in Figure 6 subcase vi, if R1 was moving clockwise). If R1
reaches I, it waits there, and when R2 arrives in I, R2 makes the right decision to evacuate from
C. Otherwise R1 does not reach I, and it moves up to a certain point on the chord ID similarly
to R2. Note that the meeting condition on a point K on the chord, with y = IK, would be
that

_
AI +IK =

_
CA +CD + (DI − IK), which translates into y = x+ sin (α/2) + sin (α)− α/2,

i.e. the exact segment of ID that R2 traverses before it changes trajectory. The longest R2
could have traveled on the chord ID would be when x = α− x, but then IK would be equal to
α − π + 3 sin (α) ≤ 2 sin (α) = ID, for all α > 2π/3. Therefore, the two robots meet indeed in
somewhere on the chord ID. Note also that in this case, R2 makes the right decision and goes
to point C in order to evacuate.

If instead the exit is in B, then again R2 travels till point K (which is in the interior of the
chord ID). But in this case, R1 will not meet R2 in point K as it will not follow A3. Once again,
R2 makes the right decision, and after arriving at K it moves to point B and evacuates.

3.2 Algorithm Analysis
In this section we prove that, for all α ∈ [0, π], the evacuation time of Algorithm 2 is no more than
1 + π − α/2 + 3 sin (α/2), concluding Theorem 3.1. In the analysis below we provide, whenever
possible, supporting illustrations, which for convenience may depict special configurations. In
the mathematical analysis we are careful not to make any assumptions for the configurations we
are to analyze.

It is immediate that when a robot finds the first PoI at time x ≥ α after moving on the
perimeter of the disk, then that robot can also deduce where the other PoI is located. In that
sense, it is not surprising that, in this case, the trajectory of the robots and the associated cost
analysis are simpler.
Lemma 3.3. Let x be the time some robot is the first to reach a PoI I ∈ {E, T} from the moment
robots start moving in opposing directions. If x ≥ α, then the performance of the algorithm is at
most 1 + π − α/2 + 3 sin (α/2). Also, x ≥ α is impossible, if α > 2π/3.

Proof: Note that 1 is the time it takes both robots to reach a point, say A, on the ring. So we
will tailor our analysis to the evacuation time from the moment robots start moving (in opposing
directions) from point A.

Let x be the time after which R2 (without loss of generality) is the first to find a PoI I ∈ {E, T}.
Let also B be the other PoI {E, T} \ I. For R2 to reach first I, it must be the case that R1 does
not have enough time to reach B, and hence x ≤ 2π − α − x, that is x ≤ π − α/2. Since also
x ≥ α, we conclude that α ≤ 2π/3.

Next we examine the following cases. For our analysis, the reader can use Figure 5 as reference
(although A is depicted in the interior of the arc CI, we will not use that

_
AI≤ α).

Case 1 (I = T ): R2 picks up the treasure and moves along the chord IB = 2 sin (α/2). The
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worst case treasure-evacuation time then is maxα≤x≤π−α/2 {x+ 2 sin (α/2)} = π − α/2 +
2 sin (α/2) .

Case 2 (I = E): According to the algorithm, R2 moves towards the treasure point B along
the chord IB, and reaches it in time x+ 2 sin (α/2). R1 moves counter-clock wise and will
reach the position of the treasure in time 2π − α− x. Whoever finds the treasure first will
evacuate from the exit, paying additional time 2 sin (α/2). Hence, the total cost can never
exceed

min {x+ 2 sin (α/2) , 2π − α− x}+ 2 sin (α/2)
≤π − α/2 + 3 sin (α/2) . (by Lemma A.1b)

Observe that in both cases, the cost of the algorithm is as promised.

By Lemma 3.3 we can focus on the (much more interesting) case that R2, which is the first

robot that finds a PoI, arrives at I at time x :=
_
AI< α. A reference for the analysis below is

Figure 6 which is accurately depicting point A at most α arc-distance away from I. For the sake
of better exposition, we examine next the cases α ≤ 2π/3 and α ≥ 2π/3 separately. Note that
in the former case robots may run subroutines A1 or A2, while in the latter case robots may run
subroutines A1 or A3. For the lemma below, the reader may consult Figures 5 and 6.
Lemma 3.4. Let x be the time some robot is the first to reach a PoI I ∈ {E, T} from the moment
robots start moving in opposing directions. If x < α, then the performance of the algorithm is at
most 1 + π − α/2 + 3 sin (α/2), for all α ∈ [0, π].

Proof: As before, we omit in the analysis below the time cost 1, i.e. the time robots need to
reach the periphery of the disk. We examine the following cases for R2, which is the robot that
finds I.

