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Svobodová2
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A positional numeration system is given by a base and by a set of digits. The base is a real or complex
number β such that |β| > 1, and the digit set A is a finite set of real or complex digits (including
0). Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes
the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac,
is a mode of computation where operands and results flow through arithmetic units in a digit serial
manner, starting with the most significant digit.

In this paper, we first formulate a generalized version of the on-line algorithms for multiplication
and division of Trivedi and Ercegovac for the cases that β is any real or complex number, and digits
are real or complex. We then define the so-called OL Property, and show that if (β,A) has the OL
Property, then on-line multiplication and division are realizable by the Trivedi-Ercegovac algorithms.
For a real base β and a digit set A of contiguous integers, the system (β,A) has the OL Property if
#A > |β|. For a complex base β and symmetric digit setA of contiguous integers, the system (β,A)
has the OL Property if #A > ββ + |β + β|. Provided that addition and subtraction are realizable in
parallel in the system (β,A) and that preprocessing of the divisor is possible, our on-line algorithms
for multiplication and division have linear time complexity.

Three examples are presented in detail: base β = 3+
√
5

2
with digit set A = {−1, 0, 1}; base β = 2i

with digit set A = {−2,−1, 0, 1, 2} (redundant Knuth numeration system); and base β = − 3
2
+

i
√

3
2

= −1 + ω, where ω = exp 2iπ
3

, with digit set A = {0,±1,±ω,±ω2} (redundant Eisenstein
numeration system).
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1 Introduction
A positional numeration system is given by a base and by a set of digits. The base is a real
or complex number β such that |β| > 1, and the digit set (or alphabet) A is a finite set of
real or complex digits (including 0). The most studied numeration systems are of course
the usual ones, where the base is a positive integer. But there have been also numerous
studies where the base is an irrational real number (the so-called β-expansions), a complex
number, or a non-integer rational number, etc. A survey can be found in [9, Chapter 2]. In
that setting a number is seen as a finite or infinite string of digits.

An on-line algorithm processes the input piece-by-piece in a serial fashion, i.e., in the
order that the input is given to the algorithm, and the output is produced by the algorithm
without having the entire input available from the beginning.

On-line arithmetic, introduced in [18], is a mode of computation where operands and re-
sults flow through arithmetic units in a digit serial manner, starting with the most significant
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digit. To generate the first digit of the result, the first δ digits of the operands are required.
The integer δ is called the delay of the algorithm. This technique allows for pipelining of
different operations, such as addition, multiplication and division. It is also appropriate for
the processing of real (or complex) numbers having infinite expansions: it is well known
that when multiplying two real (or complex) numbers, only the left part of the result is
significant. On-line arithmetic is used for special circuits such as in signal processing, and
for very long precision arithmetic. An application to real-time control can be found in [2].
One of the benefits of on-line computable functions is that they are continuous for the usual
discrete topology on the set of infinite sequences on a finite alphabet. In order to be able to
perform on-line computations, it is necessary to use a redundant numeration system, where
a number may have more than one representation. A sufficient level of redundancy can
also enable parallel addition and subtraction, which are used internally within the on-line
multiplication and division algorithms. On the other hand, zero can have in some redundant
number systems a non-trivial representation. This fact requires to modify a representation
of a divisor into a suitable form, usually called preprocessing of divisor.

On-line algorithms for multiplication and division in positive integer bases with a sym-
metric alphabet of integer digits have been originally given by Trivedi and Ercegovac
in [18]. On-line algorithms for multiplication and division in some complex numeration
systems can be found in [15], [13], and [10]. In this paper we first formulate a generalized
version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac
for the cases that β is any real or complex number, and digits are real or complex.

Let us say that a pair (β,A) has the OL Property if there exists a bounded set I such that
the closure cl(I) of I and the interior Io of I satisfy β cl(I) ⊂ ∪a∈A(Io + a). We show
that if (β,A) has the OL Property and 0 is in I then on-line multiplication and division
are realizable by the Trivedi-Ercegovac algorithms. Of course, the divisor inputting the
Trivedi-Ercegovac algorithm for division has to be preprocessed into a suitable form.

We show that for a real base β and an alphabet A of contiguous integers, the system
(β,A) has the OL Property if #A > |β|. For a complex base β and a symmetric alphabet
A of contiguous integers (convenient for parallel addition and subtraction), the system
(β,A) has the OL Property if #A > ββ + |β + β|.

The key point of our algorithms is the specific choice of the functions Select performing
the selection of the digits to output. The definitions of Select use only a reasonable ap-
proximation of its operands by a limited number of fractional digits — here denoted by L
— of their (β,A)-representations. This allows, for some specific numeration systems, to
perform evaluation of Select in constant time. In particular, we do not have to treat the real
and the imaginary components separately in complex numeration systems.

Provided that addition and subtraction are realizable in parallel in the system (β,A) (see
[5] for general results on this topic) and that preprocessing of the divisor is possible, our
on-line algorithms for multiplication and division have linear time complexity.

Three examples are presented in full detail:
1. β = 3+

√
5

2 and A = {−1, 0, 1}: on-line multiplication is possible with delay δ = 4 and
with L = 3, on-line division with delay δ = 6 and with L = 9.
2. β = 2i and A = {−2,−1, 0, 1, 2} (redundant Knuth numeration system): on-line mul-
tiplication is possible with delay δ = 9 and L = 7, and on-line division with delay δ = 11
and L = 11.
3. β = − 3

2 + i
√

3
2 = −1 + ω, where ω = exp 2iπ

3 is the third root of unity, and
A = {0,±1,±ω,±ω2} (redundant Eisenstein numeration system). Here we see that the
parameters used in the algorithms are closely linked together and they are not uniquely de-
termined. We present two couples of parameters for the multiplication algorithm: (δ, L) =
(5, 7) and (δ, L) = (6, 6); and similarly for the division algorithm: (δ, L) = (7, 10) and
(δ, L) = (10, 9).

A short preliminary version of this work has been presented in [1].
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2 Algorithms of Trivedi and Ercegovac
The on-line multiplication and the on-line division algorithms we describe below are the
same as the algorithms introduced by Trivedi and Ercegovac for computation in integer
bases with a symmetric alphabet [18, 3]. Our modification for non-standard numeration
systems for arbitrary base β (in general a complex number) and a alphabet A (in general a
finite set of complex numbers) concerns only a choice of the function Select.

In the sequel, by a (β,A)-representation of a number X we understand a (possibly infi-
nite) string x−nx−n+1 · · · of digits xj ∈ A such that X =

∑+∞
j=−n xjβ

−j ; we also denote
it X = x−nx−n+1 · · ·x0.x1x2 · · · .

2.1 On-line multiplication algorithm
The algorithm for on-line multiplication in a numeration system (β,A) has one parameter,
namely the delay δ ∈ N, δ ≥ 1, which is specified later. The Select function is here called
SelectM, and has just one variable.

We work with (β,A)-representations of the numbers X =
∑∞
j=1 xjβ

−j and Y =∑∞
j=1 yjβ

−j , and their product P =
∑∞
j=1 pjβ

−j . Their partial sums are denoted by

Xk =
∑k
j=1 xjβ

−j , Yk =
∑k
j=1 yjβ

−j , and Pk =
∑k
j=1 pjβ

−j .
The inputs of the algorithm are two (possibly infinite) strings

0.x1x2 · · ·xδxδ+1xδ+2 · · · with xj ∈ A and x1 = x2 = · · · = xδ = 0, and

0.y1y2 · · · yδyδ+1yδ+2 · · · with yj ∈ A and y1 = y2 = · · · = yδ = 0 .

The output is a (possibly infinite) string 0.p1p2p3 · · · corresponding to a (β,A)-represen-
tation of the product P = X · Y =

∑∞
j=1 pjβ

−j . The settings of the algorithm ensure that
the representation of P indeed starts only on the right of the fractional point.

We carry out the on-line multiplication in iterative steps. To start with, set W0 = X0 =
Y0 = p0 = 0 . At the k-th step of the iteration (starting from k = 1) we compute:

Wk = β(Wk−1 − pk−1) + (xkYk−1 + ykXk) , and pk = SelectM(Wk) ∈ A . (1)

Lemma 2.1 The definition (1) of Wk and pk implies that, for any k ≥ 1:

Wk = βk(XkYk − Pk−1) . (2)

Moreover, if the sequence (Wk) is bounded, then

X · Y = lim
k→∞

XkYk = lim
k→∞

Pk = P .

Proof: Due to our setting x1 = X1 = y1 = Y1 = p0 = P0 = W0 = 0, we have by (1) that
W1 = 0, and thus W1 = β(X1Y1 − P0). Using again (1) and the induction hypothesis, we
obtain Wk+1 = β(Wk − pk) + xk+1Yk + yk+1Xk+1 = β(βk(XkYk − Pk−1) − pk) +
(xk+1Yk+yk+1Xk+1), and the result follows from the fact thatXk+1 = Xk+xk+1β

−k−1,
and similar relations for Yk+1 and Pk.

ThusXkYk = β−kWk+Pk−1 = β−k(Wk−pk)+Pk, andXkYk−Pk = β−k(Wk−pk).
Since pk is from the (finite set) A and (Wk) is bounded, limk→∞XkYk − Pk = 0. 2

The algorithm of Trivedi and Ercegovac gives the following parameters in integer base
with SelectM(Wk) = round(Wk).

Corollary 2.2 [18, 10] If β is an integer> 1 andA = {−a, . . . , a} with β/2 ≤ a ≤ β−1,
the on-line multiplication algorithm works with delay δ, where δ is the smallest positive
integer such that

β

2
+

2a2

βδ(β − 1)
≤ a+

1

2
.



4 Christiane Frougny, Marta Pavelka, Edita Pelantová, Milena Svobodová

2.2 On-line division algorithm
The algorithm for on-line division in (β,A) numeration system has two parameters: the
delay δ ∈ N andDmin > 0, the minimal value (in modulus) of the denominator. The Select
function is here called SelectD, and it has two variables.

