
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 21:3, 2019, #22

Efficient enumeration of solutions produced
by closure operations

Arnaud Mary1 Yann Strozecki 2

1 Université Lyon 1 ; CNRS, UMR5558, LBBE / INRIA - ERABLE
2 Université de Versailles Saint-Quentin-en-Yvelines, DAVID laboratory

received 12th Dec. 2017, revised 20th Apr. 2019, 14th Sep. 2018, accepted 5th June 2019.

In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some
operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors)
by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family
of sets by any set of “set operations”: union, intersection, symmetric difference, subsets, supersets . . .). To do so, we
study the MEMBERSHIPF problem: for a set of operations F , decide whether an element belongs to the closure by F
of a family of elements. In the boolean case, we prove that MEMBERSHIPF is in P for any set of boolean operations
F . When the input vectors are over a domain larger than two elements, we prove that the generic enumeration
method fails, since MEMBERSHIPF is NP-hard for some F . We also study the problem of generating minimal or
maximal elements of closures and prove that some of them are related to well known enumeration problems such as
the enumeration of the circuits of a matroid or the enumeration of maximal independent sets of a hypergraph.

Keywords: enumeration, set saturation, incremental polynomial time, polynomial delay, Post’s lattice, maximal
independent sets

1 Introduction
An enumeration problem is the task of listing all elements of a set without redundancies. Since the
set to generate may be of exponential cardinality in the size of the input, the complexity of enumeration
problems generally are measured in term of the input size and output size. Enumeration algorithms whose
complexity depends both on the input and the output are called output sensitive and when the dependency
is polynomial in the sum of both measures, they are called output polynomial. Another more precise
notion of complexity, is the delay which measures the time between the production of two consecutive
solutions. We are especially interested in problems solvable with a delay polynomial in the input size,
which are considered as the tractable problems in enumeration complexity. For instance, the spanning
trees, the simple cycles [33] or the maximal independent sets [22] of a graph can be enumerated with
polynomial delay.

If we allow the delay to grow during the algorithm, we obtain polynomial incremental time algorithms:
the first k solutions can be enumerated in a time polynomial in k and in the size of the input. Many prob-
lems which can be solved in polynomial incremental time have the following form: given a set of elements

ISSN 1365–8050 c© 2019 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:1

71
2.

03
71

4v
4

 [
cs

.C
C

]
 5

 J
un

 2
01

9

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/4143

2 Arnaud Mary, Yann Strozecki

and a polynomial time function acting on tuples of elements, produce the closure of the set by the func-
tion. For instance the following problems can be solved in polynomial incremental time: the enumeration
of the circuits of a matroid [24] and the enumeration of the vertices of restricted polyhedra [17].

In this article, we try to understand when saturation problems, which by definition can be solved in
polynomial incremental time, can be in fact solved by a polynomial delay algorithm. We would also like
to get rid of the exponential space which is necessary in the enumeration algorithm by saturation. To tackle
this question we need to restrict the set of saturation operations we consider. An element will be a vector
over some finite set and in most of this article, we require the saturation operations to act coefficient-wise
and in the same way on each coefficient. We prove that, when the vector is over the boolean domain, every
possible saturation can be computed with polynomial delay. To do that we study a decision version of our
problem, denoted by MEMBERSHIPF : given a vector v and a set of vectors S decide whether v belongs
to the closure of S by the operations of F . We prove that MEMBERSHIPF ∈ P for all set of operations F
over the boolean domain.

When the domain is boolean, the problem can be reformulated in terms of set systems or hypergraphs.
It is equivalent to the generation of the smallest hypergraph which contains a given hypergraph and which
is closed under some operations. We show how to efficiently compute the closure of a hypergraph by any
family of set operations (any operation that is the composition of unions, intersections and complementa-
tions) on the hyperedges. Some particular cases were already known previously. For instance, it is well
known that if a family of subsets ordered by inclusion forms a lattice, then the set of so called meet irre-
ducible elements is a generator with respect to the intersection operation (all other sets can be expressed
as the intersections of some meet irreducible elements). In general, knowing how to compute a closure
may serve as a good tool to design other enumeration algorithms. One only has to express an enumeration
problem as the closure of some sufficiently small and easy to compute set of elements (called a generator)
and then to apply the algorithms presented in this article.

The closure computation is also related to constraint satisfaction problems (CSP). Indeed, the set of
vectors can be seen as a relation R and the problem of generating its closure by some operations F is
equivalent to the computation of the smallest relationR′ containingR and for which all functions ofF are
polymorphisms ofR′. There are several works related to the enumeration in the context of CSP. They deal
with the enumeration of solutions of a CSP with polynomial delay [13, 7]. The simplest such result [13]
states that in the boolean case, there is a polynomial delay algorithm if and only if the constraint language
is Horn, anti-Horn, bijunctive or affine. While those works deal with the enumeration of solutions of
CSPs, this paper focuses on finding the closure of relations. However, we use tools from CSPs such as
Post’s lattice [32], used by Schaefer in his seminal paper [35], and the Baker-Pixley theorem [2].

The main theorem of this article settles the complexity of a whole family of decision problems and
implies, quite surprisingly, that the backtrack search is enough to obtain a polynomial delay algorithm to
enumerate any closure of boolean vectors. For all these enumeration problems, compared to the naive
saturation algorithm, our method has a better time complexity (even from a practical point of view) and a
better space complexity (polynomial rather than exponential). Moreover, besides the generic enumeration
algorithm, we give for each closure rule an algorithm with the best possible complexity. In doing so,
we illustrate several classical methods used to enumerate objects such as amortized backtrack search, hill
climbing, Gray code . . . It is interesting to note that most algorithms we provide have a delay polynomial
in the maximum size of a solution we generate. However some are polynomial in the instance which
can be much larger than the size of a solution, for instance the algorithm computing the closure of sets
by intersection as explained in Section 3.1. In that case, we provide a reduction from the problem of

Efficient enumeration of solutions produced by closure operations 3

generating the assignments of a monotone DNF formula which suggests that the delay must depend on
the instance size.

In a second part of the article, we generalize the set of operators used to compute a closure. The
aim is to capture more interesting problems and to better understand the difference between polynomial
incremental time and polynomial delay. The first generalization is to consider larger domains for the input
vectors. In that setting, the problem MEMBERSHIPF is NP-complete for some F and we are not able to
settle the question in general. The second generalization is to allow the operators to act differently on each
coefficient. We prove that MEMBERSHIPF ∈ P when the operators are extremely simple: they change
only a single coefficient of the vector and leave the rest unchanged. However, allowing the operators to
act on three coefficients is already enough to make MEMBERSHIPF NP complete.

It is classical in enumeration to try to reduce the number of generated objects, which can be very large,
by requiring additional properties. The most classical properties are the maximality or minimality for
inclusion, since this is often compatible with other notion of optimality of solutions. Hence algorithms
are known for maximal matchings [41], maximal cliques [22], minimal transversals [16] . . . Therefore,
as a third generalization we propose to enumerate only the minimal or maximal elements of the closures.
In these settings, the problems are not automatically in polynomial incremental time, since no saturation
algorithm generate the maximal or minimal elements only. We prove that either these problems have a
polynomial delay algorithm or that they are equivalent to well known problems such as the generation of
the circuits of a binary matroid or of the maximal independent sets of a hypergaph which can be solved in
polynomial incremental time.

This article is a long version of our previous work see [28]. The proofs have been improved and are
more detailed, the complexity of several enumeration algorithms have been improved, sometimes using
new techniques and more lower bounds are provided. The subject of the last two sections (non uniform
operators and maximal sets) have been proposed in [29] and are new for the most part.

1.1 Organization of the paper

In Section 2, we define enumeration complexity, the closure problem ENUMCLOSURE and the backtrack
search. In Section 3, we use Post’s lattice, restricted through suitable reductions between clones, to prove
that MEMBERSHIPF is polynomial for all set of binary operations F . It turns out that there are only
a few types of closure operations to study: the monotone operations (Section 3.1), the addition over
F2 (Section 3.2), the set of all operations (Section 3.3), two infinite hierarchies related to the majority
function (Section 3.5) and the limit cases of the previous hierarchies (Section 3.4). For all these closure
operations we give for ENUMCLOSURE both a generic backtrack algorithm in polynomial delay and
also an ad hoc efficient enumeration algorithm, sometimes with a conditional lower bound matching its
complexity. In Section 4, we give polynomial delay algorithms for three classes of closure operations
over any domain and prove that the backtrack search we use in the boolean case fails. In Section 5,
we enrich the set of possible operations by operators acting on a single coefficient, and prove that the
problem ENUMCLOSURE is still in polynomial delay for any set of such operators. Finally, in Section 6
we try to enumerate only the minimal or maximal elements of a closure and we show it is either trivially in
polynomial delay or equivalent to famous enumeration problems for which no polynomial delay algorithm
are known such as enumerating the circuits of a binary matroid or the maximal independent sets of a k
uniform hypergraph.

4 Arnaud Mary, Yann Strozecki

2 Preliminary
Given n ∈ N, [n] denotes the set {1, ..., n}. For a set D and a vector v ∈ Dn, we denote by vi the
ith coordinate of v. Let i, j ∈ [n], we denote by vi,j the vector (vi, vj). More generally, for a subset
I = {i1, ..., ik} of [n] with i1 < ... < ik we denote by vI the vector (vi1 , ..., vik). Let S be a set of
vectors. We denote by SI the set {vI | v ∈ S}, we say that vi is a projection of v and SI is a projection
of S. The characteristic vector v of a subset E of [n], is the vector in {0, 1}n such that vi = 1 if and only
if i ∈ X .

2.1 Complexity
In this section, we recall basic definitions about enumeration problems and their complexity, for further
details and examples see [38].

Let Σ be some finite alphabet. An enumeration problem is a function A from Σ∗ to P(Σ∗). That is
to each input word, A associates a set of words. An algorithm which solves the enumeration problem A
takes any input word w and produces the set A(w) word by word and without redundancies. We always
require the sets A(w) to be finite. We may also ask A(w) to contain only words of polynomial size in
the size of w and that one can test whether an element belongs to A(w) in polynomial time. If those
two conditions hold, the problem is in the class EnumP which is the counterpart of NP for enumeration.
Because of this relationship to NP, we often call solutions the elements we enumerate.

The computational model is the random access machine model (RAM) with addition, subtraction and
multiplication as its basic arithmetic operations. We have additional output registers, and when a special
OUTPUT instruction is executed, the contents of the output registers is outputted and considered as an
element of the outputted set. The RAM model is chosen over Turing machines, because it allows to use
data structures more efficiently which impacts the complexity measure used in enumeration.

The delay is the time between the productions of two consecutive solutions. Usually we want to bound
the delay of an algorithm for all pairs of consecutive solutions and for all inputs of the same size. If this
delay is polynomial in the size of the input, then we say that the algorithm is in polynomial delay and
the problem is in the class DelayP. If the delay is polynomial in the input and the number of already
generated solutions, we say that the algorithm is in incremental delay and the problem is in the class
IncP. By definition we have DelayP ⊂ IncP. Moreover, if we assume the exponential time hypothesis,
(DelayP ∩ EnumP) 6= (IncP ∩ EnumP) [11]. In practice problems in DelayP are considered to be
tractable, because the total time is linear in the number of solutions generated and because the solutions
can be regularly generated. Moreover, these problems often enjoy algorithms with polynomial space in
the size of the input, which is not the case for most polynomial incremental algorithms. Note that in a
polynomial delay algorithm we allow a polynomial precomputation step, usually to set up data structures,
which is not taken into account in the delay. This is why we can have a delay smaller than the size of the
input.

For S a set of boolean formulas, we define the enumeration problem ENUMS as the function which
associates to a formula of S the set of its models. One classical example is when S is the set of formulas
in conjunctive normal form denoted by CNF , and the associated problem is ENUMCNF or equivalently
ENUMSAT. In this article, we consider other families of boolean formulas: the Horn formulas HORN ,
the bijunctive formulas 2SAT , the formulas in disjunctive normal formDNF and the monotone formulas
in disjunctive normal form MONDNF .

