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End vertices of graph searches can exhibit strong structural properties and are crucial for many graph algorithms. The

problem of deciding whether a given vertex of a graph is an end-vertex of a particular search was first introduced

by Corneil, Köhler, and Lanlignel in 2010. There they showed that this problem is in fact NP-complete for LBFS

on weakly chordal graphs. A similar result for BFS was obtained by Charbit, Habib and Mamcarz in 2014. Here,

we prove that the end-vertex problem is NP-complete for MNS on weakly chordal graphs and for MCS on general

graphs. Moreover, building on previous results, we show that this problem is linear for various searches on split and

unit interval graphs.

Keywords: end-vertex, graph search, maximum cardinality search, maximal neighborhood search, graph classes

1 Introduction

Graph search is one of the oldest and most fundamental algorithmic concepts in both graph theory and

computer science. In essence, it is the systematic exploration of the vertices in a graph, beginning at a

chosen vertex and visiting every other vertex of the graph such that a vertex is visited only if it is adjacent

to a previously visited vertex; this procedure is known as Generic Search.

Such a general definition of a graph search leaves much freedom for a selection rule determining which

vertex is chosen next. By restricting this choice with specific rules, various variants of graph searches

can be defined. Arguably the earliest examples are the Breadth First Search (BFS) and the Depth First

Search (DFS), which were referred to in the context of maze traversals in the 19th century [15]. Among

the more sophisticated searches are, for example, Lexicographic Breadth First Search (LBFS) [28] and

Lexicographic Depth First Search (LDFS) [10]. In this paper, we will study Maximum Cardinality Search

(MCS) [29] and Maximal Neighborhood Search (MNS) [10] in more detail.

Although being rather simple algorithms, the power of graph searches should not be underestimated.

Using such simple procedures, a variety of important graph properties can be tested, many optimization

problems can be simplified, and they are sub-routines in many more algorithms. Among such problems are

topological ordering, finding connected components, testing bipartiteness, computing the shortest paths
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ts

Fig. 1: Vertex t cannot be the end-vertex of any BFS although it is in the last layer if the BFS starts in s.

with respect to the number of edges, and the Edmonds-Karp algorithm for computing the maximum flow

in a network [14].

Usually, the outcome of a graph search is a search order, i.e., a sequence of the vertices in order of visits.

There are many results using such orders. For instance, by reversing an LBFS order of a chordal graph,

one finds a perfect elimination order of this graph [28]. A perfect elimination order in G = (V,E) is an

ordering of the vertices such that for every vertex v ∈ V the neighbors of v that occur after v in the order

form a clique. This not only yields a linear recognition algorithm for chordal graphs, but also a greedy

coloring algorithm for finding a minimum coloring for this graph class [17]. As most graph searching

paradigms can be implemented in linear time, these algorithms are typically as efficient as possible.

Interestingly, the end-vertices of graph searches, i.e. the last vertices visited in the search, are crucial for

several algorithms. Their properties are the key for many multi-sweep algorithms on graphs. For instance,

one can use six LBFS runs to construct the interval model of an interval graph. Here, the end-vertices

correspond to the end vertices of the interval model and the next search starts in an end-vertex of the

previous one. This also yields a linear time recognition algorithm for this graph class [12].

Additionally, end-vertices may have strong structural properties. For example, as a direct consequence

of the results mentioned above, the end-vertex of an LBFS on a chordal graph is always simplicial. More-

over, if a cocomparability graph is hamiltonian, then the end-vertex of an LDFS is the start vertex of a

hamiltonian path in this graph [8].

LBFS also provides a linear time algorithm for finding dominating pairs in connected asteroidal triple-

free graphs [11]. Here, a dominating pair is a pair of vertices such that every path connecting them is

a dominating set in the graph. The first vertex x is simply the end-vertex of an arbitrary LBFS and the

second vertex y is the end-vertex of an LBFS starting in x. Furthermore, the end-vertex of an LBFS in a

cocomparability graph is always a source/sink in some transitive orientation of its complement [19].