The input consists of (β,A)-representations of the numerator N =
∑∞
j=1 njβ

−j , the
denominator D =

∑∞
j=1 djβ

−j , and their quotient Q =
∑∞
j=1 qjβ

−j . Partial sums are

denoted by Nk =
∑k
j=1 njβ

−j , Dk =
∑k
j=1 djβ

−j , and Qk =
∑k
j=1 qjβ

−j .
The inputs of the algorithm are two (possibly infinite) strings

0.n1n2 · · ·nδnδ+1nδ+2 · · · with nj ∈ A and n1 = n2 = · · · = nδ = 0 , and

0.d1d2d3 · · · with dj ∈ A satisfying |Dk| ≥ Dmin for all k ∈ N, k ≥ 1 . (3)

The output is a (possibly infinite) string 0.q1q2q3 · · · corresponding to a (β,A)-represen-
tation of the quotient Q = N/D =

∑∞
j=1 qjβ

−j . Again, the settings of the algorithm
ensure that the representation of Q starts behind the fractional point.

We carry out the on-line division in iterative steps. To start with, setW0 = q0 = Q0 = 0 .
Each k-th step of the iteration proceeds (starting from k = 1) by calculation of

Wk = β(Wk−1 − qk−1Dk−1+δ) + (nk+δ −Qk−1dk+δ)β
−δ. (4)

The k-th digit qk of the representation of the quotient Q = N
D is evaluated by SelectD,

function of the values of the auxiliary variable Wk and the interim representation Dk+δ , so
that

qk = SelectD(Wk, Dk+δ) ∈ A . (5)

Lemma 2.3 Definition (4) of Wk implies that, for any k ≥ 1:

Wk = βk(Nk+δ −Qk−1Dk+δ) . (6)

Moreover, if the sequence (Wk) is bounded, then Q = limk→∞Qk = N
D .

Proof: Formula (6) is proved by induction, analogously as in Lemma 2.1. The formula
Wkβ

−k = Nk+δ −Qk−1Dk+δ ensures, for bounded (Wk), that

0 = lim
k→∞

(Nk+δ −Qk−1Dk+δ) = N −D lim
k→∞

Qk .

As lim
k→∞

|Dk+δ| = |D| > 0, the statement follows. 2

Clearly, the choice of the selection function is the crucial point for correctness of the
algorithms for both on-line multiplication and on-line division.

3 On-line multiplication and division in real and complex
bases

In this section, we give a sufficient condition on β ∈ C and A ⊂ C, which guarantees that
the numeration system (β,A) allows to perform on-line multiplication and division by the
Trivedi-Ercegovac algorithm.

Let us fix the following notation: for ε > 0 and a set T ⊂ C, T ε stands for the ε-fattening
of the set T :

T ε =
⋃
x∈T

B(x, ε) , where B(x, ε) denotes the ball with center x and radius ε .
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For numbers a, β ∈ C and a set T ⊂ C, we denote

T + a = {x+ a : x ∈ T} and βT = {βx : x ∈ T} .

Moreover, by cl(T ) and T o we denote the closure and the interior of T , respectively. The
metric we use on C (or on R, if β ∈ R and A ⊂ R) is induced by the absolute value.

Definition 3.1 A pair (β,A) has the OL Property if there exists a bounded set I such that
β cl(I) ⊂ ∪a∈A(Io + a).

The OL Property says that β cl(I) is covered by copies of Io shifted by digits a of A.
Using Theorem 2.7 in [12] we can reformulate the OL property.

Lemma 3.2 A pair (β,A) has OL Property if and only if there exist a bounded set I and a
positive number ε (called the Lebesgue number of the covering) such that

for each x ∈ (βI)ε there exists a ∈ A such that B(x, ε) ⊂ I + a. (7)

The previous consequence of the OL Property is crucial for applicability of the Trivedi-
Ercegovac algorithm in non-stnadard numeration systems.

Lemma 3.3 Suppose that (β,A) has the OL Property, and let a bounded set I and ε > 0
satisfy (7). Then there exists a function Digit : (βI)ε → A such that

B(V, ε) ⊂ I + Digit(V ) . (8)

When selecting the kth-digit pk (in the multiplication algorithm) or qk (in the division
algorithm), we do not want to evaluate the auxiliary variable Wk precisely, as it would be
too costly. We shall use only a reasonable approximation by several most important digits
of Wk, and also of Dk+δ (for division).

Definition 3.4 For E > 0, denote by TruncE a function TruncE : C→ C such that

|X − TruncE(X)| < E for any X ∈ C. (9)

In the sequel, we use the TruncE(X) function in the form of truncation of the less
significant digits in the (β,A)-representation of the number X =

∑∞
j=1 xjβ

−j ; namely

TruncE(X) =
∑L
j=1 xjβ

−j with L ∈ N such that |∑∞j=L+1 xjβ
−j | < E.

3.1 Selection function for on-line multiplication
Herein, we exploit the OL Property to construct the Select function for on-line multiplica-
tion. According to Lemma 2.1, the main and only goal of this construction is to guarantee
that the auxiliary sequence (Wk) which is produced by the algorithm remains bounded.

Definition 3.5 Let (β,A) be a numeration system with the OL Property, let I ⊂ C and
ε > 0 satisfy (7), and let Digit be the function from Lemma 3.3 satisfying (8). The selection
function for multiplication SelectM : (βI)ε/2 → A is defined by

SelectM(U) = Digit
(
Truncε/2(U)

)
for any U ∈ (βI)ε/2 . (10)

The previous definition is correct only if Truncε/2(U) belongs to the domain of the
function Digit. Indeed, since U ∈ (βI)ε/2 and |U − Truncε/2(U)| < ε/2, the value
Truncε/2(U) is in (βI)ε, as needed.

Lemma 3.6 Let U ∈ (βI)ε/2. Then U − SelectM(U) ∈ I .

Proof: Let us denote V = Truncε/2(U) ∈ (βI)ε and a = Digit(V ) ∈ A. By the
property of the function Digit, we have B(V, ε) ⊂ I + a. Since |V − U | < ε/2, the value
U ∈ B(V, ε) ⊂ I + a. Or, equivalently, U − a ∈ I . 2
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Lemma 3.7 Let (β,A) be a numeration system with the OL Property, let I ⊂ C, ε > 0
satisfy (7), and let SelectM be the function (10) from Definition 3.5. Then there exists
δ ∈ N such that, for any U ∈ (βI)ε/2, any x, y ∈ A, any X =

∑∞
j=δ+1 xjβ

−j and
Y =

∑∞
j=δ+1 yjβ

−j with xj , yj ∈ A, the number

Unew = β
(
U − SelectM(U)

)
+ (yX + xY ) belongs to (βI)ε/2.

Proof: Let us denote A = max{|a| : a ∈ A}, and find δ ∈ N such that

1

|β|δ
2A2

|β| − 1
< ε/2 . (11)

Then |yX +xY | < ε
2 , and, according to Lemma 3.6, the value β

(
U −SelectM(U)

)
∈ βI .

This concludes the proof. 2

Theorem 3.8 Suppose that a numeration system (β,A) has the OL Property, and let a
bounded set I ⊂ C and ε > 0 satisfy (7). If 0 ∈ I , then on-line multiplication in (β,A) is
performable by the Trivedi-Ercegovac algorithm.

Proof: Since W0 = 0 ∈ I , necessarily 0 ∈ (βI)ε/2. Lemma 3.7 implies that Wk ∈
(βI)ε/2 for any k ∈ N as well, and thus the sequence (Wk) is bounded. According
to Lemma 2.1, the boundedness of (Wk) implies that the output sequence 0.p1p2p3 · · ·
converges to the product P = XY . 2

3.2 Selection function for on-line division
Also for on-line division, we need to define the Select function. Due to Lemma 2.3, our
aim is again to preserve the boundedness of (Wk).

Suppose that the value Dmin > 0 is given, and only divisors satisfying (3) are on the
input of our algorithm. In this whole subsection, we assume that the numeration system
(β,A) has the OL Property, that I ⊂ C, ε > 0 satisfy (7), and the divisor D satisfies (3).

The SelectD function in the Trivedi-Ercegovac algorithm for division has two variables,
namely Wk and Dk+δ . Again, we do not want to compute these values precisely. In order
to determine a suitable level of approximation, find α > 0 such that

α
(
1 + |β|K + ε

)
< ε

2Dmin, where K = max{|x| : x ∈ I} . (12)

For specification of the function SelectD for division, we use the function Truncα. Now
we moreover require that Truncα fulfils the implication

|D| > Dmin ⇒ |Truncα(D)| ≥ Dmin (13)

for any admissible divisorD. This assumption is in fact not restrictive, as we use the Trunc
function in the form of truncation of the less significant digits in the (β,A)-representation
of D. Since any input D of our algorithm need to satisfy (3), the implication (13) is
automatically true.

Definition 3.9 Let U ∈ C and a divisor D ∈ C satisfy U ∈ D(βI)ε/2, and let α > 0 fulfil
(12). The selection function for division is defined by

SelectD(U,D) = Digit
(
V
∆

)
, where V = Truncα(U) and ∆ = Truncα(D) . (14)

Let us stress that the domain of the function Digit is (βI)ε. Thus the previous definition
is correct only if V/∆ belongs to this domain. The next lemma shows that our choice of
the parameter α in (12) guarantees this property.
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Lemma 3.10 For U ∈ C and a divisor D ∈ C satisfying (3), and for α > 0 fulfilling (12),
put V = Truncα(U) and ∆ = Truncα(D). Then

U ∈ D(βI)ε/2 =⇒ V ∈ ∆(βI)ε . (15)

Proof: For U ∈ D(βI)ε/2, there exist y ∈ I and ε1 ∈ C such that U = D(βy + ε1) and
|ε1| < ε/2. Let us denote α1, α2 ∈ C such that U = V +α1 and D = ∆ +α2. Obviously,
|α1|, |α2| < α. We get V + α1 = (∆ + α2)(βy + ε1). Thus V = ∆(βy + ε1) − α1 +
α2(βy + ε1). If we denote

ε2 =
−α1 + α2(βy + ε1)

∆
,

we can express V = ∆(βy + ε1 + ε2). Using (12), we obtain

|ε2| ≤
α+ α(|β|K + ε/2)

Dmin
<
ε

2
.