To compare two enumeration problems, we use often the notion of parsimonious reduction from count-

Efficient enumeration of solutions produced by closure operations 5

ing complexity as it is adapted to enumeration complexity contrarily to Cook or Karp reductions. Given
two enumeration problems A and B, we say that there is a parsimonious reduction from A to B if there
are two polynomial time functions f and g such that for all instances x of A, g maps bijectively B(f(x))
to A(x). The problem ENUMCNF is EnumP complete for parsimonious reductions by adapting the clas-
sic proof of Cook [12]. In this article, we need a slightly more general notion of reduction, such that a
solution ofB may yield several solutions ofA as long as they can be efficiently enumerated, as introduced
in [27].

Definition 1. Let A and B be two enumeration problems. We say that there is a polynomial delay reduc-
tion from A to B if there is a polynomial time function f and C an enumeration problem in DelayP such
that for all instances x of A, we have:

• if y 6= z and y, z ∈ B(f(x)) then C(xy) ∩ C(xz) = ∅

• A(x) =
⋃

y∈B(f(x))

C(xy)

where xy is the concatenation of x and y.

When a problem A reduces to B and B reduces to A, we say that A and B are equivalent. Remark
that the class DelayP is closed under polynomial delay reduction. We will use tight reduction, where
the size of f(x) is closely related to x and C has a linear delay to obtain lower and upper bounds on the
complexity of several enumeration problems.

We now explain a very classical and natural enumeration method called the Backtrack Search (some-
times also called the flashlight method) used in many previous articles [33, 39]. It can be used to solve
all auto-reducible problems, in particular ENUMC when C is a set of formulas solvable in polynomial
time [13] and closed by partial assignment of variables. We represent the solutions we want to enumerate
as vectors of size n and coefficients in D. In practice solutions are often subsets of [n] which means that
D = {0, 1} and the vector is the characteristic vector of the subset.

The enumeration algorithm is a depth first traversal of a tree whose nodes are partial solutions. The
nodes of the tree are all vectors v of size l, for all l ≤ n, such that v = w[l] and w is a solution. The
children of the node v are the vectors of size l + 1, which restricted to [l] are equal to v. The leaves of
this tree are the solutions of our problem, therefore a depth first traversal visits all leaves and thus outputs
all solutions. Since a branch of the tree is of size n, it is enough to find the children of a node in a time
polynomial in n to obtain a polynomial delay. The delay also depends linearly on |D|, but in the rest of
the paper |D| will be constant. Therefore the backtrack search is in polynomial delay if and only if the
the following decision problem is in P: given v of size l is there w a solution such that v = w[l]? This
problem is called the extension problem associated to the enumeration problem.

Proposition 2. Given an enumeration problem A, such that for all w, A(w) is a set of vectors of size n
and coefficients in D, with n and |D| polynomially related to |w|. If the extension problem associated to
A is in P, then A is in DelayP.

We will see in the next part, that the complexity of solving the extension problem can be amortized
over a whole branch of the tree, since we solve it many times, using well chosen data structures.

There is a second classical enumeration method to design a polynomial delay algorithm, named the
supergraph method. The idea is to organize the solutions (and not the partial solutions) as a strongly
connected digraph instead of a tree, and to traverse this supergraph. For that we should be able to visit

6 Arnaud Mary, Yann Strozecki

all the successors of a node in polynomial time. To avoid the storage of the nodes of the supergraph,
the reverse search method is often used [1]. It consists on defining a canonical parent computable in
polynomial time for each node and thus defining a spanning arborescence of the supergraph. This method
may have a better delay than the backtrack search, because the traversal goes over solutions only.

2.2 Closure of families by set operations
We fix a finite domain D. Given a t-ary operation f (a function from Dt to D), f can be naturally
extended to a t-ary operation over vectors of the same size. Let (v1, . . . vt) be a t-uple of vectors of size
n, f acts coefficient-wise on it, that is for all i ≤ n, f(v1, . . . , vt)i = f(v1

i , . . . , v
t
i).

Definition 3. Let F be a finite set of operations over D. Let S be a set of vectors over D. Let F i(S) =
{f(v1, . . . , vt) | v1, . . . , vt ∈ F i−1(S) and f ∈ F} ∪ F i−1(S) and F0(S) = S. The closure of S by F
is ClF (S) = ∪iF i(S).

Notice that ClF (S) is also the smallest set which contains S and which is closed by the operations of
F . The set ClF (S) is invariant under the operations of F : these operations are called polymorphisms of
the set ClF (S), a notion which comes from universal algebra.

As an illustration, assume that D = {0, 1} and that F = {∨}. Then the elements of S can be seen
as subsets of [n] (each vector of size n is the characteristic vector of a subset of [n]) and Cl{∨}(S) is the
closure by union of all sets in S. Let S = {{1, 2, 4}, {2, 3}, {1, 3}} then

Cl{∨}(S) = {{1, 2, 4}, {1, 2, 3, 4}, {2, 3}, {1, 3}, {1, 2, 3}}.

Note that Cl{∨}(S) is indeed closed by union, that is ∨ is a polymorphism of Cl{∨}(S).
The problem we try to solve in this article, for all set of operations F over D, is ENUMCLOSUREF :

given a set of vectors S list the elements of ClF (S). We always denote the size of the vectors of S by n
and the cardinality of S by m. A naive saturation algorithm solves ENUMCLOSUREF : the elements of F
are applied to all tuples of S and any new element is added to S, the algorithm stops when no new element
can be produced. If the largest arity of an operation in F is t then this algorithm adds a new element to a
set of k elements (or stops) in time O(ktn), therefore it is in IncP.

The aim of this article is to find better algorithms to solve ENUMCLOSUREF , more specifically poly-
nomial delay algorithms with polynomial memory. To do that, let us introduce the extension problem
associated to a set of operations F , denoted by EXTCLOSUREF : given S a set of vectors of size n, and
a vector v of size l ≤ n, is there a vector v′ ∈ ClF (S) such that v′[l] = v. Solving this problem in
polynomial time yields a polynomial delay algorithm using backtrack search by Proposition 2. In fact, we
need only to solve the simpler membership problem, denoted by MEMBERSHIPF : given S a set of vectors
of size n, and a vector v of size n does v belongs to ClF (S)?

Proposition 4. If MEMBERSHIPF ∈ P then ENUMCLOSUREF ∈ DelayP.

Proof: EXTCLOSUREF can be reduced to MEMBERSHIPF . Indeed, given a vector v of size l, because
the operations of F act coordinate-wise, the two following predicates are equivalent:

• ∃v′ ∈ ClF (S) such that v′[l] = v

• v ∈ ClF (S[l])

Efficient enumeration of solutions produced by closure operations 7

Therefore if MEMBERSHIPF ∈ P then we have also EXTCLOSUREF ∈ P. We use Proposition 2 to
conclude.

We have introduced an infinite family of problems, whose complexity we want to determine. Several
families of operations may always produce the same closure. To deal with that, we need to introduce the
notion of functional clone. We write clone instead of functional clone in the rest of the paper since there
is no ambiguity in our context.

Definition 5. Let F be a finite set of operations over D, the functional clone generated by F , denoted by
< F >, is the set of operations obtained by any composition of the operations of F and of the projections
πnk : Dn → D defined by πnk (x1, . . . , xn) = xk.

This notion is useful, because two sets of functions which generate the same clone applied to the same
set produce the same closure.

Lemma 6. For all set of operations F and all set of vectors S, ClF (S) = Cl<F>(S).

The number of clones over D is infinite even when D is the boolean domain (of size 2). However, in
this case the clones form a countable lattice, called Post’s lattice [32]. Moreover there is a finite number
of well described clones plus a few number of infinite families of very regular clones.

3 The Boolean Domain
In this part, we prove the main theorem on the complexity of MEMBERSHIPF , when the domain is
boolean. An instance of one such problem, denoted by S, will be indifferently seen as a set of vectors of
size n or a set of subsets of [n].

Theorem 7. Let F be any fixed finite set of operations over the boolean domain, then MEMBERSHIPF ∈
P and ENUMCLOSUREF ∈ DelayP.

There is also a uniform version of MEMBERSHIPF , where F is given as input. It turns out that this
problem is NP-hard as proven in Section 3.5.

To prove Theorem 7, we prove that MEMBERSHIPF ∈ P, for each clone F of the Post’s lattice.
Since the Post’s lattice contains many classes, we first show that many of them are equivalent with re-
gard to the complexity of MEMBERSHIPF : for some F the problem MEMBERSHIPF can be reduced to
MEMBERSHIPG where G is another clone obtained from a simple transformation of F . This reduces the
number of cases we need to consider.

To an operation f we can associate its dual f defined by f(s1, . . . , st) = ¬f(¬s1, . . . ,¬st). If F is
a set of operations, F is the set of duals of operation in F . We denote by 0 and 1 the constant functions
which always return 0 and 1. By a slight abuse of notation, we also denote by 0 the all zero vector and by
1 the all one vector.

Proposition 8. The following problems can be reduced to MEMBERSHIPF by a polynomial time parsi-
monious reduction:

1. MEMBERSHIPF∪{0}, MEMBERSHIPF∪{1}, MEMBERSHIPF∪{0,1}

2. MEMBERSHIPF

3. MEMBERSHIPF∪{¬} when F = F

8 Arnaud Mary, Yann Strozecki

Proof: The reductions follow easily from these observations:

1. ClF∪{f}(S) = ClF (S ∪ {f}) for f = 0 or f = 1 and S 6= ∅.

2. ClF (S) = ClF (S) where S denotes the set of negation of vectors in S.

3. ClF∪{¬}(S) = ClF (S ∪ S) since for every f ∈ F , there exists g ∈ F such that ¬f(v1, . . . , vt) =

f(¬v1, . . . ,¬vt) = g(¬v1, . . . ,¬vt).

In Figure 1, we represent the clones which cannot be reduced to another one using Proposition 8 and
their bases. We also representBF the clone of all function since it is useful in several reductions presented
in the rest of the section. For a modern presentation of all boolean clones, their bases and the Post’s lattice
see [4, 34]. Each clone correspond to a case to settle in our proof of Theorem 7. We can further group
clones by the algorithm used to solve their associated enumeration problems and we represent these by
ellipses enclosing similar clones in Figure 1. Each ellipse in Figure 1 corresponds to a subsection of this
section.

To further simplify the enumeration problems we solve, we remark the following. When there is an
index i such that the value of vi for all elements v to be enumerated is determined by the value of another
index or is not constrained, then we can project it out. The formal statement of this fact is given in the next
proposition, and the proof is by obvious polynomial delay reductions. Note that these polynomial delay
reductions decrease the size of the instance and incurs an overhead for each solution which is constant.
Since these reductions can be applied at most once per index, the general overhead for each solution is
bounded by the size of the solution.

Proposition 9. The problem ENUMCLOSUREF can be reduced by a polynomial delay reduction to
ENUMCLOSUREF where the instances S do not satisfy these two properties:

• ∃i, j ∈ [n], ∃f : {0, 1} → {0, 1}, ∀v ∈ ClF (S), vi = f(vj)

• ∃i ∈ [n], ∀v ∈ ClF (S), ∃v′ ∈ ClF (S), v[n]\i = v′[n]\i and vi = ¬v′i

Proof: In the two cases, the reduction is to ENUMCLOSUREF on the instance S[n]\i. Then each solution
v is extended by f(vj) in the first case or by 0 and 1 in the second case.

3.1 Conjunction
We first study one of the simplest clones: E2 =< ∧ >. We give an elementary proof that MEMBERSHIPE2

∈
P, then we explain how to obtain a good delay for ENUMCLOSUREE2

. For a binary vector v, let us denote
by 0(v) (resp. 1(v)) the set of indices i for which vi = 0 (resp. vi = 1).

Proposition 10. MEMBERSHIPE2 ∈ P.