The end-vertices of BFS are also helpful for fast diameter computation. Crescenzi et al. [13] have

shown that the diameter of large real world graphs can usually be found with only a few applications of

BFS. Intuitively, the potential end-vertices can be seen as peripheral or extremal vertices of the graph

whereas all other vertices appear more centrally and are of greater importance to the connectivity. For

example, no search can end on a cut vertex [6]. However, even for BFS finding such vertices is not as

trivial as it might seem. Figure 1 shows a graph in which the vertex t appears in the last layer of a BFS

starting in s. Nevertheless, it cannot be an end-vertex.

In this context, the decision problem arises, whether a vertex can be the end-vertex of a graph search,

i.e., the last vertex visited by this search.

END-VERTEX PROBLEM

Instance: A connected graph G = (V,E) and a vertex t ∈ V .

Task: Decide whether there is a graph search such that t is the end-vertex of this search on G.

Obviously, this problem is in NP for any of the searches considered here, since a full search order
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provides a certificate which can be checked in polynomial time.

Although the problem of checking whether a given tree is a BFS or DFS tree can be decided effi-

ciently (see [20, 21, 26]), surprisingly this does not hold for the end-vertex problem. Corneil, Köhler,

and Lanlignel [9] have shown that it is NP-hard to decide whether a vertex can be the end-vertex of an

LBFS. Charbit, Habib, and Mamcarz [6] have shown that the end-vertex problems for BFS and DFS are

also NP-complete. Furthermore, they extended these results to several graph classes. In this paper, we

address the end-vertex problem for MCS and MNS; for some other related results see Table 1.

Our contribution In the following, we give an overview of graph searching algorithms, especially

Maximum Cardinality Search and Maximal Neighborhood Search. We presentNP-completeness results

for the end-vertex problem of MNS on weakly chordal graphs and of MCS on general graphs. For some

chordal graph classes we give linear time algorithms for several different graph searches. An overview

of our results can be found in Table 1. We conclude the paper with some open problems related to our

results.

BFS LBFS DFS LDFS MCS MNS

All Graphs NPC NPC NPC NPC NPC NPC

Weakly Chordal NPC [6] NPC [9] NPC NPC [6] ? NPC

Chordal ? ? NPC ? ? P [3] → L

Interval ? L [9] L ? ? P → L

Unit Interval ? L L L L P → L

Split L [6] P [6] → L NPC [6] P [6] → L L P → L

Tab. 1: Complexity of the end-vertex problem. Bolded results are from the presented paper. The big L stands for

linear time algorithm. The term P → L describes the improvement from a polynomial algorithm to a linear time

algorithm. Non-bolded results without references are direct consequences of other results, e.g., NPC of DFS on split

graphs implies NPC on weakly chordal, chordal and general graphs. On the other hand, the linear time algorithm for

interval graphs is also a linear time algorithm for the subclass of unit interval graphs.

2 Preliminaries

All graphs considered in this article are finite, undirected, simple and connected. Given a graph G =
(V,E), we will denote by n and m the number of vertices and edges in G, respectively. Given a graph

G = (V,E) and a vertex v ∈ V , we will denote by N(v) the neighborhood of the vertex v, i.e., the set

N(v) = {u ∈ V | uv ∈ E}, where an edge between u and v in G is denoted by uv ∈ E. The closed

neighborhood of v is the set N [v] = N(v) ∪ {v}. A clique in a graph G is a set of pairwise adjacent

vertices and an independent set in G is a set of pairwise nonadjacent vertices. If the neighborhood of a

vertex v in G is a clique, then v is said to be a simplicial vertex. The complement of the graph G is a graph

G having the same set of vertices as G where xy for x, y ∈ V is an edge of G if and only if it is not an

edge in G.

Given a subset S of vertices in G, we denote by G[S] the subgraph of G induced by S, where

V (G[S]) = S and E(G[S]) = {xy ∈ E(G) | x ∈ S, y ∈ S}. By G − S we denote the graph in-

duced by V (G) \ S. By Pn and Cn we denote the path and the cycle on n vertices, respectively. A claw

is a graph which consists of one vertex adjacent to exactly three vertices of degree one. A net consists of
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a C3, whose vertices are adjacent to three different vertices of degree one. For an arbitrary graph H , a

graph G is called H-free if it does not contain H as an induced subgraph.