It means that V = ∆(βy + ε1 + ε2) belongs to ∆(βI)ε. 2

The following statement corresponds to the iterative step in the division algorithm.

Lemma 3.11 There exists δ ∈ N such that, for any U,D, F,G ∈ C with the properties
U ∈ D(βI)ε/2, |F | ≤ A = max{|a| : a ∈ A} and |G| ≤ A

(
1 + A

|β|−1

)
, the numbers

Unew = β(U − qD) + G
βδ

and Dnew = D + F
βδ+1 , where q = SelectD(U,D), satisfy

Unew ∈ Dnew(βI)ε/2 .

Proof: For V = Truncα(U) and ∆ = Truncα(D), denote α1 and α2 such that U =
V + α1 and D = ∆ + α2. Clearly, |α1|, |α2| < α. Let us rewrite

β(U − qD) = β
(
V + α1 − q(∆ + α2)

)
= β∆

(
V
∆ − q

)
+ βα1 − βqα2 .

Using Dnew = ∆ + α2 + Fβ−δ−1, we obtain

β(U − qD) = βDnew

(
V
∆ − q

)
− β

(
α2 + Fβ−δ−1

)(
V
∆ − q

)
+ βα1 − βqα2 .

Thus
Unew = βDnew

(
V
∆ − q

)
+ βC1Dnew + 1

βδ
C2Dnew ,

where the values C1, C2 ∈ C are found so that they satisfy C1Dnew = α1 − α2
V
∆ and

C2Dnew = G−F
(
V
∆ − q

)
. By Lemma 3.10, we know that

∣∣V
∆

∣∣ < |β|K + ε, and thus the
modulus of C1 can be, by virtue of (12), bounded by

|C1| ≤
α+ α(K|β|+ ε)

|Dnew|
≤ α(1 + |β|K + ε)

Dmin
< ε

2 < ε .

Thanks to V
∆ ∈ (βI)ε, the choice of the function Digit implies that q = Digit(V∆ ) satisfies

B(V∆ , ε) ⊂ I + q. As |C1| < ε, we have V
∆ + C1 ∈ B(V∆ , ε) ⊂ I + q . Or, equivalently,

V
∆ − q + C1 ∈ I . We can write

Unew ∈ Dnew(βI + C2

βδ
) .

To complete the proof, we need to find δ such that
∣∣∣C2

βδ

∣∣∣ < ε
2 . The number C2 can be

bounded as follows:

|C2| ≤
|G|+ |F |

∣∣∣V∆ − q∣∣∣
|Dnew|

≤ 1

Dmin

(
A
(

1 + A
|β|−1

)
+A(K + ε)

)
.
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Therefore, it is sufficient (and possible at the same time) to choose δ ∈ N such that

A

Dmin

(
1 + A

|β|−1 +K + ε
)
< ε

2 |β|δ . (16)

2

Theorem 3.12 Let I ⊂ C and ε > 0 ensure the OL Property of a numeration system (β,A)
and 0 ∈ I . Let strings 0.n1n2 · · · and 0.d1d2 · · · satisfying (3) represent numbers N and
D resp. Then computing N/D can be performed by the Trivedi-Ercegovac algorithm.

Proof: Let α > 0 be chosen to fulfill (12), and the delay equal to δ from Lemma 3.11.
For the Trivedi-Ercegovac division algorithm, we use the function SelectD from Definition
3.9. According to Lemma 2.3, for correctness of the algorithm one has to show that the
sequence (Wk) is bounded.

We prove by induction on the index k ∈ N that, for each k ≥ 0, the value Wk satisfies
Wk ∈ Dδ+k(βI)ε/2 .

As W0 = 0 ∈ I , obviously W0 ∈ (βI)ε/2Dδ . According to (4), the value Wk+1 is
determined from Wk by

Wk+1 = β(Wk − qkDk+δ) + (nk+1+δ −Qkdk+1+δ)β
−δ ,

and
Dk+1+δ = Dk+δ + dk+1+δ

βδ+1+k .

Now we apply Lemma 3.11 with U = Wk, D = Dk+δ , F = dδ+k+1

βk
and G = nk+1+δ −

Qkdk+1+δ , and obtain the implication

Wk ∈ Dδ+k(βI)ε/2 =⇒ Wk+1 ∈ Dδ+k+1(βI)ε/2 .

The OL Property guarantees that the set I is bounded, and the values Dk are bounded by
A
|β|−1 in modulus. Thus the sequence (Wk) is bounded too, as we wanted to prove. 2

4 OL Property
For any (real or complex) base β, there exists a suitable alphabetA such that (β,A) has the
OL Property. For instance, the set I fulfilling the OL Property can be the ball B(0, 1) = I
with the alphabet A containing a sufficient number of elements.

Nevertheless, note that the alphabetA may generally be any subset of complex numbers
containing zero. We have no general method to verify whether a given numeration system
(β,A) has the OL Property and, in particular, we are not able to check the OL Property for
the most interesting alphabet, namely the minimal alphabet A allowing parallel addition
and subtraction in a given base β.

We focus our attention on alphabets of contiguous integers containing zero. In the case
of complex bases we study only symmetric alphabets. This restriction is in fact quite in-
nocent, since such alphabets are preferable with respect to parallel addition and subtrac-
tion. For both real and complex bases, with alphabets of contiguous integers, we provide a
straightforward manner for finding the set I and checking the OL Property.

4.1 OL Property for real bases and integer alphabets
Redundancy of a numeration system is a necessary condition for any on-line algorithm. In
this section, we consider real bases β and alphabets A of contiguous integers containing
zero. For such a system, redundancy is characterized by the inequality #A > |β|. We
will show that redundancy of a real numeration system (with an alphabet of contiguous
integers) is also a sufficient condition for the Trivedi-Ercegovac algorithm.
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Lemma 4.1 Let β be a real number with |β| > 1 and let A = {m, . . . , 0, . . . ,M} ⊂ Z
with m ≤ 0 ≤M . If |β| < #A = M −m+ 1, then the numeration system (β,A) has the
OL Property.
In particular:

• for β > 1, one of the pairs (I, ε) satisfying (7) is I = [λ, ρ] and ε > 0 defined by

ε =
M −m+ 1− β

2(β + 1)
> 0, ρ =

M − 2ε

β − 1
, λ =

m+ 2ε

β − 1
; (17)

• for β < −1, one of the pairs (I, ε) satisfying (7) is I = [λ, ρ] and ε > 0 defined by

ε =
M −m+ 1 + β

2(1− β)
> 0, ρ =

1−m
1− β , λ =

−M − 1

1− β . (18)

Proof: Consider β > 1. Since ρ = λ+ 1 + 2ε, the overlap of intervals (I + a)∩ (I + (a+
1)) = a+[λ+1, ρ] is of length 2ε for any a ∈ Z. Equations (17) imply that βρ+2ε = ρ+M
and βλ − 2ε = λ + m, thus the (2ε)-fattening of βI equals (βI)2ε = ∪a∈A(I + a), and
(7) holds. In the case of β < −1, by use of equations (18) we also obtain ρ = λ+ 1 + 2ε.
Since βλ+ 2ε = ρ+M and βρ− 2ε = λ+m, the statement (7) holds here as well. 2

Remark 4.2 If β < −1, then the interval I = [λ, ρ] in Lemma 4.1 always contains 0. The
same is true if β > 1 and m < 0 < M . Thus, according to Theorems 3.8 and 3.12, the
on-line algorithms work properly.

If β > 1 and M = 0, i.e., the alphabet consists of non-positive integers, then only
non-positive numbers have a (β,A)-representation. Product or quotient of such numbers
is positive, and thus without any (β,A)-representation. Therefore, no (on-line) algorithm
for multiplication or division makes sense in this case.

If β > 1 and m = 0, i.e., the alphabet consists of non-negative integers, then no interval
I ⊂ R suitable for the OL Property contains 0. Nevertheless, even in this case the Trivedi-
Ercegovac algorithm can be used. The Select function just has to be slightly modified as
follows: Consider the interval I = [λ, ρ] from Lemma 4.1. In particular, the left boundary
of the interval is λ = 2ε

β−1 > 0. The SelectM function given by Definition 3.5 has as its
domain the interval (βI)ε/2 with its left boundary βλ− ε

2 . Put

˜SelectM(U) =

{
0 if U < βλ− ε

2 ,
SelectM(U) if U ≥ βλ− ε

2 .

Using this extended ˜SelectM function in the algorithm for multiplication (and analogously
also the extended S̃electD function for division) and starting with W0 = 0, we get the
digit p0 = 0 at the beginning on the output. Consequently, as long as pk = 0, it holds
that Wk ≥ βWk−1, due to (1). Thus the sequence (Wk) is increasing, and after several
iterations, Wk reaches the interval (βI)ε/2. According to Lemmas 3.7 and 3.11, the value
of Wk then stays in (βI)ε/2 in all further steps. Thus the sequence (Wk) is bounded, and
the algorithms work properly.

A direct consequence of Lemma 4.1 and Remark 4.2 is the following result.

Theorem 4.3 Let β be a real number with |β| > 1 and A = {m, . . . , 0, . . . ,M} ⊂ Z. Let
us assume that m ≤ 0 < M for β > 1, and m ≤ 0 ≤ M for β < −1. If |β| < #A =
M −m + 1, then multiplication and division in the numeration system (β,A) are on-line
performable by the Trivedi-Ercegovac algorithms.
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4.2 OL Property for complex bases and integer alphabets
The aim of this section is to prove that for any complex base β ∈ C, it is always possible
to find a sufficiently large symmetric alphabet A of contiguous integers, so that the system
(β,A) has the OL Property and also allows parallel addition and subtraction. Parallel
addition and subtraction are the reason for choosing such a specific form of an alphabet,
see [8] for more details.