Proof: Let S be a set of boolean vectors, if we apply ∧ to a couple of vectors in S it produces the inter-
section of two vectors when seen as sets. Since the intersection operation is associative and commutative,
ClE2

(S) is the set of arbitrary intersections of elements of S. Let v be a vector and let S1 be the set
{w ∈ S | w1(v) = 1}. Assume now that v can be obtained as an intersection of elements v1, . . . , vt, those

Efficient enumeration of solutions produced by closure operations 9

Clone Base
I2 ∅
L2 x+ y + z
L0 x+ y
E2 ∧
S10 x ∧ (y ∨ z)
S2

10 maj, x ∧ (y ∨ z)
Sk10 Thk+1

k , k ≥ 3
S12 x ∧ (y → z)

Sk12 Thk+1
k , x ∧ (y → z)

D2 maj
D1 maj, x+ y + z
M2 ∨,∧
R x ? y : z
R0 ∨,+
BF ∨,¬

I2

L2

L0

E2

S10

S12

S3
12

S2
12

S3
10

S2
10

D2

D1

M2

R0

Sec. 3.3

Sec. 3.5

Sec. 3.4

Sec. 3.1

Sec. 3.2

BF

R

Fig. 1: The reduced Post’s lattice, upward edges represent inclusions of clones

elements must be in S1 because of the monotonicity of the intersection for the inclusion. On the other
hand, by definition of S1, v is contained in

⋂
w∈S1

w. Therefore, v ∈ ClE2(S) if and only if v =
⋂
w∈S1

w.

This intersection can be computed in time O(mn) which concludes the proof.

By Proposition 2, we can turn the algorithm for MEMBERSHIPE2
into an enumeration algorithm for

ENUMCLOSUREE2
with delay O(mn2). We explain in the next proposition how to reduce this delay to

O(mn).

Proposition 11. There is an algorithm solving ENUMCLOSUREE2 with delay O(mn).

Proof: We use the backtrack search described in Proposition 2 but we maintain data structures which allow
to decide MEMBERSHIPE2

quickly. Let S be the input set of m vectors of size n. During the traversal of
the tree we update the partial solution p, represented by an array of size n which stores whether pi = 1,
pi = 0 or is yet undefined.

A vector v of S is compatible with the partial solution if 1(p) ⊆ 1(v). We maintain an array COMP
indexed by the sets of S, which stores whether each vector of S is compatible or not with the current

10 Arnaud Mary, Yann Strozecki

partial solution. Finally we update an array COUNT , such that COUNT [i] is the number of compatible
vectors v ∈ S such that vi = 0. Notice that a partial solution p can be extended into a vector of ClE2

(S)
if and only if for all i ∈ 0(p) COUNT [i] > 0, the solution is then the intersection of all compatible
vectors.

At each step of the traversal, we select an index i such that pi is undefined and we set first pi = 0
then pi = 1. When we set pi = 0, there is no change to do in COUNT and COMP and we can check
whether this extended partial solution is correct by checking if COUNT [i] > 0 in constant time. When
we set pi = 1, we need to update COMP by removing from it every vector v such that vi = 0. Each
time we remove such a vector v, we decrement COUNT [j] for all j such that vj = 0. If there is a j such
that COUNT [j] is decremented to 0 then the extension of p by pi = 1 is not possible.

When we traverse a whole branch of the tree of partial solutions during the backtrack search, we set
pi = 1 for each i at most once and then we need to remove each vector from COMP at most once.
Therefore the total number of operations we do to maintain COMP and COUNT is O(mn) and so is
the delay.

We now relate the problem ENUMCLOSUREE2
to ENUMDNF which is the problem of listing all satis-

fying assignments of a formula in disjunctive normal form. The problem ENUMDNF appears in several
contexts such as the enumeration of satisfying assignments of an existential formula with second order
variables [15] or knowledge compilation [10]. The best algorithms to solve ENUMDNF have a delay of
O(mn) where n is the number of variables and m the number of clauses. The following question is open
and seems hard to solve:
Is there an algorithm for ENUMDNF with delay polynomial in n only or which has a sublinear depen-
dency on m ? In this paper we use ENUMMONDNF, the variant with only positive variables, as a hard
problem, that is we conjecture it cannot be solved with a delay better than O(m). Then, in the spirit
of fine grained complexity [42], it can be used to prove conditional lower bounds on the delay of other
enumeration problems.

Note that if we ask for all subsets of the sets in S instead of all intersections, we exactly get the
problem of enumerating the solutions of a monotone DNF formula. Moreover, the algorithm of Propo-
sition 11 is similar to one used to generate the solutions of a DNF formula or of a monotone CNF for-
mula [31]. We now show that we can reduce the problem ENUMMONDNF to ENUMCLOSUREE2

.
Moreover, an instance of ENUMMONDNF with n variables and m clauses is transformed into an in-
stance of ENUMCLOSUREE2 with mn vectors of size n. Therefore any improvement in the delay for
ENUMCLOSUREE2

yields a better delay for ENUMMONDNF.

Proposition 12. There is a polynomial delay reduction from ENUMMONDNF to ENUMCLOSUREE2 .

Proof: First recall that by the second point of Proposition 8, ENUMCLOSURE{∨} can be reduced to
ENUMCLOSUREE2 with an instance of the exact same size. Let φ ≡

∨m
i=1 Ci be a monotone DNF

formula over the variables X = {x0, . . . , xn−1}. The Ci are clauses over positive variables and can be
seen as the set of their variables. To Ci we associate the vectors vi,j which are equal to the characteristic
vector of Ci except on the coordinate j where it is equal to 1. Let S = {vi,j | i ∈ [m], j ∈ [n]}. Notice
that a solution of φ is any assignment which contains all variables of some clause Ci. The set Cl{∨}(S)
is also the set of all sets containing some clause which proves the reduction from ENUMMONDNF to
ENUMCLOSURE{∨} and thus to ENUMCLOSURED2 .

Efficient enumeration of solutions produced by closure operations 11

3.2 Algebraic operations
We first deal with the clone L0 =< + > where + is the boolean addition (or equivalently the boolean
operation XOR). Note that ClL0

(S) is the vector space generated by the vectors in S. Seen as an
operation on sets, + is the symmetric difference of the two sets.

Proposition 13. MEMBERSHIPL0 ∈ P.

Proof: Let S be the set of input vectors, let v be a vector and let A be the matrix whose rows are the
elements of S. The vector v is in ClL0(S) if and only if there is a solution to Ax = v. Solving a linear
system over F2 can be done in polynomial time which proves the proposition.

The previous proposition yields a polynomial delay algorithm by applying Proposition 2. One can
get a better delay, by computing in polynomial time a maximal free family M of S, which is a basis of
ClL0

(S). The basisM is a succinct representation ofClL0
(S). One can generate all elements ofClL0

(S)
by going over all possible subsets of elements of M and summing them. The subsets can be enumerated
in constant time by using Gray code enumeration (see [25]). The sum can be done in time n by adding
a single vector since two consecutive sets differ by a single element in the Gray code order. Therefore
we have, after the polynomial time computation of M , an enumeration with delay O(n). If one allows to
output the elements represented in the basis M , the algorithm even has constant delay.

The closure by the clone L2 (generated by the sum modulo two of three elements) corresponds to an
affine space rather than a vector space. Hence, we can easily extend the previous result to L2.

Proposition 14. MEMBERSHIPL2
∈ P.

Proof: Since the sum of three elements is associative and commutative, the vectors in ClL2(S) are the
sum of an odd number of vectors in S. In other words v ∈ ClL2(S) if and only if there is a x such that
Ax = v and the Hamming weight of x is odd. One can compute a basis B of the vector space of the
solutions to the equation Ax = v. If all elements of B have even Hamming weight, then their sums also
have even Hamming weight. Therefore v ∈ ClL2

(S) if and only if there is an element in B with odd
Hamming weight, which can be decided in polynomial time.

3.3 Boolean algebras
In this subsection, we deal with the largest clones of our reduced Post lattice: M2 =< ∧,∨ >, BF =<
∨,¬ >, R0 =< ∨,+ > and R =< x ? y : z >, where x ? y : z is the ”if then else” operator which is
equal to (¬x ∨ y) ∧ (x ∨ z).

Proposition 15. MEMBERSHIPM2
∈ P.

Proof: Let S be a vector set and for all i ∈ [n], let xi =
∧

v∈S s.t. vi=1

v, we call xi an atom. We show

that a vector u belongs to ClM2(S) if and only if u =
∨

i∈1(u)

xi. By definition of ClM2(S), it contains

the atoms since they are intersections of elements in S and it contains their unions u =
∨

i∈1(u)

xi. Since

the intersection distributes with the union, we can write any element v in ClM2
(S) as v =

∨
i

(∧
j s
i,j
)

where si,j ∈ S. Hence it is enough to show that vi =
∧
j s
i,j is an union of atoms. Let k be an index

12 Arnaud Mary, Yann Strozecki

such that vik = 1, then for all vectors si,j , si,jk = 1. It implies that seen as a set, xk is included in vi and
that vi =

∨
k∈1(vi)

xk which proves the characterization of ClM2
(S).

We can compute the atoms in time O(mn2), and then to decide whether v ∈ ClM2(S), one must check
whether v contains all atoms xi such that vi = 1 in time 0(n2) which proves the proposition.

Applying Proposition 2, we get an enumeration algorithm with delay O(mn3). Moreover, ClM2
(S) =

Cl<∨>({xi}i∈[n]). Recall that ENUMCLOSURE<∨> can be reduced to ENUMCLOSUREE2
by Proposi-

tion 8 and that ENUMCLOSUREE2 has an algorithm with delay O(mn) thanks to Proposition 11. Hence
the n atoms can be precomputed and their union generated with delay O(n2) since here m = n. We can
do better by using the inclusion structure of the xi’s to obtain a O(n) delay.

Proposition 16. ENUMCLOSUREM2 can be solved with delay O(n).

Proof: Let S be the input. We first build for all i, xi =
∧

v∈S,vi=1

v. Inclusion is a partial order between the

elements xi seen as sets. We consider a linear extension T of that partial order, i.e. a total order obtained
by ordering all the incomparable pairs. We then generate all elements of ClM2

(S) by a Hill climbing
algorithm: we go from one solution to another by adding a single xi. Let v be the current solution, we
maintain a list L ordered according to T of the indices i of v such that vi = 0. At each step we select i
the smallest element of L and we set vj = 1 and remove j from L for all j ∈ xi. This produces a new
solution in time O(n). We then recursively call the algorithm on this new solution and list. When the
recursive call is finished, we call the algorithm on v and L \ {i}.

This algorithm is correct, because the solutions generated in the two recursive calls are disjoint. Indeed,
in the second call vi will always be 0, because all indices in L are bigger than i in T . It means that xj

for j ∈ L is either smaller or incomparable. Since xi is the smallest element with xii = 1 it implies that
xji = 0.

The problem ENUMCLOSUREBF , which can be reduced to ENUMCLOSUREM2
by Proposition 17 is in

fact even easier to enumerate. Let S be a set of vectors, let Xi = {v | v ∈ S, vi = 1}∪{¬v | v ∈ S, vi =
0} and let xi =

∧
v∈Xi v. The set ClBF (S) is in fact a boolean algebra, whose atoms are the disjoint

elements xi. Indeed, either xii,j = xji,j and they are equal or 1xi ∩ 1xj = ∅. Let A = {xi | i ∈ [n]}, two
distinct unions of elements in A produce distinct elements. Hence by enumerating all possible subsets
of A with a Gray code, we can generate ClBF (S) with delay O(n) or O(1) if groups of always equal
coefficients are represented by a single coefficient.

We now prove that the closures by the clones R and R0 are equal to the closure by BF up to some
coefficients which are fixed to 0 or 1, thus they are as easy to enumerate as stated in the next proposition.

Proposition 17. The problems ENUMCLOSURER and ENUMCLOSURER0 can be reduced to ENUMCLOSUREBF
by a polynomial delay reduction.

Proof: First notice that both R and R0 contains M2 which means that they contain ∨ and ∧. By Propo-
sition 9 we can assume that for all i, there is u ∈ S such that ui = 1 and v such that vi = 0. Since
∨ is in both clones the vector 1 is in their closure. Since the clones also contain ∧, the vector 0 is also
in their closures. Now notice that x ?0 : 1 = x and that x + 1 = x. As a consequence we have
ClR(S) = ClR0

(S) = ClBF (S) which proves the proposition.

Efficient enumeration of solutions produced by closure operations 13

3.4 Limits of the infinite parts
We deal with the two infinite hierarchies of clones in Subsection 3.5. However, the method for the hierar-
chy does not directly apply to the clones which are the limits of these hierarchies: S10 =< x ∧ (y ∨ z) >
and S12 =< x ∧ (y → z) >. We show here how we can see them as a union of closures by M2 or BF ,
which complexity wise makes them similar to ENUMCLOSUREE2

. As a consequence, they have a poly-
nomial delay algorithm but the delay depends on m the size of S and a reduction from ENUMMONDNF
suggests it is hard to get rid of this dependency.