(I = T,B = E,C = null): If R2 runs A1, then it must be that x ≤ α − x, so the cost is x +
2 sin (α/2) ≤ α− x+ 2 sin (α/2) ≤ π − α/2 + 3 sin (α/2) (see Figure 6 i).
If R2 runs A2, then it must be that α − x ≤ x < α and α ≤ 2π/3, and the robot
goes to the centre in order to learn where the exit is (see Figure 6 iii). Independently
of where the exit is, and by Lemma 3.2, R2 makes the right decision and evacuates in
time 1 + maxα−x≤x<α{x, α− x+ 2 sin (α/2)}+ 1 ≤ max{α, x+ 2 sin (α/2)}+ 2 which, by
Lemma A.1c, is at most π − α/2 + 3 sin (α/2), for all α ≤ 2π/3. Note that the analysis of
this case is valid, even if I = T is not the first PoI that is discovered, and it is from the
perspective of the robot that finds the treasure.
If R2 runs A3, then it must be that α − x ≤ x < α and α > 2π/3. Then the trajectory of
R2 is as in Figure 6 v, and the exit is found correctly due to Lemma 3.2. For the sake of
the exposition, we will do the worst case analysis for both cases B = E and C = E now
(i.e. we only insist in that I = T and that R2 runs A3).

The total time for the combined cases is
_
AI +IK + max{KB,KC}, where IK = y (see

definition of A3). Since as we have proved, K lies always in chord ID, and since
_
DB=
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3α− 2π we have that

BK ≤max{BI,BD}
≤max{2 sin (α/2) , 2 sin (3α/2− π)}
≤2 sin (α/2) .

We also have that KC ≤ CI = 2 sin (α/2). So the cost becomes no more than

x+ y + 2 sin (α/2) = α/2 + 3 sin (α/2) + sin (α)
≤π − α/2 + 3 sin (α/2) , (by Lemma A.1d)

for all α ∈ [0, π].

(I = T,B = null, C = E): Since I is found first, we must have x ≤ α/2, hence both robots run
A1, see Figure 6 i. Robot R2 that finds the treasure will evacuate in time no more than
x + 2 sin (α/2) + 2 sin (α) ≤ α/2 + 2 sin (α/2) + 2 sin (α) < π − α/2 + 3 sin (α/2), for all
α ∈ [0, π].

(I = E,B = T,C = null): If R2 is the first to find the treasure, then this case is depicted in
Figure 6 i. This happens exactly when x + 2 sin (α/2) ≤ 2π − x − α, so that the total
evacuation time is x+ 4 sin (α/2) ≤ π − α/2 + 3 sin (α/2), for all α ∈ [0, π].
Otherwise x > π−α/2−sin (α/2), and R1 is the robot that reaches the treasure first. If R1
decides to run A1, then the cost would be 2π− x−α+ 2 sin (α/2) < π−α/2 + 3 sin (α/2),
for all α ∈ [0, π]. Finally, if R1 decides to run A2 or A3, then we have already made the
analysis in case I = T,B = E,C = null above.

(I = E,B = null, C = T ): Note that in all cases, both robots will run the same subroutine. In
particular, if robots run either A2 or A3, then we have already done the analysis in case
I = T,B = E,C = null above.
Finally, if both robots run A1, it must be either because α ≤ α0, or because x ≥ x, while the
cost is always α−x+ 2 sin (α/2) + 2 sin (α) (the case is depicted in Figure 6 ii, with reverse
direction). If α ≤ α0, then the evacuation cost would be at most α+ 2 sin (α/2) + 2 sin (α)
which by Lemma A.1e is at most π − α/2 + 3 sin (α/2), for all α ∈ [0, α0]. If x ≥ x, then
the cost would be at most α− x+ 2 sin (α/2) + 2 sin (α) = π − α/2 + 3 sin (α/2).

Note that Lemmata 3.3, 3.4 imply that the performance of Algorithm 2 is, in the worst case,
no more than 1 + π − α/2 + 3 sin (α/2), concluding also Theorem 3.1.

4 Lower Bounds
We conclude the study of treasure evacuation with 2 robots by providing the following lower
bound pertaining to distributed systems under the face-to-face communication model.
Theorem 4.1. For problem 2-TEf2f , any algorithm needs at least time 1 + π/3 + 4 sin (α/2) if
0 ≤ α ≤ 2π/3, or 1 + π/3 + 2 sin (α) + 2 sin (α/2) if 2π/3 ≤ α ≤ π.
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For the proof, we invoke an adversary (not necessarily the most potent one), who waits for as
long as there are three points A,B,C with AB = BC = α on the periphery such that at most
one of them has been visited by a robot. Then depending on the moves of the robots decides
where to place the PoI.