The result we present in this section for complex bases is somehow weaker then the one
presented in the previous section for real bases.

At first, let us stress two facts about the OL Property, which follow directly from its
definition. Supposing that a bounded set I and ε > 0 ensure the OL Property for (β,A),
then:

• I and ε > 0 ensure the OL Property for (β,A), where z denotes the complex conju-
gate of the number z; and

• if −I = I , then I and ε > 0 ensure the OL Property for (−β,A).

At the end of this section and also in Section 7, we prove the OL Property for two specific
numeration systems with complex base and complex alphabet. However, in the case of a
complex base we manage to provide a general result only for systems with a symmetric
alphabet of contiguous integers:

Theorem 4.4 Let β ∈ C \ R, |β| > 1 and A = {−M, . . . ,−1, 0, 1, . . . ,M} ⊂ Z. If

ββ + |β + β| < #A = 2M + 1 , (19)

then the numeration system (β,A) has the OL Property.

Proof: First we assume that the real and imaginary parts of β fulfil <β ≤ 0 and =β > 0.
We define I ⊂ C to be a parallelogram with vertices A,B,−A,−B. Clearly, I is centrally
symmetric (i.e., −I = I). We choose the points A = A1 + iA2, B = B1 + iB2 ∈ C to
satisfy

0 < =A = =B , <A < <B and = (βB) = = (−βA) . (20)

The previous assumptions imply A2 = B2, 0 < A2 and B1 = A1 + 2x0 for some x0 > 0.
In this notation, A + B = 2(A + x0), and thus the equality = (βB) = = (−βA) gives
0 = =

(
β(A+B)

)
= =(2β(A+ x0)) = 2((A1 + x0)=β +A2<β). It implies

A1 + x0 = −<β=βA2 . (21)

Consequently, if we fix x0 > 0 and A2 > 0, then the points A,B are fully determined by
(20). The sets I and βI are depicted on Figure 1a.

Choose the length of the edge between A and B, i.e., the value 2x0 to be bigger than 1,
namely:

2x0 > 1 . (22)

This choice guarantees that the interiors of the neighboring copies of I overlap, i.e., (Io +
a)∩(Io+a+1) 6= ∅ for all a, a+1 ∈ A, see Figure 1b. Consequently, the set ∪a∈A(I+a)
is the parallelogram with vertices A−M,B +M,−A+M,−B −M , which is centrally
symmetric. If the coordinates of the parallelograms βI and

⋃
a∈A(I + a) satisfy the fol-

lowing inequalities:
=A = =B > =(βB) , (23)

<(βB) > <A−M , (24)

<(βA) > <(−B)−M , (25)
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y

x0

βI

I

BA

−B −A

βB

βA −βB

−βA

x0

(a)

y

x0

βI II − 1

x0

(b)

Fig. 1: Construction of the set I fulfilling the OL Property for a numeration system with
complex base and symmetric integer alphabet.

then the set βI is covered by interiors of copies of I , i.e.,

βI ⊂
⋃
a∈A

(Io + a) .

To complete the proof, we have to find x0 > 0 and A2 > 0 such that the four inequalities
(22), (23), (24) and (25) hold. Let us express the inequalities (22), (23) and (24) using x0

and A2. (The inequality (25) will be discussed later.)
As βB = 1

2β(A + B) + 1
2β(B − A), by (20) we have =(βB) = 1

2=
(
β(A + B)

)
+

1
2=
(
β(B −A)

)
= 0 + 1

2=
(
β(2x0)

)
= x0=β. Thus, the inequality (23) in fact means:

A2 > x0=β . (26)

As B = A+ 2x0, we have

<(βB) = 2x0<β +A1<β −A2=β = x0<β + (x0 +A1)<β −A2=β .

Using (21), we obtain

<(βB) = x0<β −
(<β)2

=β A2 −A2=β = x0<β −
A2

=β
((
<β
)2

+
(
=β
)2)

.

The inequality (24) may thus be reformulated (using (21) repeatedly) into

M >
A2

=β (ββ −<β)− x0(<β + 1) . (27)

We now work with β satisfying <β ≤ 0. For such β, the assumption (19) on cardinality
of the alphabet #A = 2M + 1 > ββ + |β + β| means:

M > 1
2

(
ββ − 2<β − 1

)
.

This strict inequality allows us to find x0 >
1
2 such that

M > x0

(
ββ − 2<β − 1

)
= x0

(
ββ −<β

)
− x0

(
<β + 1

)
.

Again, because of the previous strict inequality and the assumption =β > 0, one can find
A2 > 0 such that

A2

=β > x0 and M >
A2

=β
(
ββ −<β

)
− x0

(
<β + 1

)
.
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It means that there exist x0 and A2 such that (22), (26) and (27) are fulfilled, or, equiva-
lently, (22), (23) and (24) are fulfilled.

It remains to show that (25) is satisfied as well. We do so by proving that <(βA) ≥
<(βB) and <A ≥ <(−B), and thus validity of (24) implies validity of (25).

As B = A + 2x0, we have <(βA) = <(βB) − 2x0<β. Since x0 > 0 and <β ≤ 0,
obviously <(βA) ≥ <(βB).

From A+B = 2(A+ x0), we get by (21) that <(A+B) = 2(A1 + x0) > 0, and thus
<A ≥ <(−B).

Now we can summarize that the proof of the theorem is complete for the case <β ≤ 0
and=β > 0. Since the set I we used to demonstrate the OL Property is centrally symmetric
(i.e., −I = I) and the alphabet satisfies A = A, the OL Property is possessed also by the
numeration systems (−β,A), (β,A) and (−β,A). Therefore, the proof is complete for all
bases β, |β| > 1 with =β 6= 0. 2

Remark 4.5 In case <β = 0, the condition of Theorem 4.4 has the form #A > ββ. For a
complex numeration system, this is in fact the necessary condition of redundancy as defined
in [12]. Therefore, the bound given in Theorem 4.4 is optimal for the case <β = 0. An
example of such a numeration system is the Knuth system with base β = 2i, for details
see Section 7. If <β 6= 0, we do not know whether the bound ββ + |β + β| is optimal for
#A. Unlike for real bases, we have no general result for complex bases with alphabets of
contiguous integers A ⊂ Z which are not centrally symmetric.

For a complex base β a complex alphabet may be preferable. For instance, the alphabet
A = {0,±1,±i} is closed under multiplication and allows parallel addition with the base
β = −1 + i (the redundant Penney numeration system). Fig. 2 shows that this numeration
system has the (OL) Property.

0

i

1−1

−i

βI

II − 1

I + i

Fig. 2: Penney numeration system with base β = −1 + i and alphabet A = {0,±1,±i}
fulfills the OL Property, due to the “star-shaped” set I illustrated hereby.

5 Parameters in on-line algorithms
In this whole section, we assume that the numeration system (β,A) satisfies the OL Prop-
erty. In order to be able to use the on-line algorithms, we need to determine one parameter,
namely δ, for multiplication, and two parameters δ and Dmin for division. The inequali-
ties (11) and (16) provide formulae for δ, given the bounded set I ⊂ C and the parameter
ε > 0 from the OL Property, and also given the parameter Dmin. The main attention in this
section is devoted to the problem of how to determine Dmin. At the end of this section we
touch the question of the optimality of the parameters occurring in the on-line algorithms.
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5.1 Preprocessing of divisor and Dmin

By preprocessing of divisor, we mean a transformation of the divisor into the form required
in (3):

0.d1d2d3 · · · with dj ∈ A satisfying |Dk| =
∣∣ k∑
j=1

djβ
−j∣∣ ≥ Dmin for all k ∈ N, k ≥ 1 .

In particular, for k = 1, we need d1 6= 0. Therefore, the transformation consists at least
in shifting the fractional point to the most significant non-zero digit of the representation of
the divisor, i.e., we multiply the divisor by a suitable power of β, and, after obtaining the
result of the division, we must take this fact into account.

Let us denote

R =
{∣∣ ∞∑
j=1

djβ
−j∣∣ : d1 6= 0, dj ∈ A

}
. (28)

If infR > 0, then one can put Dmin = infR into the on-line algorithm for division, and
nothing else than shifting the fractional point is needed. In our further considerations about
the parameter Dmin, the following notion plays a key role.

Definition 5.1 Let (β,A) be a numeration system. If 0 =
∑∞
j=1 zjβ

−j , where zj ∈ A for
all j ≥ 1 and zk 6= 0 for at least one index k, then the sequence z1, z2, z3, . . . is called a
non-trivial (β,A)-representation of zero.

The relation between representations of zero andR is obvious:

Lemma 5.2 infR = 0 if and only if 0 has a non-trivial (β,A)-representation.

As already mentioned, in numeration systems without non-trivial representations of zero,
the determination of Dmin and the preprocessing of the divisor are simple. In particular, if
β is positive and A contains only non-negative or only non-positive digits, then 0 has only
the trivial representation and we can take Dmin = 1

β min{|a| : a ∈ A}. In numeration
systems having a non-trivial representation of zero, the determination of Dmin and the
divisor preprocessing are more laborious, and no general recipe applicable to all bases is
available. The following lemma helps to identify such numeration systems.

Lemma 5.3 Let β > 1 and {−1, 0, 1} ⊂ A = {m, . . . , 0, . . . ,M} ⊂ Z. Then 0 has a
non-trivial (β,A)-representation if and only if

β ≤ max{M + 1,−m+ 1} .

Proof: Let z =
∑∞
j=1 zjβ

−j with zj ∈ A and z1 6= 0.

• If z1 ≥ 1, then z ≥ 1
β +m

∑∞
j=2 β

−j = β−1+m
β(β−1) .

• If z1 ≤ −1, then z ≤ − 1
β +M

∑∞
j=2 β

−j = −β+1+M
β(β−1) .