Given nonadjacent vertices a and b in graph G, a subset C of vertices V \ {a, b} is said to be an (a, b)-
separator in G if a and b are in distinct connected components of G − C. If no proper subset of C is an

(a, b)-separator in G, then C is a minimal (a, b)-separator in G. Finally, C is a minimal separator in G if

it is a minimal (a, b)-separator for some pair of nonadjacent vertices a and b.

A graph G that contains no induced cycle of length larger than 3 is called chordal. If neither G nor its

complement contain an induced cycle of length 5 or more, then G is weakly chordal. A graph G is said to

be an interval graph if its vertices can be represented as intervals on the real line, with two vertices being

adjacent if and only if their corresponding intervals intersect. An interval graph G is a unit interval graph

(or proper interval graph) if all its intervals are of equal length. A split graph G is a graph whose vertex

set can be divided into sets C and I such that C is a clique in G and I is an independent set in G. It is

obvious that every unit interval graph is also an interval graph. Furthermore, it is easy to see that split

graphs and interval graphs are chordal, whereas every chordal graph is also weakly chordal.

An ordering of vertices in G is a bijection σ : V (G) → {1, 2, . . . , n}. For an arbitrary ordering σ of

vertices in G, we will denote by σ(v) the position of vertex v ∈ V (G). Given two vertices u and v in G

we say that u is to the left (resp. to the right) of v if σ(u) < σ(v) (resp. σ(u) > σ(v)) and we will denote

this by u ≺σ v (resp. u ≻σ v). A vertex v is an end-vertex of an ordering σ of G if σ(v) = n.

3 Graph Searches
In 1976 Rose, Tarjan and Lueker defined a linear time algorithm (Lex-P) which computes a perfect elimi-

nation ordering, if any exists, thus giving a recognition algorithm for chordal graphs [28]. This algorithm,

since named Lexicographic Breadth First Search, or LBFS, exhibits many interesting structural proper-

ties and has been used as an ingredient in many other recognition and optimization algorithms. In the

following we will present three graph searches which were derived from LBFS in different ways.

Maximum Cardinality Search (MCS) was introduced in 1984 by Tarjan and Yannakakis [29] as a simple

alternative to LBFS for recognizing chordal graphs. They noticed that instead of remembering the order

in which previous neighbors of a vertex had appeared, it sufficed to just store the number of previously

visited neighbors for each vertex. This observation resulted in an algorithm which had a linear running

time and which was very easy to implement.

Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V

Output: A vertex ordering σ

begin

σ(1)← s;

for i← 2 to n do

pick an unnumbered vertex v with largest amount of numbered neighbors;

σ(i)← v;

Algorithm 1: Maximum Cardinality Search

In [10], Corneil and Krueger defined Lexicographic Depth First Search as a lexicographic analogue to

DFS. Since then, it has been used for many applications, most notably to solve the minimum path cover

problem on cocomparability graphs [8].
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Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V

Output: A vertex ordering σ

begin

label(s)← {0};
for each vertex v ∈ V − s do assign to v the empty label;

for i← 1 to n do

pick an unnumbered vertex v with lexicographically largest label;

σ(i)← v;

foreach unnumbered vertex w ∈ N(v) do prepend i to label(w);

Algorithm 2: LDFS

Maximal Neighborhood Search (MNS) was introduced by Corneil and Krueger [10] in 2008 as a gen-

eralization of LBFS, LDFS and MCS. Instead of using strings (like LBFS) or integers (like MCS) the

algorithm uses sets of integers as labels and the maximal labels are those sets which are inclusion maxi-

mal. Unlike the labels of LBFS and MCS the labels of MNS are not totally ordered and there can be many

different maximal labels. Corneil and Krueger showed that every search ordering of LBFS and MCS is

also an MNS ordering. This result was generalized in 2009 by Berry et al. [4] who showed that MNS or-

derings even contain all orderings of a generalization of the known graph searches called Maximal Label

Search.

Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V

Output: A vertex ordering σ

begin

label(s)← {n+ 1};
for each vertex v ∈ V − s do assign to v the empty label;

for i← 1 to n do

pick an unnumbered vertex v with maximal label under set inclusion;

σ(i)← v;

foreach unnumbered vertex w adjacent to v do add i to label(w);

Algorithm 3: Maximal Neighborhood Search

4 NP-Completeness for Maximal Neighborhood Search

The complexity of the end-vertex problem of MNS was studied by Berry et al. [3] in 2010 resulting in the

following characterization.

Lemma 1. [3] Let G = (V,E) be a chordal graph and let t ∈ V . Then t can be an end-vertex of MNS if

and only if t is simplicial and the minimal separators included in N(t) are totally ordered by inclusion.

Since this property can be checked efficiently, they conclude that the end-vertex problem of MNS on

chordal graphs is solvable in polynomial time. In Section 6.1 we provide an approach which solves this

problem in linear time (see Corollary 15).
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Generic Search

BFS DFSMNS

MCSLBFS LDFS

Fig. 2: This figure represents a summary of the relationships between graph searches. The arrows represent proper

inclusions. Thus, for example the arrow between BFS and LBFS implies that every LBFS is also a BFS. Searches on

the same level are not comparable.

Charbit et al. [6] conjectured that the problem can be solved efficiently on general graphs. However, in

this section we will present an NP-completeness proof for the end-vertex-problem of MNS on weakly

chordal graphs.

Theorem 2. The end-vertex-problem of MNS is NP-complete for weakly chordal graphs.

To prove this we use a reduction from 3-SAT. Let I be an instance of 3-SAT. We construct the corre-

sponding graph G(I) as follows (see Figure 3 for an example). Let X = {x1, . . . , xk, x1, . . . , xk} be the

set of vertices representing the literals of I. The edge-set E(X) forms the complement of the matching

in which xi is matched to xi for every i ∈ {1, . . . , k}. Let C = {c1, . . . , cl} be the set of clause vertices

representing the clauses of I. The set C is independent in G(I) and every ci is adjacent to every vertex

of X , apart from those representing the literals of the clause associated with ci for every i ∈ {1, . . . , l}.
Additionally, we add the vertices s, b and t. The vertex b is adjacent to all literal vertices. The vertices s

and t are adjacent to all literal and all clause vertices. Finally, we add the edge bt.

The following two lemmas provide some properties that an MNS ordering must fulfill if t is its end-

vertex. Let I be an arbitrary instance of 3-SAT and G = G(I) with n = |V (G)|.

Lemma 3. Let σ be an MNS ordering of vertices in G, ending with t. Then:

1. The vertex b is on the left of any clause vertex in ordering σ;

2. The vertex s is on the left of b in ordering σ.

Proof: We prove both claims separately. Assume that there is a clause vertex ci that is visited before

the vertex b, i.e., ci ≺σ b. By the construction we know that N(b) ⊂ N(t) and C ⊆ N(t) while

N(b) ∩ C = ∅. If vertex ci is visited in σ before the vertex b, then the label of vertex t will contain the

label ci, while for b this is not the case. This implies that at any step of the search process in G, the label

set of b will be a proper subset of the label set of t, and the algorithm will take vertex t before b.

Assume now that the vertex b is on the left of s in the ordering σ. Since N(s) ⊂ N(t) and b is in the

neighborhood of t and s is not, the label set of s will be a proper subset of the label set of t. Thus, the

search algorithm will visit t before s.
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s

x1

x1

x2

x2

x3

x3

x4

x4

x1 ∨ x2 ∨ x3 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

t

b

Fig. 3: The NP-completeness reduction for the end-vertex problem of MNS on weakly chordal graphs. The depicted

graph is G(I) for I = (x1∨x2∨x3)∧ (x1∨x3 ∨x4)∧ (x1 ∨x3∨x4). In both boxes only non-edges are displayed

by dashed lines. The connection of a vertex with a box means that the vertex is adjacent to all vertices in the box.

Lemma 4. Let σ be an MNS ordering of vertices in G, ending in t. Then the first k + 1 vertices in σ are

s, as well as an arbitrary assignment of I (not necessarily satisfying).