Lemma 18. Let S be a set of vectors then:

• ClS10
(S) =

⋃
s∈S

ClM2
(S1(s))

• there is a set of indices I such that if v ∈ ClS12(SI), vI = 1 and

ClS12
(SĪ) =

⋃
s∈S

ClBF (SĪ∩1(s))

where the elements of ClM2
(S1(s)) and of ClBF (S1(s)) are extended by zeros outside of 1(s).

Proof: By induction on the elements of ClS10
(S) (respectively ClS12

(S)), one proves that their support
are always contained in the support of some element of S.

Hence, for v ∈ ClS10
(S), we assume that v ⊆ s ∈ S. Notice that x∧ (y∨y) is equal to x∧y, therefore

we have the operation ∧ in S10. If v1(s) ∈ ClS10(S1(s)), it implies that there is a v′ ∈ ClS10(S) such that
v′1(s) = v1(s). Therefore v′ ∧ s = v and v ∈ ClS10(S). We have proved v ∈ ClS10(S) if and only if
v1(s) ∈ ClS10

(S1(s)) since the other direction is just the projection on 1(s).
As a consequence, if we consider S1(s), it contains the vector 1. We can simulate ∨, since 1∧(x∨y) =

x ∨ y. Therefore ClM2(S1(s)) ⊆ ClS10(S1(s)) and the reverse inclusion is clear since M2 =< ∨,∧ >
contains S10 which proves the first item of the lemma.

Assume that there is a coefficient i such that for all s ∈ S, si = 1, then for all v ∈ ClS12
(S), vi = 1.

We denote by I the set of such coefficients and by the previous remark, for all v in ClS12
(S), we have

vI = 1. By definition, for each i ∈ Ī , there is a s ∈ S with si = 0. Since x∧ (x→ y) = x∧ y, the vector
0 is in ClS12

(SĪ).
As in the first part of the proof, v ∈ ClS12

(SĪ) if and only if there is v ⊆ s ∈ SĪ , such that v1(s) ∈
ClS12(SĪ∩1(s)). By definition, s1(s) = 1. Thus we can simulate the negation in ClS12(SĪ∩1(s)) by
1∧(x→ 0) = ¬x. We also simulate the disjunction by 1∧(¬x→ y) = x∨y. Therefore ClS12(SĪ∩1(s))
contains ClBF (SĪ∩1(s)). The reverse inclusion follows from the fact that BF contains S12 which proves
the second item of the lemma.

As a consequence of this structural characterization, is it easy to decide the problems MEMBERSHIPS10

and MEMBERSHIPS12 in time O(mn). Therefore using a backtrack search, we obtain enumeration al-
gorithms with delay O(mn2). However, using the structures of ClS10(S) and ClS12(S) described in
Lemma 18 we obtain better algorithms described in the following proposition.

Proposition 19. The problems ENUMCLOSURES10 and ENUMCLOSURES12 can be solved with delay
O(mn).

14 Arnaud Mary, Yann Strozecki

Proof: We first prove the result for ENUMCLOSURES12
. By Lemma 18, there is a set I , such that

ClS12
(SĪ) = ∪s∈SClBF (SĪ∩1(s)) where the elements of S1(s) are extended by zeros. The coefficients

in I are always one and do not matter for an enumeration algorithm. Moreover, ENUMCLOSUREBF can
be solved with delay O(n). In particular, we can output the solutions in lexicographic order, since they
are union of disjoint atoms. If the elements of ClBF (S1(s)) are generated for each s we obtain all the
elements we want to output but with redundancies. We can obtain an algorithm without redundancies by
simulating an enumeration of the elements of ClBF (S1(s)) for all s and always outputting the smallest
one. This method is described in [38] (Lemma 3, Chapter 2) and the delay is the sum of delays of the
enumeration procedure for each s, that is O(mn).

The proof for ENUMCLOSURES10 is similar and follows from Proposition 16 which shows that the
elements of ClM2

(S) can be enumerated with delay O(n) in lexicographic order.

Proposition 20. There is a polynomial delay reduction from ENUMMONDNF to ENUMCLOSURES10

and ENUMCLOSURES12
.

Proof: Let φ = ∨i∈[m]Ci where each Ci is a conjunction of negative variables in X = {x0, . . . , xn−1}.
We assume that no variable appear in all clauses otherwise we could do a trivial polynomial delay reduc-
tion to get rid of it. To a clauseCi we associate the vector vi such that vij = 0 if and only if xj ∈ Ci. Let ei

denote the vector which has the coefficient eii = 1 and its other coefficients are zero. We define S = {vi |
i ∈ [m]}∪{ei | i ∈ [n]}. Note that there is natural bijection between assignments of φ and vectors of size
n. Let φ(X) stand for the set of satisfying assignments of φ. Note that φ(X) = ∪i∈[m]Ci(X). And by
definition Ci(X) is equal to the set of all assignments where the variables in Ci are equal to 0. Since both
S10 and S12 contain ∧, Ci(X) = ClS10

({vi} ∪ {ej | j ∈ [n]})1vi = ClS12
({vi} ∪ {ej | j ∈ [n]})1vi .

Since Ci(X) contains ClS10
(S1vi) and ClS12

(S1vi) it is equal to these sets. Since no variable appear in
all clauses, ClS10(S1ei

) and ClS12(S1ei
) are in φ(X) for all i. Hence, using the structure of ClS10(S)

and ClS12(S) given in Lemma 18, we obtain ClS10(S) = ClS12(S) = φ(X).

Since the reduction transforms an instance of ENUMMONDNF with m clauses and n variables into an
instance of ENUMCLOSURES10

or ENUMCLOSURES12
withm+n vectors of size n any algorithm improv-

ing the delay of ENUMCLOSURES10
or ENUMCLOSURES12

would improve the one of ENUMMONDNF.

3.5 Majority and threshold
An operation f is a near unanimity of arity k if it satisfies f(x1, x2, . . . , xk) = x for each k-tuple with
at most one element different from x. The threshold function of arity k, denoted by Thkk−1, is defined
by Thkk−1(x1, . . . , xk) is equal to 1 if and only if at least k − 1 of the elements x1, . . . , xk are equal
to one. It is the smallest near unanimity operation over the booleans. We use the Baker-Pixley theorem
from universal algebra to characterize the closure by any clone which contains a threshold function by its
projections of fixed size.

Majority
The threshold function Th3

2 is the majority operation over three booleans that we denote by maj and
the clone it generates is D2. We could directly apply the Baker-Pixley theorem in this case, but we
felt that for a computer science readership, it would be useful to present a proof of a special case: the
characterization of ClD2

(S). We also show how to obtain the best possible enumeration algorithm for
deciding ENUMCLOSURED2

.

Efficient enumeration of solutions produced by closure operations 15

Lemma 21. Let S be set of vectors. Then v belongs to ClD2
(S) if and only if for all i, j ∈ [n], i 6= j,

there exists x ∈ S such that xi,j = vi,j .

Proof:
(=⇒) Given a, b ∈ {0, 1} and i, j ∈ [n], i 6= j, we first show that if for all v ∈ S , vi 6= a or vj 6= b then
for all u ∈ ClD2

(S), ui 6= a or uj 6= b. It is sufficient to prove that this property is preserved by applying
maj to a vector set i.e. that if S has this property, then maj(S) has also this property. Let x, y, z ∈ S ,
v := maj(x, y, z), and assume for contradiction that vi,j = (a, b). Since vi = a, there is at least two
vectors among {x, y, z} that are equal to a at index i. Without loss of generality, let x and y be these two
vectors. Since for all u ∈ S, ui 6= a or uj 6= b, we have xj 6= b and yj 6= b and then vj 6= b which
contradicts the assumption. We conclude that if v ∈ ClD2

(S), then for all i, j ∈ [n], there exists u ∈ S
with vi,j = ui,j .
(⇐=) Let k ≤ n and let a1, ..., ak ∈ {0, 1}. We show by induction on k, that if for all i, j ≤ k there exists
v ∈ S with vi = ai and vj = aj , then there exists u ∈ ClD2

(S) with u1 = a1, u2 = a2, ..., uk = ak.
The assertion is true for k = 2. Assume it is true for k − 1, and let a1, ..., ak ∈ {0, 1}. By induction
hypothesis there exists a vector w ∈ ClD2(S) with w1 = a1, ..., wk−1 = ak−1. By hypothesis, for all
i ≤ k there exists vi ∈ S with vii = ai and vik = ak. We then construct a sequence of vectors (ui)i≤k
as follow. We let u1 = v1 and for all 1 < i < k, ui = maj(w, ui−1, vi). We claim that u := uk−1

has the property sought i.e. for all i ≤ k, ui = ai. First let prove that for all i < k and for all j ≤ i,
uij = aj . It is true for u1 by definition. Assume now that the property holds for ui−1, i < k. Then,
by construction, for all j ≤ i − 1, we have uij = aj since wj = aj and ui−1

j = aj . Furthermore, we
have uii = maj(wi, u

i−1
i , vii) = ai since wi = ai and vi = ai. We conclude that for all i ≤ k − 1,

ui = uk−1
i = ai.

We claim now that for all i < k, uik = ak. It is true for u1. Assume it is true for ui−1, i < k. Then
we have uik = maj(wk, u

i−1
k , vik) which is equal to ak since ui−1

k = ak by induction and vik = ak by
definition. We then have ui = ai for all i ≤ k which concludes the proof.

As an immediate consequence we get the following corollary and proposition.

Corollary 22. MEMBERSHIPD2
∈ P.

Proof: Using Lemma 21, one decides whether a vector v is in ClD2(S), by checking for every pair of
indices i, j whether there is a vector w ∈ S such that vi,j = wi,j .

The complexity of the algorithm of the previous corollary isO(mn2), hence applying Prop 2, we get an
enumeration algorithm with delayO(mn3). We explain how to improve this delay in the next proposition.

Proposition 23. ENUMCLOSURED2
can be solved with delay O(n2).

Proof: We do a backtrack search and we explain how to efficiently decide MEMBERSHIPD2
during the

enumeration. We first precompute for each pair (i, j) all values (a, b) such that there exists v ∈ S ,
vi,j = (a, b). When we want to decide whether the vector v of size l can be extended into a solution, it
is enough that it satisfies the condition of Lemma 21. Moreover, we already know that v[l−1] satisfies the
condition of Lemma 21. Hence we only have to check that the values of vi,l for all i < l can be found in
Si,l which can be done in timeO(l). The delay is the sum of the complexity of deciding MEMBERSHIPD2

for each partial solution in a branch: O(n2).

16 Arnaud Mary, Yann Strozecki

We can yet improve the delay by using an algorithm which does not use the backtrack search of Prop 2.
The closure of S can be represented by a boolean formula φS which describes the obstructions to being in
ClD2(S). Its variables are X = {x0, . . . , xn−1}, therefore its assignments are naturally in bijection with
the boolean vectors of size n and we do not distinguish both. Recall that ENUM2SAT is the problem of
generating all satisfying assignments of a 2CNF formula, that is a formula in conjunctive normal form
where each clause is of size at most two.

Proposition 24. ENUMCLOSURED2 can be can be solved with delay O(n).

Proof: We prove that ENUMCLOSURED2
can be reduced to ENUM2SAT by a polynomial delay reduc-

tion. To an instance S, we associate a formula φS in conjunctive normal form. Given i 6= j and vi,j which
is not in Si,j , we define the clause li ∨ lj where lk, for k = i, j, is xk if vk = 0 and ¬xk otherwise. The
formula φS is the conjunction of all such clauses. By construction, the formula φClD2

(S) is a 2CNF .
Notice that each clause forbids the assignment to take a pair of values which is not present in S.

Therefore a boolean vector v seen as an assignment satisfies φS if and only if every projection of size 2
of v is in S . By Lemma 21, it means that v ∈ ClD2

(S) if and only if v satisfies φS .
The proposition is proved since the problem ENUM2SAT can be solved with delay O(n), where n is

the number of variables using an algorithm of Feder [18].

We remark that we can apply the idea of Prop 24 to the clones of Subsection 3.3 and to D1 which all
contain the maj function. Indeed, closures by these clones are all characterized by their projections of
size two, which allows to do a reduction to a 2CNF formula. The algorithms we obtain have delayO(n).
However, we felt it was relevant to deal with clones of Subsection 3.3 separately, since the algorithms
presented in Section 3.3 are different and simpler. In particular, for the clones R0 and R, the delay is only
O(1) if we allow a compact representation of the solutions.