Proof Proof of Theorem 4.1: Since the robots start from the center, they’ll need time 1 to
reach the periphery. The adversary (not necessarily the most potent one, but with this weaker
adversary we still get a (weaker) lower bound) will wait for as long as there are three points
A,B,C with AB = BC = α on the periphery such that at most one of them has been visited by
a robot. Observe that this will be true for as long as less than 2π/3 of the periphery has been
explored; this will be done by the 2 robots after time at least (2π/3)/2 = π/3. Hence, after time
at least 1 + π/3 there are such points A,B,C with only one of these points visited by a robot.
For convenience, we assume that robot 1 is the first to visit a point at time t and robot 2 visits
a different point next at time t + ε (if this doesn’t happen, then the optimal algorithm would
be behaving like the case of only one robot, which is clearly suboptimal for the adversary moves
below). It will be apparent below that the lower bound becomes weaker for ε = 0, so that’s what
we will assume from now on. We distinguish the following cases:
Case 1 (Robot 1 at A, Robot 2 at C): If the adversary places T → B,E → A or C, then
recovery needs at least time 4 sin (α/2) (if robot 1 or 2 respectively evacuates T by itself). If
it places T → A,E → C, then recovery needs at least time 2 sin (α) (a robot evacuates T by
traversing AC). Any other placement of T,E by the adversary gives either the same or a worse
(lower) bound, and, therefore, it’s discarded. It is clear that, in this case, the adversary goes
with the first option, for a lower bound of 4 sin (α/2).
Case 2 (Robot 1 at A, Robot 2 at B): If the adversary places T → C,E → A, then recovery
needs at least time min{2 sin (α/2) + 2 sin (α) , 4 sin (α)} (if robot 2 or 1 respectively evacuates T
by itself). If it places T → C,E → B, then recovery needs at least time min{4 sin (α/2) , 2 sin (α)+
2 sin (α/2)} (if robot 2 or 1 respectively evacuates T by itself). Any other placement of T,E by
the adversary gives either the same or a worse (lower) bound, and, therefore, it’s discarded. It is
clear that, in this case, the adversary goes with the option that maximizes the lower bound, for
a lower bound of

max
{

min{2 sin (α/2) + 2 sin (α) , 4 sin (α)},
min{4 sin (α/2) , 2 sin (α) + 2 sin (α/2)}

}
.

By taking the minimum of Cases 1,2 above, the lower bound of the theorem follows.

5 Conclusion
In this paper we introduced a new problem on searching and fetching which we called treasure-
evacuation from a unit disk. We studied two online variants of treasure-evacuation with two
robots, based on different communication models. The main point of our approach was to propose
distributed algorithms by a collaborative team of robots. Our main results demonstrate how
robot communication capabilities affect the treasure evacuation time by contrasting face-to-face
(information can be shared only if robots meet) and wireless (information is shared at any time)
communication.
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There are several open problems in addition to sharpening our bounds, and in particular to
giving lower bounds that would effectively separate the two communication models. Other vari-
ations of our problem include the consideration of different 1) number of robots, 2) geometric
domains (discrete or continuous), 3) robot starting positions, 4) number of hidden objects, 5)
communication models, 6) robots’ speeds, 7) a priori knowledge of the topology or partial infor-
mation about the targets (e.g. a bound on the distance of the hidden items or no information
at all), etc. In each case, the challenging task is to establish either tight bounds, or to separate
closely related problems, e.g. the problem in which either the exact distance vs a bound on the
distance of the hidden items is known.

When it comes to searching with multiple robots, our 2-robot algorithms can be easily extended
to the n-robot case. Assuming that n is even (otherwise we ignore one robot) we split the robots
into pairs, defining points in intervals of length 4π/n on the cycle, assigning each pair of robots to
each such poin. Then, we let them run the corresponding 2-robot algorithm. Would that strategy
be improvable? We anticipate that nearly optimal algorithms for small number of robots, e.g. for
n = 3, 4, or any other variation of problem we consider will require new and significantly different
algorithmic ideas than those we propose here, still in the same spirit.
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A Trigonometric Inequalities
Lemma A.1. a) There exists some α0 ∈ (0, π) such that 3α/2 − π − sin (α/2) + 2 sin (α) is

positive for all α ∈ (α0, π), and negative for all α ∈ [0, α0). In particular, α0 ≈ 1.22353.

b) min {x+ 2 sin (α/2) , 2π − α− x}+ 2 sin (α/2) ≤ π − α/2 + 3 sin (α/2) , ∀α ∈ [0, π].

c) max{α, x+ 2 sin (α/2)}+ 2 ≤ π − α/2 + 3 sin (α/2) for all α ∈ [0, 2π/3].
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d) α+ sin (α) ≤ π for all α ∈ [0, π].