Obviously, if β > max{M + 1,−m+ 1}, then infR = min{β−1−M
β(β−1) ,

β−1+m
β(β−1) } > 0, and

zero has only the trivial (β,A)-representation.
For showing the opposite implication, we use a result of Rényi [17]. For any base β > 1,

the number 1 can be written in the form 1 =
∑∞
j=1 tjβ

−j , where tj ∈ {z ∈ Z : 0 ≤ z <
β}. In particular, it means that

0 =
1

β
−
∞∑
j=1

tjβ
−j−1 = − 1

β
+

∞∑
j=1

tjβ
−j−1 .

If one of the sets {z ∈ Z : 0 ≤ z < β} or {−z ∈ Z : 0 ≤ z < β} is a subset of A, then 0
has a non-trivial (β,A)- representation. 2
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Example 5.4 If β = 4 and A = {−2,−1, 0, 1, 2}, then zero has only the trivial repre-
sentation, and for Dmin one can take 1

12 = minR = 0.12 2 2 · · · , where d stands for the
signed digit (−d).

Remark 5.5 If β > 1 and the alphabet has the form A = {0, 1, . . . ,M}, then zero has
only a trivial representation. But this numeration system has another disadvantage: the
operation of subtraction — which is needed for evaluation of Wk in both multiplication
and division algorithms — is not doable in parallel.

Example 5.6 In the numeration system with β = 2 and A = {−1, 0, 1}, zero has two
non-trivial representations, namely 0 = 0.11 1 1 1 · · · = 0.1 1 1 1 1 · · · . Therefore, the pre-
processing is a bit more sophisticated than just shifting the fractional point. It is necessary
to find a representation of the divisor such that dndn+1 6= 11 and dndn+1 6= 11, where n
is the minimal index such that dn 6= 0. This can be achieved by replacing the leading pair
of neighboring digits 11 with 01 or by replacing 11 with 01, and this procedure is repeated
for as long as necessary. Finally, the fractional point is shifted to the first non-zero digit.
For example:

0.11 1 1 011001 7→ 0.01 1 1 011001 7→ 0.001 1 011001 7→ 0.0001011001 ,

and lastly, by shifting the fractional point, we get the preprocessed divisor 0.1011001,
which can enter as an input of the on-line division algorithm.

The parameterDmin of the Trivedi-Ercegovac algorithm for division can be set toDmin =
1
4 for this numeration system, since any divisor after the described preprocessing satisfies

|D| = |0.d1d2d3 · · · | ≥ 0.101 1 1 · · · = 1
2 − 1

8 − 1
16 − · · · = 1

4 = Dmin .

Example 5.7 In the numeration system with base β = 3 and redundant alphabet A =
{−1, 0, 1, 2}, the number zero has a non-trivial representation 0 = 0.1222 · · · . In this
base, the situation is the same (i.e., a non-trivial (β,A)-representation of zero exists) with
any redundant alphabet A containing at least one positive and one negative digit. For the
numeration system (3, {−1, 0, 1, 2}), we can set Dmin = 1

9 , and preprocess by replacing
any leading pair of neighboring digits 12 with 01, analogously as explained for base β = 2
in Example 5.6.

We illustrate on two less trivial examples how to find Dmin and how to perform prepro-
cessing. In these two examples, the alphabet A consists of (possibly complex) units and
zero, and, moreover, A is closed under multiplication. In order to shorten our list of rules
for preprocessing, let us adopt the following conventions:

1. instead of the phrase “If w1w2 · · ·wk is a prefix of d, replace this prefix with
u1u2 · · ·uk”, we write “w1w2 · · ·wk −→ u1u2 · · ·uk”;

2. the rule “w1w2 · · ·wk −→ u1u2 · · ·uk” is equivalent to the rule “w′1w
′
2 · · ·w′k −→

u′1u
′
2 · · ·u′k” if there exists a ∈ A, a 6= 0 such that wj = aw′j and uj = au′j for all

j = 1, 2, . . . , k.

In our list of rules for preprocessing, we mention only one rule from each class of equiva-
lence. Clearly, each rule on the list preserves the value of the divisors, i.e.,

∑k
j=1 wjβ

−j =∑k
j=1 ujβ

−j , and sets u1 = 0. In this convention, the list of preprocessing rules for base
β = 2 and alphabet A = {−1, 0, 1} consists of one item only, namely the rule 11 −→ 01.

Example 5.8 Let β = 1+
√

5
2 and A = {−1, 0, 1}. Since β2 − β − 1 = 0, zero has the

representation 0 = 0.1 1 1. We use three preprocessing rules: 1) 101 −→ 010, 2)
110 −→ 001, 3) 111 −→ 000.

Let D = 0.d1d2d3 · · · . If d1 6= 0 and none of the rules 1) – 3) can be applied to the
string d = d1d2d3 · · · , then |D| ≥ Dmin = 1

β5 . This can be shown by the following
analysis, wherein we can assume d1 = 1, without loss of generality:
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• Let d2 = 1. Then D ≥ 1
β + 1

β2 −
∑∞
j=3 β

−j = 1− 1
β = 1

β2 ≥ Dmin .

• Let d2 = 0. Since the rule 1) cannot be applied, d3 ≥ 0, and D ≥ 1
β −

∑∞
j=4 β

−j =
1
β − 1

β2 = 1
β3 ≥ Dmin .

• Let d2 = 1. As the rules 2), 3) cannot be applied, d3 = 1. Thus D ≥ 1
β − 1

β2 + 1
β3 −∑∞

j=4 β
−j = 1

β5 = Dmin .

Example 5.9 Let β = −1 + ω , where ω = exp 2iπ
3 is the third root of unity, i.e., ω3 = 1.

We consider the alphabet A of size #A = 7, namely A = {0,±1,±ω,±ω2}. Section 7.3
is devoted to this numeration system in detail; here we just mention that the elements of the
ring Z[ω] are called Eisenstein integers.

Firstly, we show that

Dmax = max{|0.d1d2d3 · · · | : dj ∈ A} = 1
2

√
7 . (29)

Since |xβ + y| ≤ |β − 1| =
√

7 for any x, y ∈ A, we have

|0.d1d2d3 · · · | ≤
√

7

∞∑
j=1

|β|−2j = 1
2

√
7.

As β2 = a|β2|, where a = −ω ∈ A, the upper bound 1
2

√
7 is attained.

Let us list 9 equivalence classes of the rules that we apply in the (divisor) preprocessing:

• Using β + (1− ω) = 0, we get the rules
A) 1 1 −→ 0ω, B) 1ω −→ 0 1.

• From β2 + β + (ω − ω2) = 0, we obtain
C) 1 0ω −→ 0ω 1, D) 1 0ω2 −→ 0 1ω,
E) 1ω2 ω −→ 0ω ω2, F) 1ω2 ω2 −→ 0ω ω.

• Using β2 − ωβ + (ω − 1) = 0, we get the rules
G) 1 0 1 −→ 0ω ω, H) 1ω2 1 −→ 0 1ω,
I) 1ω2 ω −→ 0 1 1.

If D = 0.d1d2d3 · · · with d1 6= 0, and none of the rules A) – I) can be applied to the string
d = d1d2d3 · · · , then

|D| ≥ Dmin =

√
3(6−

√
7)

18
. (30)

Without loss of generality, we can assume d1 = 1. By exploring all possible triplets 1d2d3

to which no rules can be applied, we see that |0.d1d2d3| ≥
√

3
3 . Therefore, |D| ≥

√
3

3 −
1
|β|3Dmax, which, together with (29), proves (30).

Let us conclude this section by three remarks concerning the optimality of the parameters
occurring in the on-line algorithms.

Remark 5.10 Note that the preprocessing methods and results given in examples above
may not be optimal, in the sense that the values Dmin may not be the maximal possible.
Some of them could be further increased, by performing more laborious preprocessing,
especially by deploying larger sets of rewriting rules. In general, the bigger the value
Dmin is the smaller the delay δ can be used in the on-line division algorithm.
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Remark 5.11 To show the correctness of the Trivedi-Ercegovac algorithm we did not need
the inequality |Dk| ≥ Dmin to be valid for all k ≥ 1. In the division algorithm, the select
function is applied only to the value Dk for k = δ + 1, δ + 2, . . . , see (5). For such
indices k we also required |Truncα(Dk)| ≥ Dmin, see (13). The function Truncα uses
only L fractional digits of a string representing its argument. Such L depends on α and
A = max{|a| : a ∈ A}, and must be chosen to satisfy

∑
k≥L+1A|β|−k < α . Clearly,

|Truncα(Dk)| = |DL|, for all k ≥ L.
Let us summarize: The correctness of the Trivedi-Ercegovac division algorithm requires

|DL| ≥ Dmin and |Dk| ≥ Dmin for all k ≥ δ + 1.

Remark 5.12 Definition 3.1 of the OL Property covers in fact two purposes:

1. boundedness of the sequences (Wk), so that on-line multiplication and division al-
gorithms converge;

2. sufficiency of using only truncated representations of Wk and Dk+δ , which is neces-
sary for a cheap evaluation of the Select functions (the question of complexity of the
algorithms is discussed in the next section).

Looking into the proofs of correctness of the algorithms one can see that these two purposes
are reflected in the OL Property definition by:

1. covering of the ε-fattening of the set (βI) by the union of sets
⋃
a∈A(I + a);

2. each point x of (βI)ε sits inside a set I + a and deep behind its border, or more
precisely the distance between x and the border of I + a is at least ε.

To avoid very technical formulation of (7) we decided to use the same parameter ε to take
into account both phenomena.

For a finer calculation of parameters δ and L, it may be useful to parameterize these two
aspects separately. It means to use one parameter µ > 0 for a fattening of the set (βI) and
another parameter ν > 0 for watching the distance to the border of I + a. This approach
was used for the Eisenstein numeration system, see Section 7.3.