The Baker-Pixley theorem
We now state the Baker-Pixley theorem which generalizes Lemma 21 to all clones which contain near
unanimity terms. For more context on this theorem and universal algebra see [9].

Theorem 25 (Baker-Pixley, adapted from [2]). Let F be a clone which contains a near unanimity term
of arity k, then v ∈ ClF (S) if and only if for each set of indices I of size k − 1, vI ∈ ClF (S)I .

This allows to settle the case of the two infinite families of clones of our restricted lattice Sk10 =<
Thk+1

k > and Sk12 =< Thk+1
k , x ∧ (y → z) >.

Corollary 26. If a clone F contains Thk+1
k then MEMBERSHIPF is solvable in time O(mnk).

Proof: Let S bet a set of vectors and let v be a vector. By Theorem 25, v ∈ ClF (S) if and only if for
all I of size k, vI ∈ ClF (S)I . First notice that ClF (S)I = ClF (SI) because the functions of F act
coefficient-wise on S. The algorithm generates for each I of size k the set ClF (SI). For a given I , we
first need to build the set SI in time m and then the generation of ClF (SI) can be done in constant time.
Indeed, we can apply the classical incremental algorithm to generate the elements in ClF (SI), and the
cardinal of ClF (SI) only depends on k which is a constant. The time to generate all ClF (SI) is O(mnk)
and then all the tests can be done in O(nk).

We have proved that the complexity of any closure problem in one of our infinite families is polynomial.
We can use the method of Proposition 23 to obtain an algorithm with delay O(nk) to enumerate the

Efficient enumeration of solutions produced by closure operations 17

elements of a set closed by a clone containing a near unanimity function of arity k + 1. When the arity is
3, we can use the method of Proposition 24 to obtain an algorithm with the better delay O(n).

The complexity of MEMBERSHIPF is increasing with the smallest arity of a near unanimity function in
F . Hence we now investigate the complexity of the uniform problem when the clone is given as input. Let
CLOSURETRESHOLD be the following problem: given a set S of vectors and an integer k decide whether
the vector 1 ∈ ClSk

10
(S). It is a restricted version of the uniform problem, but it is already hard to solve

because we can reduce the problem HITTINGSET to its complement.

Theorem 27. CLOSURETRESHOLD is coNP-complete.

Proof: First notice that the problem is in coNP since by Theorem 25, the answer to the problem is negative
if and only if one can exhibit a subset of indices I of size k such that no element of ClSk

10
(SI) is equal to

1. Let us show that the later holds if and only if no element of SI is equal to 1. We assume that k ≥ 3
hence Sk10 =< Thk+1

k >. If no element in SI is equal to 1, then the application of Thk+1
k to SI preserves

this property. Indeed, consider Thk+1
k (v1, . . . , vk+1). Each vi has a zero coefficient and since there are

k + 1 such vectors and the vectors are of size k, by the pigeonhole principle, there are i, j, l such that
vil = vjl = 0. This implies that Thk+1

k (v1, . . . , vk+1) 6= 1.

Let us show that HITTINGSET can be reduced to CLOSURETRESHOLD. Given a hypergraph H =
(V, E) and an integer k, HITTINGSET asks whether there exists a subset X ⊆ V of size k that intersects
all the hyperedges of H. This problem is a classical NP-complete problem [21]. Let H = (V, E) be a
hypergraph and k be an integer. Let H̄ be the hypergraph on V whose hyperedges are the complement of
the hyperedges of H, and let S be the set of characteristic vectors of the hyperedges of H̄. Then H has a
transversal of size k if and only if there is a set I of indices of size k such for all v ∈ SI , v 6= 1. Indeed, I
is a hitting set ofH if for all E ∈ E , there exists i ∈ I such that i ∈ E which implies that i /∈ E and then
the characteristic vector v of E is such that vi = 0.

Since the other direction is straightforward, we have proved that there is a set I of indices of size k such
that for all v ∈ SI , v 6= 1 if and only if there is a set I of indices of size k such that for all v ∈ ClSk

10
(SI),

v 6= 1. By Theorem 25, the later property is equivalent to 1 /∈ ClSk
10

(S). Therefore we have given a
polynomial time reduction from HITTINGSET to the complement of CLOSURETRESHOLD which proves
the proposition.

In fact, the result is even stronger. We cannot hope to get an FPT algorithm for CLOSURETRESHOLD
parametrized by k since HITTINGSET parametrized by the size of the hitting set is W[2]-complete [19]. It
implies that if we want to significantly improve the delay of our enumeration algorithm for the clone Sk10,
we should drop the backtrack search since it relies on solving MEMBERSHIPSk

10
.

4 Larger Domains
In this section, we try to extend some results of the boolean domain to larger domains, which is the
simplest generalization possible. The main problem is that, for domain of size 3 or more, the lattice of
clones is uncountable and not as well understood as Post’s lattice. We show how we can do a backtrack
search for threshold functions and algebraic functions on larger domains. We also prove that for domain
of size 3, there is a clone generated by a single binary function f such that MEMBERSHIP<f> is NP-hard.

18 Arnaud Mary, Yann Strozecki

4.1 Tractable cases
We show here how the cases of near unanimity term (subsection 3.5 and 3.3) and of the addition (subsec-
tion 3.2) can be generalized. Using the Baker-Pixley theorem (Theorem 25), we can get an equivalent to
Corollary 26 and to Proposition 23 in any domain size.

Corollary 28. If F contains a near unanimity operation, then MEMBERSHIPF ∈ P .

Proposition 29. If F contains a near unanimity term of arity k+1, then ENUMCLOSUREF can be solved
with delay O(nk).

The second tractable case is a generalization of Subsection 3.2. The simplest generalization of the sum
over F2 is to consider any finite group operation. Using Sim’s stabilizer chain it is possible to decide
membership in groups given by generators [20, 43].

Proposition 30. Let f be a group operation over D. Then MEMBERSHIP<f> ∈ P .

The problem MEMBERSHIPF is known in the universal algebra community under the name subpower
membership problem or SMP. The method for groups also works for extensions of groups by multilinear
operations such as ring or modules. For semigroups, some cases are known to be PSPACE-complete and
other are in P [8, 37]. There are also works on SMP for clones which satisfy conditions from universal
algebras: for expansions of finite nilpotent Maltsev algebras of prime power size or for residually finite
algebras with cube terms, SMP is in P [30, 40], while it is hard for some algebras satisfying any strong
Maltsev conditions [36].

4.2 A limit to the backtrack search
The last case we would like to extend is the clone generated by the conjunction. A natural generalization
is to fix an order on D and to study the complexity of MEMBERSHIP<f> with f monotone. Let f be the
function over D = {0, 1, 2} defined by f(x, y) = min(x + y, 2). This function is monotone in each of
its arguments. We prove that EXACT3COVER reduces to MEMBERSHIP<f>, where EXACT3COVER is
the problem of finding an exact cover of a set by subsets of size 3. The next proposition is from [28] and
it has been independently proven using the same reduction for semigroups with idempotent elements in
Lemma 5.2 of [8].

Proposition 31. MEMBERSHIP<f> is NP-complete.

Proof: We reduce EXACT3COVER, which is NP-hard [21], to MEMBERSHIP<f>. Let S be an instance
of EXACT3COVER, that is a set of subsets of [n] of size 3. If we consider that the sets in S are represented
by their characteristic vectors, then S is an instance of MEMBERSHIP<f> and we now prove that 1 ∈
Cl<f>(S) if and only if there is an exact cover of S. First note that f is associative, therefore any
element of Cl<f>(S) can be written f(s1, f(s2, f(s3, . . .) with si ∈ S . Since f is also commutative,
the order of the operations is not relevant either. Hence we can represent any element v ∈ Cl<f>(S) by
a multiset of elements of S, which combined by f yields v. Notice that all elements in Cl<f>(S) can
be seen as a multiset containing at most twice an element since f(s, s) = f(s, f(s, s)). If si > 0 then
f(si, si) = 2, therefore a multiset which yields 1 by f should in fact be a set. Moreover a set which yields
1 satisfies that for all i ≤ n there is one and only one of its elements with a coefficient 1 at the index i.
Such a set is an exact cover of S, which proves the reduction.

The problem is in NP because an element v is inCl<f>(S), if and only if there is a multiset of elements
of S such that applying f to its elements yields v. We impose that the witnesses are multiset containing

Efficient enumeration of solutions produced by closure operations 19

element at most twice. We have seen these witnesses always exist and it guarantees that they are of
polynomial size.

This hardness result implies that we cannot use the backtrack search to solve the associated enumeration
algorithm. However, if we allow a space proportional to the number of solutions, we can still get a
polynomial delay algorithm for associative functions, a property satisfied by the function f of the last
proposition. Note that the space used is proportional to the number of solutions while the backtrack
search only requires a space polynomial in the input size.

Proposition 32. If f is an associative function of arity 2, then ENUMCLOSURE<f> ∈ DelayP.

Proof: Let S be an instance of ENUMCLOSURE<f>. LetG be the directed graph with verticesCl<f>(S)
and from each v ∈ Cl<f>(S), there is an arc to f(v, s) for all s ∈ S. Since f is associative, by definition
of G, every vertex of Cl<f>(S) is accessible from a vertex in S . Therefore we can do a depth-first
traversal of the graph G to enumerate all solutions. A step of the traversal is in polynomial time: from an
element v we generate its neighborhood: f(v, s) for s ∈ S . The computation of f(v, s) is in time O(n)
and |S| = m. We must also test whether the solution f(v, s) has already been generated. This can be
done in time O(n) by maintaining a trie containing the generated solutions. In conclusion the delay of the
enumeration algorithm is in O(mn) thus polynomial.

To obtain a polynomial space algorithm, we could try to use the reverse search method [1]. To do that,
we want the graph G to be a directed acyclic graph, which is the case if we require the function to be
monotone. The monotonicity also ensures that the depth of G is at most n(|D| − 1). However we also
need to be able to compute for each element of G a canonical ancestor in polynomial time and it does not
seem to be easy even when f is monotone.

Open problem 1. Find a property of f which ensures the existence of an easy to compute ancestor so
that we obtain a polynomial delay and polynomial space enumeration algorithm.

Open problem 2. Generalize the previous algorithm to clones generated by several functions or functions
of arity larger than three.

5 Non uniform operators
In this section we generalize the class of operators acting on vectors of booleans. We relax the condition
that an operator acts in the same way on each coefficient. On the other hand, we consider operators acting
on k solutions at most and in polynomial time, so that the saturation algorithm still works in incremental
polynomial time.

We study the simplest case of unary operators acting on a single coefficient. There are four functions
from the boolean domain to the boolean domain. When computing the closure, the identity has no effect,
while the negation allows to have any value for a coefficient which is also trivial to deal with. Therefore
we are only interested in the two constant functions.

Let ↑i be the function which to a vector v associates ↑i (v) such that for all j 6= i, ↑i (v)j = vj and
↑i (v)i = 1. We call this function an upward closure. The downward closures are defined similarly: for
each vector v and index j 6= i, ↓i (v)j = vj and ↓i (v)i = 0. We prove that we can add any sets of
such functions to a set of operators over the boolean domain and enumerate the elements of a closure with
polynomial delay.

20 Arnaud Mary, Yann Strozecki

We generalize the problem MEMBERSHIPF and ENUMCLOSUREF , by adding to the input the set of
upward and downward closures that can be used to compute the closure. Indeed, these operators work on
a single coefficient and we should allow to grow their numbers when the size of the vectors increases to
make our problem meaningfully different. In particular we want to allow the set of all downward closures
as input to represent solutions closed by taking subsets.

For each set of boolean operators F , we define ENUMUDCLOSUREF : given a set of vectors S, a set of
upward closures U and a set of downward closures D, enumerate ClF∪U∪D(S). We present proofs that
all problems ENUMUDCLOSUREF can be reduced to ENUMCLOSUREF in a tight way, which provides
good enumeration algorithms except for ENUMUDCLOSURE∅. Note that when both ↑i∈ U and ↓i∈ D,
the value of the ith coefficient does not matter. Therefore we always assume that there is no i such that
↑i∈ U and ↓i∈ D.