e) α/2 + 2 sin (α) ≤ π − α+ 2 sin (α/2) , ∀α ∈ [0, 2π/3]. .

f) max0≤x≤π−α{sin (π/2− α/2− x)} ≤ sin (α/2) , ∀α ∈ [2π/3, π]

g) max0≤x≤α/2{x+ 2 sin (α/2− x)}+ 2 sin (α) ≤ π − α+ 4 sin (α/2) , ∀α ∈ [0, 2π/3].

h) max0≤x≤π−α{x+ 2 sin (π/2− α/2− x)} ≤ π − α+ 2 sin (α/2) , ∀α ∈ [2π/3, π]

i) sin (α) ≤ sin (α/2) , ∀α ∈ [0, 2π/3], and
sin (α) ≥ sin (α/2) , ∀α ∈ [2π/3, π].

Proof of A.1a We observe that
∂

∂α
x(α) = ∂

∂α
(3α/2− π − sin (α/2) + 2 sin (α))

=3/2− cos (α) + cos (α/2) .

Observe that the above quantity remains positive for α < 2π/3, while it is negative for
α > 2π/3. Since x(0) < 0 and x(2π/3) > 0, it follows that there is a unique root α0 ∈
(0, 2π/3) (which numerically can be estimated to α0 ≈ 1.22353). Finally, we see that
x(π) = π − 1 > 0, so x(α) remains positive for α ∈ [2π/3, π].

Proof of A.1b We observe that min {x+ 2 sin (α/2) , 2π − α− x} attains its maximum when
x+ 2 sin (α/2) = 2π − α− x, in which case its value becomes π − α/2 + 3 sin (α/2).

Proof of A.1c First we claim that 3α/2 − 2 sin (α/2) ≤ π − 2 for α ≤ 2π/3. This is because
∂
∂α (3α/2 + 2 sin (α/2)) = 3/2+cos (α/2) > 0, hence 3α/2−2 sin (α/2) ≤ π−

√
3/2 ≤ π−2.

This claim immediately shows that α+ 2 ≤ π − α/2 + 3 sin (α/2) for all α ∈ [0, 2π/3].
Now we show that x + 2 sin (α/2) + 2 ≤ π − α/2 + 3 sin (α/2) for all α ∈ [0, 2π/3]. For
this it suffices to check that α + sin (α) − sin (α/2) ≤ π − 1. To that end we see that
∂
∂α (α+ sin (α)− sin (α/2)) = 1 + cos (α) − cos (α/2) /2 ≥ 0 for all α ≤ 2π/3. Hence
α+ sin (α)− sin (α/2) ≤ 2π/3 ≤ 2π/3 +

√
3/2−

√
3/2 ≤ π − 1 as wanted.

Proof of A.1d We see that ∂
∂α (α+ sin (α)) = 1 + cos (α) ≥ 0, for all α ∈ [0, π]. hence, α +

sin (α) ≤ π + sin (π) = π.

Proof of A.1e We observe that
∂

∂α
(3α/2 + 2 sin (α)− 2 sin (α/2))

=3/2 + 2 cos (α)− cos (α/2) .

From the monotonicity of cosine in [0, 2π/3], we see that the above derivative preserves non
negative sign when α ∈ [0, 2π/3]. Hence, the maximum of

3α/2 + 2 sin (α)− 2 sin (α/2) ≤ π

is attained when α = 2π/3, and its value is π as wanted.
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Proof of A.1f We have that

max
0≤x≤π−α

{sin (π/2− α/2− x)}

= max
0≤x≤π−α

{cos (α/2 + x)}

≤ cos (α/2) ,

since cosine is monotonically decreasing in [0, π]. But also for all α ∈ [2π/3, π] we have that
cos (α/2) ≤ sin (α/2), concluding what we need.

Proof of A.1g We have that

max
0≤x≤α/2

{x+ 2 sin (α/2− x) + 2 sin (α)}

≤α/2 + sin (α/2) + sin (α)

where the first inequality is true due to the monotonicity of x, sin (α/2− x) w.r.t. x ≤ α/2
and for all α ∈ [0, 2π/3], and the last inequality since again α ≤ 2π/3. The claim now
follows from Lemma A.1e.

Proof of A.1h Follows immediately since x ≤ π − α, and by Lemma A.1f.

Proof of A.1i Observe that sin (α/2)− sin (α) is convex in α ∈ [0, 2π/3], so it attains its maxi-
mum either at α = 0 or at α = 2π/3. In both cases, its value is 0. Also, sin (α/2)− sin (α)
is monotonically increasing for α > 2π/3, implying what was promised.
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