6 Time complexity of the Trivedi-Ercegovac algorithms
The time complexity of an algorithm is usually defined as the number of elementary oper-
ations needed to get a result for any input of length n. In our multiplication and division
algorithms, strings representing input numbers can be infinite. Therefore, by time com-
plexity T (n) we understand the number of elementary operations needed to get n digits of
the result on the output of the algorithms. The time complexity of both algorithms depends
on the number of steps needed to compute the auxiliary value Wk and the k-th output digit
by the relevant Select function. If both tasks can be performed in constant time, then the
time complexity of computing the first n most significant digits of the result is O(n).

6.1 Evaluation of Wk

According to Formulas (1) and (4), the values of Wk can be calculated in constant time
if addition and subtraction and also multiplication by a digit from A can be performed in
parallel in (β,A). It is possible only in a redundant numeration system (β,A).

Already the OL Property forces the system to be redundant. For real bases, redundancy
implies #A > |β|, and Lemma 4.1 states that #A > |β| is also a sufficient condition for
the OL Property in case of an alphabet of contiguous integers. Nevertheless, #A > |β|
does not guarantee that addition and subtraction in (β,A) are doable in constant time in
parallel. Usually, the alphabet has to be extended further on. For example, both sys-
tems ( 1+

√
5

2 , {0, 1}) and ( 1+
√

5
2 , {1, 0, 1}) have the OL Property, but parallel addition and

subtraction is possible only in the second one. The question of sufficient redundancy for
parallel addition is treated in general in [7].
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6.2 Evaluation of the Select function
To evaluate the Select functions in constant time, their output values pk and qk must depend
only on a bounded number of digits in the strings representing the variables Wk and Dk.
If it is the case, then evaluation of the Select function is performed by using finite look-up
tables, as on a finite alphabet there exist only finitely many strings of bounded length. Let
us concentrate on this case and consider strings representing Wk and Dk.

From the right side — i.e., behind the fractional point — the number of fractional digits
of Wk and Dk is limited to L ∈ N by truncation (see Definition 3.4) of the less significant
digits in the (β,A)-representation of Wk and Dk:

• for multiplication: Truncε/2(Wk) =
∑L
j=−n wjβ

−j , so that |∑∞j=L+1 wjβ
−j | <

ε/2 with ε from the OL Property;

• for division: Truncα(Wk) =
∑L
j=n wjβ

−j and Truncα(Dk) =
∑L
j=1 djβ

−j , so
that |∑∞j=L+1 wjβ

−j | < α and |∑∞j=L+1 djβ
−j | < α with α defined in (12).

The parameter L is found simply by solving the inequalities (separately for multiplication
or for division): let A = max{|a| : a ∈ A}

A
|β|L+1 + A

|β|L+2 + · · · = A
|β|L(|β|−1)

< ε
2 or A

|β|L(|β|−1)
< α . (31)

To limit also the number of digits before the fractional point of Wk we use the fact that
Wk belongs to a bounded area, say J . For L ∈ N and a bounded set J , let us consider the
following set of strings over A:

SL,J =
{
x−nx−n+1 · · ·x−1x0x1x2 · · ·xL : x−n 6= 0 , xj ∈ A and

L∑
j=−n

xjβ
−j ∈ J

}
.

(32)

Lemma 6.1 Let (β,A) be a numeration system, J a bounded set and L ∈ N. If zero has
only the trivial (β,A)-representation, then the set SL,J from (32) is finite.

Proof: Assume that SL,J is infinite. Since A is finite, there exist a strictly increasing
sequence of positive integers kn and a sequence x(n) of numbers x(n) =

∑L
j=−kn x

(n)
j β−j

such that x(n)
−kn 6= 0 and x(n) ∈ J . It implies that |x(n)β−kn−1| ∈ R, as defined in

(28). Since J is bounded, say by a constant b (in modulus), we have |x(n)β−kn−1| ≤
b|β−kn−1| → 0, and thus the infimum ofR is zero — a contradiction with Lemma 5.2. 2

If zero has only the trivial (β,A)-representation, we create a look-up table for multi-
plication by considering J = (βI)ε/2. For division, we consider all possible truncated
divisors D = 0.d1 · · · dL, with d1 6= 0 and create a look-up table for the bounded set
JD = D(βI)ε/2.

Even if the set SL,J is not finite, the situation may be not hopeless. If the numeration
system allows preprocessing of divisor, one can use its rewriting rules (without shifting
the fractional point) and modify the representation of Wk after each iterative step of the
algorithm. So we prevent to have a representation ofWk with excessive index of the leading
coefficient and thus only finitely many strings represent all possible values occurring in the
truncated sequence (Wk).

Lemma 6.2 Let us assume that for a numeration system (β,A) there exists a finite list of
rules and Dmin > 0 such that any D = 0.d1d2d3 · · · with d1 6= 0 on which no rule of
the list can be applied has modulus |D| ≥ Dmin. Then the set S ′L,J = {s ∈ SL,J :
no rules can be applied to the string s} is finite, for a given integer L ∈ N and a given
bounded set J .
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Proof: It is analogous to the proof of Lemma 6.1, with only infR replaced by Dmin. 2

We can summarize the findings from this section into the following statement:

Theorem 6.3 If a numeration system (β,A) with the OL Property allows parallel addi-
tion, parallel subtraction, and preprocessing of divisors into the form (3), then the time
complexity of the Trivedi-Ercegovac algorithms for on-line multiplication and division is
O(n).

7 Examples
7.1 Base β = 3+

√
5

2
and alphabet A = {−1, 0, 1}

For illustrating how the on-line algorithms for multiplication and division work, we con-
sider a well-studied numeration system, with base β = 3+

√
5

2 and alphabetA = {−1, 0, 1}.
Let us list the most important properties of this system:

• The base β = 3+
√

5
2 is a quadratic Pisot unit with minimal polynomial f(t) =

t2 − 3t+ 1. In fact, β is the square of the golden mean 1+
√

5
2 .

• The numeration system with base β = 3+
√

5
2 and alphabet A = {−1, 0, 1} allows

parallel addition [7].

• By Lemma 5.3, zero has only a trivial (β,A)-representation, and

Dmin = 0. 1 1 1 1 · · · = 1

β
−
∞∑
j=2

1

βj
=

1

β2
. (33)

It means that the sign of the first non-zero digit in a representation decides about the
sign of the represented number. Moreover, preprocessing of divisor consists just in
shifting the fractional point.

• If D = 0.d1d2d3 · · · is a (β,A)-representation of the number D, then

− 1

β − 1
≤ D ≤ 1

β − 1
= Dmax. (34)

• By Lemma 4.1, the numeration system has the OL Property with

ε =
1

2β(β + 1)
> 0 and I = [−ρ, ρ], where ρ = 1

2 + ε =
2

β + 1
. (35)

• The Digit function from Lemma 3.3 is Digit : [−βρ − ε, βρ + ε] → {−1, 0, 1}
defined by

Digit(V ) =

 1 if V > 1
2 ,

−1 if V < − 1
2 ,

0 otherwise.
(36)

7.1.1 On-line multiplication in base β = 3+
√
5

2
and alphabet A =

{−1, 0, 1}
For on-line multiplication, the delay δ according to (11) has to satisfy 2

βδ(β−1)
< 1

4β(β+1) ,
and the smallest such delay is δ = 4.

It remains to find an easy way how to evaluate the function SelectM(W ) = Digit(Truncε/2(W )).
By Definition 3.5, its domain is (βI)ε/2 = [−βρ− 1

2ε, βρ+ 1
2ε].
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Claim 1: If Z = z−mz−m+1 · · · z−1z0.z1z2 · · · ∈ (βI)ε/2 with z−m 6= 0, then −m ≤ 1.
Without loss of generality, consider z−m = 1. For contradiction, suppose that −m ≥ 2.
Then

Z ≥ β−m −
+∞∑

j=−m+1

β−j = β−m
(

1− 1
β−1

)
≥ β2

(
1− 1

β−1

)
= β > βρ+ 1

2ε,

i.e., Z /∈ (βI)ε/2 — a contradiction.

Claim 2: Let Z = z−1z0.z1z2 · · · and V = z−1z0.z1z2z3z4. Then |Z − V | < 1
2ε, with ε

defined in (35).
Indeed, |Z − V | ≤∑j≥5 β

−j = 1
β4

1
β−1 <

1
2ε .

Claim 3: Let V = z−1z0.z1z2z3z4. Then V > 1
2 if and only if

z−1z0z1z2z3 � 0 1 1 1 0 or
(
z−1z0z1z2 = 0 0 1 1 and z3 6= 1

)
where � denotes the lexicographic order on words over the alphabet A = {−1, 0, 1}.

This can be proved by inspection of all possibilities, and using the symmetry of the
alphabet and (33) as follows:

• If z−1 = 1, then V > β −∑∞j=0 β
−j = 1 > 1

2 .

• If z−1 = 0, z0 = 1, z1 ≥ 0, then V ≥ 1−∑∞j=2 β
−j = 2

β >
1
2 .

• If z−1 = 0, z0 = 1, z1 = 1, z2 ≥ 0, then V ≥ 1− 1
β −

∑∞
j=3 β

−j = 1
β + 1

β2 >
1
2 .

• If z−1 = 0, z0 = 1, z1 = 1, z2 = 1, z3 = 1, then V ≥ 1− 1
β − 1

β2 + 1
β3 − 1

β4 >
1
2 .

• If z−1 = 0, z0 = 1, z1 = 1, z2 = 1, z3 ≤ 0, then V ≤ 1− 1
β − 1

β2 + 1
β4 <

1
2 .

• If z−1 = 0 and z0 = 0, we have to perform a more detailed calculation:

– as 0.1101 > 1
2 , the value 0.11z3z4 >

1
2 for any z3 ≥ 0 and z4 ∈ A;

– as 0.1111 < 1
2 , the value 0.111z4 <

1
2 for any z4 ∈ A;

– as 0.1011 < 1
2 , the value 0.10z3z4 <

1
2 for any z3, z4 ∈ A;

– as 0.0111 < 1
2 , the value 0.0z2z3z4 <

1
2 for any z2, z3, z4 ∈ A.