Proposition 33. ENUMUDCLOSURE∅ and ENUMUDCLOSUREE2 can be solved with delay O(mn).

Proof: The problem ENUMUDCLOSURE∅ can be reduced to ENUMDNF by mapping each element of
v ∈ S to a clause Cv of a formula φS . The variable xi is in Cv if vi = 1, ↓i /∈ D and ¬xi is in Cv if
vi = 0, ↑i /∈ U . By construction, the satisfying assignments of φS are in bijection with ClU,D(S). Since
the formula φS has m clauses of size at most n, one can enumerate its models with delay O(mn).

Let S be a set of vectors, U be a set of upward closures and D be a set of downward closures. We want
to decide whether v ∈ ClE2∪U∪D(S). If vi = 1 and ↑i∈ U (resp. if vi = 0 and ↓i∈ D), then there is
no constraint on the coefficient i which can always be turned to the value 1 (resp. 0). Consider i such
that vi = 0 and ↑i∈ U . Assume that v ∈ ClE2∪U∪D(S), therefore there is a sequence of operations in
E2∪U∪D which allows to build v from S. There are only two operators which can change the value of the
coefficient i: ↑i and ∧. Since ∧ is decreasing and acts independently on each coefficient, we can remove
all the uses of ↑i in the sequence of operations yielding v without changing the final result. Similarly,
if vi = 1 it cannot be useful to use ↓i∈ D. Therefore we can reduce the problem of deciding whether
v ∈ ClE2∪U∪D(S) to the problem MEMBERSHIPE2 on some projection of S. A simple adaptation of
Proposition 11 yields an algorithm with delay O(mn).

Note that it seems hard to improve the complexity of ENUMUDCLOSURE∅ since we can reduce
ENUMMONDNF to it while preserving the size of the instance. To each clause C of a monotone DNF
formula φ we map the vector vC , such that (vC)i = 1 if and only if xi is in the clause C. Let U be the set
of all upward closures and Sφ be the set of vectors vC . The satisfying assignments of φ are in bijection
with ClU (Sφ) and Sφ has as many vectors as φ has clauses.

Proposition 34. ENUMUDCLOSUREL0 and ENUMUDCLOSUREL2 can be solved with delay O(n).

Proof: Consider an index i, such that ↑i∈ U . Then if we consider ↑i (v + v), we obtain the base
vector ei with 0 everywhere except at position i. Therefore the value of coefficient i is not constrained in
ClL0∪D∪U(S) and we can solve the problem on S[n]\{i}.

If ↓i∈ D and there is some vector v with vi = 1 then v+ ↓i (v) is the vector ei. If all vectors v ∈ S
are such that vi = 0 then all vectors v′ ∈ ClL0∪U∪D(S) have v′i = 0. In both cases we can also solve
the problem on S[n]\{i}. Therefore to solve the problem ENUMUDCLOSUREL0 it is enough to solve
ENUMCLOSUREL0 on a projection of S.

Since ClL2
(S) is an affine space, it is equal to v + ClL0

(S), therefore we can use the same argument
to solve ENUMUDCLOSUREL2

by reduction to ENUMCLOSUREL2
.

Efficient enumeration of solutions produced by closure operations 21

Proposition 35. Let F be a clone with Thk+1
k ∈ F then ENUMUDCLOSUREF can be solved with delay

O(nk).

Proof: First notice that by definition of the Cl operations, ClF∪U∪D(S) = ClF (ClF∪U∪D(S)). There-
fore we can apply Theorem 25 to the right hand side of the equation, since F contains Thk+1

k . As a
consequence we have ClF∪U∪D(S) = {v | ∀|I| = k, vI ∈ ClF (ClF∪U∪D(SI))}. Applying the first
equality again, we have ClF∪U∪D(S) = {v | ∀|I| = k, vI ∈ ClF∪U∪D(SI)}. The characterization we
obtain extends the one of Theorem 25. Since ClF∪U∪D(SI) can be generated in polynomial time for all
I of size k, we can use the same algorithm as in Corollary 26.

Proposition 36. ENUMUDCLOSURES10 and ENUMUDCLOSURES12 can be solved with delay O(mn).

Proof: We consider a set of upward closures U and we let s′ be the vector s to which each element of U
has been applied. Let ei be the vector such that eii = 1 and eij = 0 for i 6= j. We let S ′ = S ∪ {s′ | s ∈
S}∪{ei |↑i∈ U}. Let us prove that ClS10∪U (S) = ClS10

(S ′). Note that the vector 0 is in ClS10
(S) since

∧ is in the clone S10 and for every index i there are two vectors v, w such that vi = 0 and wi = 1. The
inclusion from right to left is clear: it is easy to build s′ by definition and ei =↑i (0). The other inclusion
is true since ↑i (x) = x′ ∧ (x ∨ ei).

We can prove by induction, using the monotonicity of∨ and∧ thatClS10∪U∪D(S) = ClD(ClU (ClS10
(S)).

Therefore we only need to characterize ClD(ClS10
(S ′)), since we have shown that ClU (ClS10

(S)) =
ClS10(S ′). Let us define yi as the intersection of all elements s ∈ S ′ with si = 1 to which are applied
all ↓j∈ D for j 6= i. Let us define S ′′ = S ′ ∪ {yi | i ∈ [n]}, we now prove that ClD(ClS10(S ′)) =
ClS10

(S ′′). The inclusion from right to left is clear: it is easy to build yi since ∧ is in the clone S10.
Now consider v ∈ ClS10

(S ′) and ↓i∈ D. By Lemma 18, v can be seen as the union of some atoms of S
intersected with v. Therefore, if we consider the union of yj with j ∈ 1(v) and j 6= i, it is equal to ↓i (v)
once intersected with v since yji = 0 by construction. It proves that ↓i (v) ∈ ClS10(S ′′) which proves the
equality of the two closures.

As a conclusion, we have reduced an instance of ENUMUDCLOSURES10 with m vectors of size n to
an instance of ENUMCLOSURES10

with at mostO(m+n) vectors of size n which proves the result, using
the algorithm of Proposition 19.

We now consider ClS12∪U∪D(S). Let ↑i∈ U , we have assumed that there is s ∈ S with si = 0.
Consider x ∈ ClS12∪U∪D(S), we have x ∧ (↑i (s) → s) =↓i (x). Therefore when we have an upper
closure ↑i, we can simulate the corresponding downward closure ↓i (x) and thus forget about the coef-
ficient which is not constrained. The proof is the same for downward closures, therefore we can reduce
ENUMUDCLOSURES12 to ENUMCLOSURES12 on a projection of the instance, which by Proposition 19
yields the desired algorithm.

If we allow more general operators as inputs, that is any k-ary function from k-tuples of vectors to
vectors, it is possible to use the incremental delay saturation algorithm. However, the problem of deciding
membership in the closure becomes hard. For instance, we consider unary operators Oi,j,k, which act on
the coefficients i, j, k of a vector: if vi = vj = vk = 0 then Oi,j,k(v)i = Oi,j,k(v)j = Oi,j,k(v)k = 1
otherwise the coefficients are left unchanged. It is easy to reduce the problem EXACT3COVER to deciding
membership in the closure by these operators (a subset of them are given as input). To each subset {i, j, k}
is associated the operator Oi,j,k, and the vector 1 belongs to the closure of S = {0} by these operators if
and only if the set of subsets has an exact cover.

22 Arnaud Mary, Yann Strozecki

Open problem 3. Is the membership problem hard for unary operators acting on 2 coefficients ?

There is another natural view on downward and upward closures. The question is to enumerate the
subsets or supersets of ClF (S) for any fixed F . In that way, upward and downward closures do not mix
with the operators in F . We let the reader check that these problems are still solvable with polynomial
delay by inspecting every case of the reduced Post’s lattice. When generating a set of elements closed by
subsets or supersets, we are often only interested in the minimal or maximal elements for inclusion. The
next section deal with this natural extension.

6 Minimal and maximal elements
In this section, we are interested in enumerating minimal (resp. maximal) elements of ClF (S) for a given
family F . Given two vectors v, u ∈ {0, 1}n, we say that v is smaller than u if 1(v) ⊆ 1(u), that is the
vectors are ordered by the inclusion of the corresponding sets. A vector v ∈ ClF (S) is said to be minimal
(resp. maximal), if it is smaller (resp. larger) or incomparable with all vectors of ClF (S). We denote by
ENUMCLOSUREMAXF and ENUMCLOSUREMINF the problem of, given S, enumerating respectively
the maximal and the minimal elements of ClF (S) \ {0,1}. We exclude 0 and 1 to obtain non trivial
problems when ClF (S) contains them. Note that ENUMCLOSUREMAXF and ENUMCLOSUREMINF
cannot be solved by a simple saturation algorithm, therefore they are not naturally in IncP contrarily to
all the problems studied in the previous sections.

6.1 Cases with few solutions
There are many clones which have only a polynomial number of minimal or maximal elements which can
be easily found, making their enumeration trivial.

The maximal elements of a closure by E2 are the original vectors since the operation is decreasing.
The minimal elements are the intersection of all base vectors containing i for each i ∈ [n]. The closures
by the clones M2, R0 and R are characterized as union of atoms or the intersection with a base vector
of a union of atoms for S10 and S12. As a consequence the minimal elements are these atoms which can
be computed in polynomial time. For the maximal elements, if we assume that the union of all atoms is
equal to 1 then it is the unions of all atoms but one.

The hierarchies Sk10 and Sk12 contain respectively S10 and S12 and thus a closure by Sk10 and Sk12

contains the atoms defined for S10 and S12. They are their minimal elements, which are thus easy to
produce. However since the structure of Sk10 and Sk12 is slightly different from S10 and S12, they have
many more maximal elements and we will see in Section 6.4 that they are much harder to enumerate.

We are left with the cases of minimal and maximal elements when the clone contains the majority func-
tion, maximal elements when the clone contains a threshold function of arity larger than 3 and minimal
and maximal elements for the algebraic clones L0 and L2.

6.2 Majority
For the five clones which contain the majority operator, we can use the reduction to a 2CNF formula of
Proposition 24. Then we can generate the maximal (resp. minimal) elements of their closure by generating
maximal (resp. minimal) models of a 2CNF formula. Note that the minimal models of a 2CNF formula
are the negations of the maximal models of the same formula where each variable is negated. Therefore
the problem of enumerating maximal models is equivalent to the problem of generating minimal models.

Efficient enumeration of solutions produced by closure operations 23

The problem of enumerating the maximal models of a 2CNF formula has already been studied and can
be solved with polynomial delay as explained in [23]. The algorithm works by eliminating by resolution
all positive variables in the formula. It means that for a given variable x, and for all clauses A ∨ x and
B ∨ ¬x all clauses A ∨ B are created and A ∨ x, B ∨ ¬x are removed. This operation does not change
the set of maximal models. This step can be successively applied in time O(n3) to obtain m′ clauses
where n is the number of variables. Then the formula is a 2CNF , such that each variable is always
positive or always negative. When enumerating maximal models of such a formula all positive variables
are set to 1 and the formula is thus an antimonotone 2CNF . Therefore the problem can be reduced to
the enumeration of maximal independent sets of the graph whose vertices are variables and the edges are
clauses. The later problem can be solved with delay O(n3) and space O(n2) since m′ ≤ n2, see [26].
Note that any graph can be encoded into an antimonotone 2CNF , therefore improving the enumeration
of maximal solutions of antimonotone 2CNF means finding a better enumeration algorithm for maximal
independent sets in general graphs which is a hard open problem.

6.3 Linear algebra
The clone L0 is generated by +, hence the closure by L0 is a vector space. Therefore we want to un-
derstand the problem of finding the minimal and maximal vectors of a vector space over F2. Since the
minimum of a vector space is always 0, we consider the minimal non zero vectors, a concept which is
related to circuits of a matroid. A binary matroidM is represented by a set of vectors over F2. A circuit
ofM is a minimal –for the inclusion– dependent set, that is a subset S of vectors inM such that there is
a linear combination of elements in S equal to 0.
Theorem 37. The problem ENUMCLOSUREMINL0 is equivalent to the enumeration of the circuits of a
binary matroid.

Proof: LetM be a binary matroid and let M be the matrix whose columns are the vectors ofM. The de-
pendent sets ofM are the solutions to Mx = 0 or supersets of these elements. We can find a basis of the
kernel ofM in polynomial time and we call itB. Notice that by definition, ClL0

(B) contains only depen-
dent sets ofM and amongst them all its minimal dependent sets. Hence solving ENUMCLOSUREMINL0

on B is equivalent to the enumeration of the circuits ofM.
Now assume that we are given a set S of binary vectors. We can compute a basis B of the vector space

ClL0
(S) and then we compute in polynomial time a matrix M such that B is a basis of the kernel of

M . The binary matroid defined by the columns vectors of M has for circuits the minimal elements of
ClL0

(B) = ClL0
(S), which proves the reduction.

The enumeration of the circuits of a matroid can be done in incremental polynomial time [24], but
it is an open question to find a polynomial delay for this problem even when the matroid is binary. In
particular, it is not possible to enumerate the circuits by increasing Hamming weight, since finding the
one with smallest Hamming weight is NP-hard [3]. Moreover, we cannot use the backtrack search, since
deciding whether a set of vectors can be extended into a circuit is NP-complete [14]. Therefore we have
an incremental polynomial time algorithm for ENUMCLOSUREMINL0

but improving it would solve an
important open question.

The reduction done for ENUMCLOSUREMINL0 also works for ENUMCLOSUREMINL2 , but since it is
an affine space, the problem is equivalent to finding the minimal solutions of a non homogeneous system.
As a consequence solving ENUMCLOSUREMINL2

is equivalent to enumerating the circuits of a matroid
containing a given element. This later problem is also in IncP [24].

24 Arnaud Mary, Yann Strozecki

Open problem 4. Can we relate ENUMCLOSUREMAXL0
to a known enumeration problem as we have

done for ENUMCLOSUREMINL0
? In particular, is ENUMCLOSUREMAXL0

∈ IncP.

6.4 The infinite part
We now study ENUMCLOSUREMAXSk

10
and ENUMCLOSUREMAXSk

12
and we show that they are both

equivalent to the enumeration of maximal independent sets of a hypergraph of dimension k, a problem
denoted by ENUMKMAXINDSET. The dimension of a hypergraph is the size of its largest hyperedge. An
independent set of a hypergraph is a subset of its vertices that does not contain any hyperedge. It is said to
be maximal, if it is maximal by inclusion. The problem of enumerating the maximal independent sets or
equivalently the minimal transversal of a hypergraph of dimension bounded by k belongs to IncP (c.f. [16,
6, 5]) but no polynomial delay algorithm is known. Therefore the equivalence of ENUMKMAXINDSET
with ENUMCLOSUREMAXSk

10
and ENUMCLOSUREMAXSk

12
proves that they are in IncP since this class

is closed under polynomial delay reduction.
We first give a characterization of the vectors of ClSk

10
(S) and ClSk

12
(S). By Theorem 25, a vector v

belongs toClSk
10

(S) (resp. ClSk
12

(S)) if and only if for every subset of indices I of size k, vI ∈ ClSk
10

(S)I
(resp. vI ∈ ClSk

12
(S)I). So the vectors of the closure are completely determined by the closures of the

projections on the k-subsets of indices of S. Since the projection of the closure is equal to the closure of the
projection, the following two lemmas give a characterization of the vectors in ClSk

10
(S)I and ClSk

12
(S)I .

Lemma 38. Let k > 3, S be a set of vectors each of size k and let v be a vector of size k. Then
v ∈ ClSk

10
(S) if and only if:

• There exists u ∈ S such that 1(v) ⊆ 1(u)

• For all i, j ≤ k such that vi = 1 and vj = 0, there exists u ∈ S with ui = 1 and uj = 0

Proof: (⇒) Let us prove that if for a given set of indices I , |I| ≤ k, S has the property that no projection
of its vectors on I is equal to 1, then this property is preserved by the application of Thk+1

k and thus
ClSk

10
(S) has the same property. This implies that if no vector u of S is such that 1(v) ⊆ 1(u), then

v /∈ ClSk
10

(S). Let us consider Thk+1
k (u1, . . . , uk+1), each ui has at least one zero on indices in I . Since

there are k + 1 such vectors and I is of size at most k, by the pigeonhole principle, there are i, j ≤ k and
l ∈ I such that uil = ujl = 0. This implies that Thk+1

k (u1, . . . , uk+1) 6= 1. Thus, if v ∈ ClSk
10

(S), there
exists u ∈ S with 1(v) ⊆ 1(u).

Let us prove now that if, for all vectors u ∈ S, we have ui,j 6= (1, 0), then the same is true in ClSk
10

(S),
since the property is preserved by the application of Thk+1

k . Assume that v = Thk+1
k (u1, . . . , uk+1) with

vi = 1. Then at least k vectors from u1, . . . , uk+1 are equal to 1 on the ith coordinate. By hypothesis, all
these k vectors are equal to 1 on the jth coordinate which implies that vj = 1.

(⇐) Let v be a vector and assume that there exists u ∈ S such that 1(v) ⊆ 1(u) and assume that for
all i, j ≤ k such that vi = 1 and vj = 0, there exists u ∈ S with ui = 1 and uj = 0. We show that
v ∈ ClSk

10
(S). By rearranging the coordinates, assume without loss of generality that vi = 1 for all

i ≤ ` and vi = 0 for all ` < i ≤ k. We show by induction that for all ` ≤ r ≤ k, v[r] ∈ ClSk
10

(S)[r].
For r = `, we have v[r] = 1. By assumption there exists u ∈ S with 1(v) ⊆ 1(u), so we have
v[r] = u[r] ∈ S[r] ⊆ ClSk

10
(S)[r]. Assume now that v[r−1] ∈ ClSk

10
(S)[r−1] for a given r with ` < r ≤ k

Efficient enumeration of solutions produced by closure operations 25

and let us show that v[r] ∈ ClSk
10

(S)[r]. Since v[r−1] ∈ ClSk
10

(S)[r−1] there exists v′ ∈ ClSk
10

(S) such
that v′[r−1] = v[r−1]. Observe first that if v′r = 0 then the result directly holds since vr = 0 and then
v′[r] = v[r]. So assume that v′r = 1. Since by assumption, for each i, j ≤ k such that vi = 1 and vj = 0

there exists a vector u ∈ S with ui = 1 and uj = 0, we have that for each i ≤ `, there exists ui ∈ S
with uii = 1 and uir = 0. We now construct a sequence of vectors (zi)i≤` that belong to ClSk

10
(S) and we

prove by induction that each zi is such that :

• zij = 1 for all j ≤ i

• zij = 0 for all ` < j ≤ r

Then we have that z`[r] = v[r] which will prove that v[r] ∈ ClSk
10

(S)[r]. We first let z1 = Thk+1
k (v′, v′, ..., v′, u1, u1).

Clearly z1
1 = 1 since u1 = 1 and v′1 = 1. Furthermore, since u1

r = 0, z1
r = 0 and since v′j = 0 for all

` < j < r, z1
j = 0 for all ` < j < r. Now for 1 < i ≤ ` we let zi = Thk+1

k (v′, v′, ..., v′, ui, zi−1). Let
us prove that zi has the sought properties. Let j ≤ i. Notice that since v′j = 1, zij = 1 if either uij or zi−1

j

is equal to one. If j = i then uij = 1 and then zij = 1. Now if j < i then by induction, zi−1
j = 1 and

then zij = 1. Now let ` < j ≤ r. If j < r, we have that v′j = 0 and then zij = 0. Now since by induction
zi−1
r = 0 and since by definition uir = 0, we have zir = 0. So for every i ≤ `, zi has the sought property

which implies in particular that z`[r] = v[r]. Since at each step, zi is constructed by applying the threshold
operator on vectors of ClSk

10
(S), z` belongs to ClSk

10
(S) and thus v[r] ∈ ClSk

10
(S)[r].

Lemma 39. Let k > 3, S be a set of vectors each of size k and let v be a vector of size k. Assume that
for all i < k, there is s ∈ S such that si = 0. Then v ∈ ClSk

12
(S) if and only if:

• There exists u ∈ S such that 1(v) ⊆ 1(u)

• For all i, j ≤ k such that vi 6= vj , there exists u ∈ S with ui 6= uj

Proof: (⇒) Assume that v ∈ ClSk
12

(S). Observe first that if for two coordinates i, j we have ui = uj
for all vectors in S, then applying any boolean operator produce a vector for which both coordinates are
equal. So if vi 6= vj there must be a vector in S with ui 6= uj . Now let us show that there exists a vector
u ∈ S with 1(v) ⊆ 1(u). By Lemma 38 if no vector u of S is such that 1(v) ⊆ 1(u), then v /∈ ClSk

10
(S).

Furthermore the extra operator x∧(y → z) which is in Sk12 is decreasing because of the ∧. So if no vector
u of S is such that 1(v) ⊆ 1(u), then v /∈ ClSk

12
(S).

(⇐) Assume that v has the following properties

• For all i, j ≤ k such that vi 6= vj , there exists u ∈ S with ui 6= uj

• There exists s ∈ S such that 1(v) ⊆ 1(s)

and let us show that v ∈ ClSk
12

(S). The first property shows it is enough to prove it projected on 1(s). We
can apply Lemma 18 to ClS12

(S1(s)), which shows it is equal to ClBF (S1(s)), since there is no index on
which all elements of S are 1. Since S12 is included in Sk12, ClSk

12
(S) contains ClBF (S1(s)). Using the

second property of v, we have that v ∈ ClBF (S1(s)) which implies that v ∈ ClSk
12

(S).

26 Arnaud Mary, Yann Strozecki

Notice that if two coordinates i and j are equal for every vector of S, they will remain equal in the
closure. So one can simplify the input vector set by deleting all but one equivalent coordinates. So
assuming that no coordinates are equivalent, the two previous lemmas together with Theorem 25 give the
two following corollaries.

Corollary 40. Let k > 3, n ≥ k, S be a set of vectors each of size n and let v be a vector of size n. Then
v ∈ ClSk

10
(S) if and only if:

• For all i, j ≤ n such that vi = 1 and vj = 0, there exists u ∈ S with ui = 1 and uj = 0

• For all I ⊆ [n], |I| = k, there exists u ∈ S such that 1(vI) ⊆ 1(uI)

Corollary 41. Let k > 3, n ≥ k, S be a set of vectors each of size n and let v be a vector of size n. Then
v ∈ ClSk

12
(S) if and only if for all I ⊆ [n], |I| = k, there exists u ∈ S such that 1(vI) ⊆ 1(uI).

We are now ready to reduce ENUMKMAXINDSET to CLOSUREMAXSk
10

and CLOSUREMAXSk
12

. Let
H = (C, E) be a hypergraph of dimension k on n vertices and assume for simplicity that H is k-regular
(i.e. all its hyperedges are of size exactly k). Let T = {χT | T ∈

(
V
k

)
\ E} where

(
V
k

)
denotes the subsets

of V of size k and χT denotes the characteristic vector of T . Now for i ≤ n, let ei be the vector of size n
such that eii = 1 and eij = 0 for all j 6= i. If we denote by U the set of vectors T ∪ {ei : i ≤ n} we have
the following property.

Lemma 42. ClSk
10

(U) (resp. ClSk
12

(U)) is the set of the characteristic vectors of the independent sets of
H.

Proof: Since for every i, j ≤ n there is ei ∈ U such that eii = 1 and eij = 0, by Corollary 40 and 41, a
vector belongs to ClSk

10
(U) (resp. ClSk

12
(U)) if and only if for every subset of indices I ⊆ [n] of size k,

there exists u ∈ U such that 1(vI) ⊆ 1(uI). So v ∈ ClSk
10

(U) (resp. v ∈ ClSk
12

(U)) if and only if for
every subset I of 1(v) of size k there exists u ∈ U such that vI = uI = 1. Since every vectors of U has
at most k ones, v ∈ ClSk

10
(U) (resp. v ∈ ClSk

10
(U)) if and only for all subsets I of 1(v) of size k there

exists u ∈ T such that u is the characteristic vector of 1(vI). By construction of T , the later is equivalent
to the fact that I is not a hyperedge of H. So, since H is k-regular, v ∈ ClSk

10
(U) (resp. v ∈ ClSk

12
(U))

if and only if 1(v) contains no hyperedge of H, i.e. v is the characteristic vector of an independent set of
H.

The bijections between the closures of U and the independent sets of H are also bijections between
the maximal elements of the closures and the maximal independent sets. Since U can be built in time
polynomial in H, we have proved the existence of polynomial delay reductions as stated in the next
corollary.