• If z−1 = 0 and z0 = 1, then V ≤ −1 +
∑∞
j=1 β

−j = −1 + 1
β−1 <

1
2 .

Lemma 6.1 guarantees that the evaluation of the function SelectM can be done via a finite
table of values. Previous Claims 1–3 imply that such table has 35 elements (i.e., 3 possible
digits from A on 5 positions z−1, . . . , z3). But Claim 3 and the lexicographic order enable
us to provide also a more effective way of evaluation of the function SelectM.

Let Z = z−mz−m+1 · · · z−1z0.z1z2 · · · be a (β,A)-representation of a number Z in
base β = 3+

√
5

2 and alphabet A = {−1, 0, 1}. We define

SelectM(Z) =

 1 if z−1z0z1z2z3 � 0 1 1 1 0 or
(
z−1z0z1z2 = 0 0 1 1 and z3 6= 1

)
,

−1 if z−1z0z1z2z3 ≺ 0 1 1 1 0 or
(
z−1z0z1z2 = 0 0 1 1 and z3 6= 1

)
,

0 otherwise.
(37)

In base β = 3+
√

5
2 with alphabet A = {−1, 0, 1}, on-line multiplication is possible by

the Trivedi-Ercegovac algorithm with delay δ = 4, and with linear time complexity. The
number of digits we need to evaluate for W within the algorithm is L = 3 behind the
fractional point, and another two digits before the fractional point.
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7.1.2 On-line division in base β = 3+
√
5

2
and alphabetA = {−1, 0, 1}

To determine the algorithm for on-line division in base β = 3+
√

5
2 , we have to specify two

parameters: δ and Dmin. We put Dmin = 1
β2 (cf. (33)). To find the delay δ, we may

again follow the general formula (16), and obtain δ = 7. By a more elaborated calculation,
specific for this numeration system, the delay can be further optimized, namely to δ = 6, in
combination with the number L = 9 of fractional digits to evaluate in the representations
of W and D.

In the sequel, we show that the delay can be set to δ = 6. Since we work with a
symmetric alphabet, we assume in the whole section that the denominator is positive, i.e.,
its first digit d1 = 1.

We start with two auxiliary claims, using (βI)ε/2 = [−βρ− 1
2ε, βρ+ 1

2ε].

Claim 1: Let Z = z−mz−m+1 · · · z−1z0.z1z2 · · · ∈ D(βI)ε/2 with z−m 6= 0 and Dmin =
1
β2 < D < 1

β−1 = Dmax. Then m ≤ 0.
Without loss of generality, consider z−m = 1. For contradiction, suppose that m ≥ 1.
Then

Z ≥ βm−
m∑

j=−∞
βj = βm

(
1− 1

β−1

)
≥ β

(
1− 1

β−1

)
= 1 > 1

β−1

(
βρ+ 1

2ε
)

= Dmax

(
βρ+ 1

2ε
)
,

i.e., Z /∈ D(βI)ε/2 — a contradiction.

Claim 2: Let U = u0.u1u2 · · · and D = 0.d1d2 · · · . Denote ∆ = 0.d1d2 · · · d9 and
V = u0.u1u2 · · ·u9. Then ∣∣∣UD − V

∆

∣∣∣ < ε
2 .

Indeed, find α1 and α2 such that U = V +α1 and D = ∆ +α2. The moduli of α1 and α2

are bounded by
∑
j>9 β

−j = 1
β9(β−1) . Using (33) and (34), we get∣∣∣UD − V

∆

∣∣∣ = 1
D∆

∣∣α1∆− α2V
∣∣ ≤ 1

D2
min

1
β9(β−1) (1 + β)Dmax = 1+β

β5(β−1)2 <
1
2ε .

By combining the previous Claims 1–2 and the form of the Digit function given by (36),
we define the SelectD function for on-line division.

Let U = u−nu−n+1 · · ·u−1u0.u1u2 · · · andD = 0.d1d2 · · · , where d1 = 1; and denote

∆ = 0.d1d2 · · · d9 and V = u0.u1u2 · · ·u9 (38)

SelectD(U,D) =

 1 if 2V −∆ > 0 ,
−1 if 2V + ∆ < 0 ,
0 otherwise.

(39)

Since V and ∆ use only a limited number of digits, the values 2V − ∆ and 2V + ∆ are
computable in constant time. In our numeration system, 0 has only trivial representation,
therefore the most significant digit of 2V − ∆ and 2V + ∆ decides about positivity or
negativity. Consequently, SelectD can be evaluated in constant time.

Claim 3: If U
D ∈ (βI)ε/2, then U

D − SelectD(U,D) ∈ [−ρ+ 1
2ε, ρ− 1

2ε].
As U

D ∈ [−βρ− 1
2ε, βρ+ 1

2ε], and by virtue of Claim 2, we have in particular

V
∆ − 1

2ε <
U
D ≤ βρ+ 1

2ε .

In the sequel, we exploit the fact that we determined ρ and ε by (35). Our discussion is
split into three cases, according to the value q = SelectD(U,D) ∈ {−1, 0, 1}.
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q = 1 : By (38), we have V
∆ > 1

2 . Thus

−ρ+ 1
2ε = − 1

2ε− 1
2 <

V
∆ − 1

2ε− 1 < U
D − 1 ≤ βρ+ 1

2ε− 1 < ρ− 1
2ε .

q = 0 : Then − 1
2 ≤ V

∆ ≤ 1
2 . Consequently,

U
D − 0 < V

∆ + 1
2ε ≤ 1

2 + 1
2ε = ρ− 1

2ε .

The lower bound for U
D − 0 and the whole case q = 1 follow by symmetry.

Claim 4: Let J = (βI)ε/2 = [−βρ − 1
2ε, βρ + 1

2ε]. Then W0 = 0 ∈ J , and for any
k ∈ N the implication Wk ∈ Dk+δJ ⇒ Wk+1 ∈ Dk+δ+1J holds. Consequently, (Wk) is
bounded if the delay is at least δ = 6.

According to (4), we have

Wk+1 = β
(
Wk − qkDk+δ

)
+ (nk+1+δ −Qkdk+1+δ)β

−δ ,

where qk = SelectD(Wk, Dk+δ). We give upper bounds on the two previous summands
separately. Firstly, ∣∣nk+1+δ −Qkdk+1+δ

∣∣β−δ ≤ (1 +Dmax)β−δ . (40)

Secondly, we apply Claim 3, and, due to Dk+1+δ = Dk+δ + dk+1+δ

βk+1+δ ≥ Dk+δ − 1
β1+δ ,

we have

β
∣∣Wk − qkDk+δ

∣∣ ≤ β∣∣Dk+δ

∣∣(ρ− 1
2ε
)
≤
∣∣Dk+1+δ

∣∣β(ρ− ε
2

)
+ (ρ− 1

2ε)β
−δ. (41)

Suppose that the inequality

(1 +Dmax)β−δ + (ρ− 1
2ε)β

−δ < Dmin( 1
2βε+ 1

2ε) (42)

is satisfied; then, by adding inequalities (40) and (41), we obtain∣∣Wk+1

∣∣ <
∣∣Dk+1+δ

∣∣(βρ− 1
2βε

)
+Dmin( 1

2βε+ 1
2ε) ≤

≤
∣∣Dk+1+δ

∣∣(βρ− 1
2βε

)
+
∣∣Dk+1+δ

∣∣( 1
2βε+ 1

2ε) =

=
∣∣Dk+1+δ

∣∣(βρ+ 1
2ε
)
.

Due to the symmetry of the interval J with respect to 0, we have
∣∣Dk+δ+1

∣∣J = Dk+δ+1J ,
and thus Wk+1 ∈

∣∣Dk+δ+1

∣∣J = Dk+1+δJ . A simple calculation shows that (42) is satis-
fied if the delay is at least δ = 6.

We can summarize: In base β = 3+
√

5
2 with alphabet A = {−1, 0, 1}, on-line division

is possible by the Trivedi-Ercegovac algorithm with delay δ = 6, and with linear time
complexity. The number of fractional digits to evaluate for W and D within the algorithm
is L = 9, and another digit before the fractional point for W .

7.2 Knuth numeration system
D. E. Knuth showed in 1955 [11] that in the numeration system with base β = 2i and alpha-
bet {0, 1, 2, 3}, any complex number Z has a representation of the form Z =

∑
j≥n zjβ

−j ,
where n ∈ Z and zj ∈ {0, 1, 2, 3}. In this numeration system, almost all complex num-
bers have a unique representation. We consider a redundant system with the same base
and a symmetric alphabet A = {−2,−1, 0, 1, 2}. Let us list the relevant properties of this
system:

• In (β,A), parallel addition is possible, see [4].
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• The system (β,A) has the OL Property, as the oblong I with vertices ± 5
9 ± i 11

9 and
ε = 1

18 satisfies (7).

• The function Digit is defined by

Digit(V ) =


2 if <(V ) > 3

2 ,
1 if <(V ) ∈ ( 1

2 ,
3
2 ] ,

0 if <(V ) ∈ [− 1
2 ,

1
2 ] ,

−1 if <(V ) ∈ [− 3
2 ,− 1

2 ) ,
−2 if <(V ) < − 3

2 .

• A number Z =
∑∞
j=1 zjβ

−j with zj ∈ A can be decomposed into real and imagi-
nary part as follows:

Z =

∞∑
j=1

zjβ
−j =

∞∑
j=1

z2j(−4)−j + 2i

∞∑
j=1

z2j−1(−4)−j .

It means that each of the real and imaginary parts can be represented in the real
numeration system with base −4 and alphabet {−2,−1, 0, 1, 2}; in this numeration
system 0 has only the trivial representation.

• Dmin = 1
6 . It follows from the fact that, if z1 6= 0, then

|Z| =
∣∣∣ ∞∑
j=1

zjβ
−j
∣∣∣ ≥ |=(Z)| = 2

∣∣∣ ∞∑
j=1

z2j−1(−4)−j
∣∣∣ ≥ 2 1

12 = 2 · 0.1 2 2 2 2 2 · · · .