Corollary 43. There are polynomial delay reductions from ENUMKMAXINDSET to ENUMCLOSUREMAXSk
10

and ENUMCLOSUREMAXSk
12

.

Now we show that ENUMCLOSUREMAXSk
10

and ENUMCLOSUREMAXSk
12

can be reduced to ENUMKMAXINDSET,
proving that these three problems are equivalent. Let S be a set of binary vectors of size n, and k < n
be an integer. We denote byHk(S) the hypergraph on n vertices such that the hyperedges are the subsets
I ⊆ [n], |I| ≤ k such that uI 6= 1 for all u ∈ S . A hyperedge of Hk(S) is a subset of coordinates that
are never set to one at the same time in S. We denote by I(Hk(S)) the set of independent sets of Hk and

Efficient enumeration of solutions produced by closure operations 27

we denote by Max(I(Hk(S))) its maximal ones. For a family of sets T , let us denote by χ(T) the set of
characteristic vectors of the sets in T .

We first show thatClSk
12

(S) is the set of characteristic vectors of I(Hk(S)). Since the inclusion ordering
between sets correspond to the classical ordering between their characteristic vectors, this implies that
Max(ClSk

12
(S)) = χ(Max(I(Hk(S)))). On the other hand ClSk

10
(S) 6= χ(I(Hk(S))), but we will see

that Max(ClSk
10

(S)) = Max(ClSk
12

(S)) = χ(Max(I(Hk(S)))).

Theorem 44. ENUMCLOSUREMAXSk
12

and ENUMKMAXINDSET are equivalent.

Proof: We first prove that ClSk
12

(S) = χ(I(Hk(S))).
We have T ∈ χ(I(Hk(S)))

⇔ for each subset I ⊆ 1(v), |I| ≤ k, I is not a hyperedge ofHk(S)
⇔ for each subset I ⊆ 1(v), |I| ≤ k, there exists u ∈ S such that uI = 1
⇔ v ∈ ClSk

12
(S) (By Corollary 41)

Given S,Hk(S) can be constructed in time O(mnk) where m is the number of vectors in S. Moreover
we have proved that ClSk

12
(S) = χ(I(Hk(S))) and χ can be computed in linear time, which proves

that this is a polynomial delay reduction from ENUMCLOSUREMAXSk
12

to ENUMKMAXINDSET. Since
Corollary 43 proves the reduction in the other direction, the two problems are equivalent.

We now prove that ENUMCLOSUREMAXSk
10

and ENUMKMAXINDSET are equivalent by proving that
the maximal elements of ClSk

12
(S) and ClSk

10
(S) are the same.

Theorem 45. ENUMCLOSUREMAXSk
10

and ENUMKMAXINDSET are equivalent.

Proof: Since Sk10 ⊆ Sk12 we have that ClSk
10

(S) ⊆ ClSk
12

(S).
Claim 1:Max(ClSk

12
(S)) ⊆Max(ClSk

10
(S))

Let v ∈Max(ClSk
12

(S)) and let us show that v ∈ ClSk
10

(S). Assume it is not, by corollaries 40 and 41
and since v ∈ ClSk

12
(S), we know that there exists i, j ≤ n such that vi,j = (1, 0) while the vector (1, 0)

does not belong to Si,j . By maximality of v in ClSk
12

(S), the vector v′ obtained from v by setting j to 1

does not belong to ClSk
12

(S), so by corollary 41, there exists I ⊆ 1(v′), |I| ≤ k such that v′I /∈ SI . Notice
that j must belong to I since otherwise v would not belong to ClSk

12
(S). Now let I ′ := I \ {j} ∪ {i}. We

have that I ′ ⊆ 1(v) and |I ′| ≤ k. So again, by corollary 41 there exists u ∈ S such that uI′ = vI′ . Since
uI 6= v′I and v′j = 1 we have that uj = 0. But since ui = vi = 1, ui,j = (1, 0) contradicting the fact that
the vector (1, 0) does not belong to Si,j . So v ∈ ClSk

10
(S), and since v is maximal in ClSk

12
(S) it is also

maximal in ClSk
10

(S).
Assume that v ∈Max(ClSk

10
(S)). Since ClSk

10
(S) ⊆ ClSk

12
(S), v ∈ ClSk

12
(S). Now assume that v is

not maximal in ClSk
12

(S), then there exists v′ ∈Max(ClSk
12

(S)) such that v < v′. But then, by Claim 1,
v′ ∈ ClSk

10
(S) which contradicts the maximality of v in ClSk

10
(S).

We have thus proved thatMax(ClSk
12

(S)) = Max(ClSk
10

(S)) which proves that ENUMCLOSUREMAXSk
10

and ENUMCLOSUREMAXSk
12

are equivalent. Then by Theorem 44 and the transitivity of equivalence, we
have that ENUMCLOSUREMAXSk

10
and ENUMKMAXINDSET are equivalent.

28 Arnaud Mary, Yann Strozecki

Acknowledgements
The authors have been partially supported by the French Agence Nationale de la Recherche, AGGREG
project reference ANR-14-CE25-0017-01 and we thank the members of the project and Mamadou Kanté
for interesting discussions about enumeration. We also thank Florent Madelaine for his help with CSP
and universal algebra. We thank Bruno Zanuttini for his remarks about representing closures as boolean
formulas.

References
[1] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied Mathematics,

65(1-3):21–46, 1996.

[2] Kirby A. Baker and Alden F. Pixley. Polynomial interpolation and the chinese remainder theorem
for algebraic systems. Mathematische Zeitschrift, 143(2):165–174, 1975.

[3] E.R. Berlekamp, R.J. McEliece, and H.C.A. Van Tilborg. On the inherent intractability of certain
coding problems. IEEE Transactions on Information Theory, 24(3):384–386, 1978.

[4] Elmar Böhler and Heribert Vollmer. Boolean functions and posts lattice with applications to com-
plexity theory. Lecture Notes for Logic and Interaction, 2002.

[5] Endre Boros, Vladimir. Gurvich, Khaled Elbassioni, and Leonid Khachiyan. An efficient incremen-
tal algorithm for generating all maximal independent sets in hypergraphs of bounded dimension.
Parallel Processing Letters, 10(04):253–266, 2000.

[6] Endre Boros, Vladimir Gurvich, and Peter L. Hammer. Dual subimplicants of positive boolean
functions. Optimization Methods and Software, 10:147–156, 1998.

[7] Andrei Bulatov, Vı́ctor Dalmau, Martin Grohe, and Dániel Marx. Enumerating homomorphisms.
Journal of Computer and System Sciences, 78(2):638–650, 2012.

[8] Andrei Bulatov, Marcin Kozik, Peter Mayr, and Markus Steindl. The subpower membership problem
for semigroups. International Journal of Algebra and Computation, 26(07):1435–1451, 2016.

[9] Stanley Burris and Hanamantagida Pandappa Sankappanavar. A Course in Universal Algebra, vol-
ume 78 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1981 (2012 online
version).

[10] Florent Capelli. Structural restrictions of CNF-formulas: applications to model counting and knowl-
edge compilation. PhD thesis, Université Paris Diderot, 2016.

[11] Florent Capelli and Yann Strozecki. Incremental delay enumeration: Space and time. Discrete
Applied Mathematics, 2018.

[12] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third
annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

Efficient enumeration of solutions produced by closure operations 29

[13] Nadia Creignou and J-J. Hébrard. On generating all solutions of generalized satisfiability problems.
RAIRO-Theoretical Informatics and Applications, 31(6):499–511, 1997.

[14] Arnaud Durand and Miki Hermann. The inference problem for propositional circumscription of
affine formulas is conp-complete. In STACS, pages 451–462. Springer, 2003.

[15] Arnaud Durand and Yann Strozecki. Enumeration complexity of logical query problems with
second-order variables. In Proceedings of the 20th Conference on Computer Science Logic, pages
189–202, 2011.

[16] Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hypergraph and related
problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

[17] Khaled Elbassioni and Kazuhisa Makino. Enumerating vertices of 0/1-polyhedra associated with
0/1-totally unimodular matrices. In 16th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[18] Tomás Feder. Network flow and 2-satisfiability. Algorithmica, 11(3):291–319, 1994.

[19] Jörg Flum and Martin Grohe. Parameterized complexity theory. Springer Science & Business Media,
2006.

[20] Merrick Furst, John Hopcroft, and Eugene Luks. Polynomial-time algorithms for permutation
groups. In Foundations of Computer Science, 1980., 21st Annual Symposium on, pages 36–41.
IEEE, 1980.

[21] Michael R. Garey and David S. Johnson. Computers and intractability, volume 29. W Freeman
New York, 2002.

[22] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating all maximal
independent sets. Information Processing Letters, 27(3):119–123, 1988.

[23] Dimitris J. Kavvadias, Martha Sideri, and Elias C. Stavropoulos. Generating all maximal models of
a boolean expression. Information Processing Letters, 74(3-4):157–162, 2000.

[24] Leonid Khachiyan, Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Kazuhisa Makino. On
the complexity of some enumeration problems for matroids. SIAM Journal on Discrete Mathematics,
19(4):966–984, 2005.

[25] Donald E. Knuth. Combinatorial Algorithms, part 1, volume 4a of The Art of Computer Program-
ming, 2011.

[26] Eugene L. Lawler, Jan Karel Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal indepen-
dent sets: Np-hardness and polynomial-time algorithms. SIAM J. Comput., 9(3):558–565, 1980.

[27] Arnaud Mary. Énumération des Dominants Minimaux dun graphe. PhD thesis, Université Blaise
Pascal, 2013.

30 Arnaud Mary, Yann Strozecki

[28] Arnaud Mary and Yann Strozecki. Efficient enumeration of solutions produced by closure opera-
tions. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, volume 47,
2016.

[29] Arnaud Mary and Yann Strozecki. Generating maximal solutions given by closure operations. Work-
shop on Enumeration Problems and Applications, 2016.

[30] Peter Mayr. The subpower membership problem for Mal’cev algebras. International Journal of
Algebra and Computation, 22(07):1250075, 2012.

[31] Keisuke Murakami and Takeaki Uno. Efficient algorithms for dualizing large-scale hypergraphs.
Discrete Applied Mathematics, 170:83–94, 2014.

[32] Emil Leon Post. The two-valued iterative systems of mathematical logic. Princeton University Press,
1941.

[33] Robert C. Read. Bounds on backtrack algorithms for listing cycles, paths, and spanning trees.
Networks, 5:237–252, 1975.

[34] Steffen Reith and Heribert Vollmer. Optimal satisfiability for propositional calculi and constraint
satisfaction problems. Information and Computation, 186(1):1–19, 2003.

[35] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual
ACM symposium on Theory of computing, pages 216–226. ACM, 1978.

[36] Jeff Shriner. Hardness results for the subpower membership problem. International Journal of
Algebra and Computation, 28(05):719–732, 2018.

[37] Markus Steindl. The subpower membership problem for bands. Journal of Algebra, 489:529–551,
2017.

[38] Yann Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Université Paris
Diderot - Paris 7, 2010.

[39] Yann Strozecki. On enumerating monomials and other combinatorial structures by polynomial in-
terpolation. Theory of Computing Systems, 53(4):532–568, 2013.

[40] Ágnes Szendrei, Peter Mayr, and Andrei Bulatov. The subpower membership problem for finite
algebras with cube terms. Logical Methods in Computer Science, 15, 2019.

[41] Takeaki Uno. Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite
graphs. Algorithms and Computation, pages 92–101, 1997.

[42] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix and
triangle problems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium
on, pages 645–654. IEEE, 2010.

[43] Stephan Zweckinger. Computing in direct powers of expanded groups. Master’s thesis, 2013.

	1 Introduction
	1.1 Organization of the paper

	2 Preliminary
	2.1 Complexity
	2.2 Closure of families by set operations

	3 The Boolean Domain
	3.1 Conjunction
	3.2 Algebraic operations
	3.3 Boolean algebras
	3.4 Limits of the infinite parts
	3.5 Majority and threshold

	4 Larger Domains
	4.1 Tractable cases
	4.2 A limit to the backtrack search

	5 Non uniform operators
	6 Minimal and maximal elements
	6.1 Cases with few solutions
	6.2 Majority
	6.3 Linear algebra
	6.4 The infinite part