Using the parameters ε, Dmin and the oblong I mentioned above, the general formulas
(11) and (31) for on-line multiplication give us the delay δ = 9 and the number L = 7 of
fractional digits of W to evaluate.

For on-line division, with K = max{|z| : z ∈ I} =
√

146
9 , using the general formulas

(16), (12) and (31) results in the delay δ = 11 and the number L = 11 of fractional digits
of W and D to evaluate.

In summary, the Knuth numeration system enables on-line multiplication and division
with linear time complexity. The preprocessing of divisor is just a shift of the fractional
point, due to the non-existence of any non-trivial representation of zero in (β,A). The
size of the set (βI)ε/2 and of the alphabet A imply that we need to evaluate another three
digits of W and W/D before the fractional point (for on-line multiplication and division,
respectively). Any point W =

∑∞
j=n wjβ

−j with wj ∈ A and wn 6= 0 for n ≤ −3 would
lie outside the set (βI)ε/2.

7.3 Eisenstein numeration system
The Eisenstein numeration system works with a complex base, namely β = −1+ω, where
ω = exp 2iπ

3 is the third root of unity, i.e., ω3 = 1.
It is known that this base β with the (so-called canonical) alphabet C = {0, 1, 2} forms

a numeration system, in which any complex number has a (β, C)-representation. The same
property is true also for some other alphabets of cardinality #C = 3, for example C =
{0, 1,−ω}. It follows from Theorem 3.2 in [14].

Nevertheless, we choose to work with a larger, redundant (complex) alphabet A of size
#A = 7:

A = {0,±1,±ω,±ω2} with A = max{|a| : a ∈ A} = 1 .

The numeration system (β,A) using this alphabet has favorable properties:

• the alphabetA is not just (centrally) symmetric, but also closed under multiplication;



On-line algorithms for multiplication and division in real and complex numeration systems 23

• the numeration system (β,A) enables parallel addition (and subtraction), and #A =
7 is the minimal size of alphabet allowing parallel addition for the Eisenstein base (a
result to be published);

• there are non-trivial representations of zero in (β,A), nevertheless, the preprocessing
of divisor for on-line division is possible (as discussed in Example 5.9), and for a
divisor D ensures that

√
3(6−

√
7)

18
= Dmin ≤ |D| ≤ Dmax =

√
7

2
.

Due to these properties, the Eisenstein numeration system with alphabetA = {0,±1,±ω,±ω2}
allows on-line multiplication and division, as shown below.

7.3.1 OL Property of Eisenstein numeration system

For each digit a ∈ A, we denote the set

Ha = {z ∈ C : |z − a| ≤ |z − b| for all b ∈ A, b 6= a} .

The sets Ha for a 6= 0 are unbounded, while the set H0 is the regular hexagon with
center in point zero and with vertices ± 1

2 ± i
√

3
6 and ±i

√
3

3 .

It can be easily verified that r =
√

3
6 is the maximum possible value r > 0 such that

(βH0)r ⊂
⋃
a∈A

(H0 + a) .

We work with the following Digit function:

Digit(V ) = a ⇒ V ∈ Ha .

Using the parameter r =
√

3
6 , we can set ε > 0 as ε = r

|β|+1 = 3−
√

3
12 . Figure 3 shows that

the OL Property is fulfilled with the set I = (H0)ε. Nevertheless, we modify our approach,
in order to obtain optimal values for the delay δ and the number L of fractional digits of
arguments to evaluate in the function Select.

0 1

−ω2ω

−1

ω2 −ωI − 1

I

I + ω

βI

Fig. 3: Eisenstein numeration system with base β = −1 + ω and alphabet A =
{0,±1,±ω,±ω2}, where ω is the third root of unity, fulfills the OL Property, due to the
“rounded hexagon” set I illustrated hereby, see Example 7.3.
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7.3.2 On-line multiplication in Eisenstein numeration system
We consider two parameters µ, ν > 0 such that

√
3µ+ ν = |β|µ+ ν ≤ r =

√
3

6
. (43)

This ensures that the set J = (H0)µ has the property

(βJ)ν = (β(Hµ
0 ))ν = βH

|β|µ+ν
0 ⊂ βHr

0 ⊂
⋃
a∈A

(H0 + a) , and also

((βJ)ν)ϕ ⊂
⋃
a∈A

(H0 + a)ϕ for any ϕ > 0 .

The selection function for multiplication SelectM : (βH0)r → A is defined by

SelectM(W ) = Digit(Truncµ/2(W )) ,

implying that W − SelectM(W ) ∈ (H0)µ for any W ∈ (βH0)r.
This is due to the fact that |W − Truncµ/2(W )| < µ

2 , and W ∈ (βH0)r implies V =

Truncµ/2(W ) ∈ (βH0)r+µ/2 ⊂ ⋃
a∈A(H0 + a)µ/2. Consequently, V − Digit(V ) ∈

(H0)µ/2, and we finally obtain W − SelectM(W ) = (W − V ) + (V − SelectM(W )) =
(W − V ) + (V −Digit(V )) ∈ ((H0)µ/2)µ/2 = (H0)µ.

In the algorithm of on-line multiplication, we perform the following iterative steps:

• Put a = SelectM(W ), and thus W − a ∈ (H0)µ; so a is the output digit for the
currently processed position;

• Set Wnew = β(W − SelectM(W )) + (xY + yX), where xY + yX is contribution
of the input operands for the next processed position; wherein

W ∈ (βH0)r implies Wnew ∈ (βH0)r ,

provided that |xY +yX| ≤ ν, and |β|µ+ν ≤ r (as demanded in (43)). This is readily seen,
asW−a ∈ (H0)µ, so β(W−a) ∈ β(H0)µ = (βH0)|β|µ, and we require xY +yX ∈ (0)ν ;
altogether

Wnew = β(W−SelectM(W ))+(xY+yX) ∈ (βH0)|β|µ+(0)ν = (βH0)|β|µ+ν ⊂ (βH0)r .
(44)

From the formulas and requirements above, we deduce the conditions determining the de-
sired parameters δ and L:

• From |xY + yX| ≤ ν, we obtain a limitation for the delay δ

ν ≥ 2ADmax

|β|δ =

√
7

√
3
δ
.

• The number L of fractional digits to be evaluated from the expression W is limited
by

µ ≥ 2Dmax

|β|L =

√
7

√
3
L
.

At the same time, we have to maintain the inequality
√

3µ+ν = |β|µ+ν ≤ r =
√

3
6 — so

the bigger part of r we dedicate to δ via ν, the lesser part remains for L via µ. Depending
on this distribution, we find two reasonable combinations of the parameters L and δ in the
algorithm of on-line multiplication in Eisenstein numeration system:

• (δmin, L) = (5, 7), where in the delay δ is minimized; and

• (δ, Lmin) = (6, 6), where the parameter L is minimized.
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7.3.3 On-line division in Eisenstein numeration system

When specifying the algorithm for on-line division, we use again the general formula (16).
The Trunc function provides partial evaluations V = Truncα(W ) and ∆ = Truncα(D),
where the parameter α > 0 is set so that

∣∣W
D − V

∆

∣∣ ≤ µ
2 . We set another auxiliary parameter

K = max{|z| : z ∈ H0} =

√
3

3
. (45)

During the course of the iterations of the algorithm, it shows that

W ∈ D(βH0)ν implies Wnew ∈ Dnew(βH0)ν , (46)

provided that µ, ν > 0 fulfill (43). The inequalities translating relations between parame-
ters µ, ν and the desired results δ and L are somewhat more laborious here than in the case
of on-line multiplication:

ν ≥ A(Dmax + 1 +K + µ)

Dmin|β|δ
and µ ≥ 2Dmax(|β|K + r + 1)

Dmin|β|L
. (47)

Depending on distribution of the value r between µ and ν, according to (43), we obtain
two reasonable combinations of the parameters L and δ in the on-line division algorithm
for the Eisenstein numeration system:

• (δmin, L) = (7, 10), where the delay δ is minimized; and

• (δ, Lmin) = (10, 9), where the parameter L is minimized.

8 Conclusion
It is known that many continuous functions of real variables can be calculated by an on-line
algorithm in a redundant numeration system. For a precise definition of redundancy of a
numeration system, formalization of on-line computation and results, see [12, Chapter 2].
In particular, multiplication and division are on-line computable. However, this general
result does not provide any effective algorithm for calculation. The exceptionality of the
algorithms due to Trivedi and Ercegovac consists in their linear time complexity, i.e., the
number of steps needed to compute the first n most significant digits of the result is O(n).

These algorithms were originally introduced for numeration systems (β,A) where β is
a natural integer. We have shown that they can be extended to real or complex systems as
well, provided that (β,A) has the OL Property. Investigating the OL Property and defining
the preprocessing rules for a given system (β,A) remains an open problem, particularly if
we want to use a digit set A minimal in size. On several examples we have demonstrated
that the existence of convenient preprocessing rules, together with parallel addition and sub-
traction, implies linear time complexity for both algorithms. Recently in [6], we described
bases for which symmetric alphabets of consecutive integers allow preprocessing. Never-
theless, identifying the numeration systems for which the algorithms of Trivedi-Ercegovac
work in linear time, need a deeper study.
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[12] P. Kůrka, Dynamics of Number Systems, Springer 2016.

[13] R. McIlhenny and M. D. Ercegovac, On-line Algorithms for Complex Number Arith-
metic, in Proceedings of 32nd Asilomar Conference on Signals, Systems, and Com-
puters (1998).

[14] A. M. Nielsen and P. Kornerup, Redundant Radix Representation of Rings, IEEE
Transactions on Computers 48 (1999) 1153–1165.

[15] A. M. Nielsen and J.-M. Muller, On-Line Operators for Complex Arithmetics,
MPCS’96 (Second International Conference on Massively Parallel Computing Sys-
tems), Ischia, Italy (1996).

[16] W. Penney, A “binary” system for complex numbers, J. ACM 12 (1965) 247–248.
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