Proof: It follows from Lemma 3 that the first vertex in σ is s or one of the literal vertices. Assume that

we are at some step of an MNS search and until now we have only chosen at most one literal vertex per

variable, possibly including the vertex s. Further assume that there is at least one variable whose two

literal vertices have not been chosen so far. These vertices are adjacent to all the vertices which have been

chosen before. Lemma 3 implies that a clause vertex cannot be next in the MNS ordering. For the same

reason, if s has not been visited so far, we cannot take b next. If s has already been chosen, then the

labels of literal vertices of the non-chosen variables are proper supersets of the label of b; again we cannot

choose the vertex b. The same holds for literal vertices of variables, for which the other literal vertex has

already been visited. Thus, we know that we have to take s or a literal vertex of an unvisited variable.

Notice that each of these vertices is a possible choice in an MNS, since they all have maximum label. This

proves the statement.

So far we have proven some necessary conditions that have to be satisfied in order for t to be an MNS

end-vertex in G. In what follows, we will prove that t can be the end-vertex of MNS in G whenever the

corresponding 3-SAT instance I has a satisfying assignment.

Lemma 5. If the 3-SAT instance I has a satisfying assignment A, then t is an end-vertex of MNS on G.

Proof: Let I be an instance of 3-SAT and A a satisfying assignment of I. We now construct the MNS

ordering which ends in t.

From Lemma 4 it follows that we can start an MNS search on G in the vertex s and then take all the

literal vertices that belong to A. Since each clause vertex is not adjacent to its corresponding literals, it
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follows that for each clause vertex there is at least one label missing among the labels produced by the

assignment vertices. The same holds for the unvisited literal vertices, since their negated literal label is

missing. Furthermore, since b is adjacent to all literal vertices, labels of unvisited literal vertices as well

as of clause vertices do not contain the label set of vertex b. Therefore, we can take b as the next vertex.

Since all remaining literal vertices and clause vertices are adjacent to s, while t is not, these remaining

vertices can be visited before t.

We now show that t cannot be the end-vertex of an MNS if there is no satisfying assignment of I.

Lemma 6. If the 3-SAT instance I has no satisfying assignment, then t cannot be the end-vertex of MNS

on G.

Proof: Let I be an instance of 3-SAT which does not have a satisfying assignment. Suppose that there

exists an MNS ordering σ of G which ends in t. It follows from Lemma 4 that MNS has to take the

vertex s and an arbitrary assignment of I at the beginning. Since the assignment that was chosen is not

satisfying, there is at least one clause vertex that has been labeled by all vertices chosen so far. Hence, the

labels of these clause vertices properly contain the labels of all remaining literal vertices, as well as the

labels of b and t. As a result, MNS has to take one of these clause vertices next. Lemma 3 implies that

then t cannot be an end-vertex, since one clause vertex was chosen before b.

To complete the proof of Theorem 2 we have to show, that G(I) is weakly chordal for any choice of I.

Lemma 7. The graph G(I) is weakly chordal for any instance I of 3-SAT.

Proof: By contradiction assume that there exists an induced cycle of length ≥ 5 in G(I) or its comple-

ment. We start with G(I). Vertex t cannot be part of such a cycle, since there is only one vertex which

is not adjacent to t. Thus, s also cannot be part of such a cycle, since it is adjacent to all vertices but t

and b. Note, if the cycle contains four or more vertices that are not clause vertices there must be a chord

in the cycle. Therefore, the cycle contains at least two clause vertices ci and cj . The neighbors of ci and

cj in the cycle are literal vertices. If the neighbors are four different vertices, then there exists at least

four edges between them. Therefore, there must be a chord. If both share one neighbor then there is also

a chord between these shared neighbor and one of the other two. The clause vertices cannot share both

neighbors, since the cycle has more than four vertices. Thus, there is no induced cycle with more than

four vertices in G(I) .

Consider now G(I). Since t is only adjacent to s, it is not part of a cycle. The same holds for s, since

it is only adjacent to t and b. As the clause vertices build a clique, there are at most two of them in a cycle

which must be consecutive. Between literal vertices of different variables and between b and a literal

vertex must lie at least one clause vertex in the cycle. This leads to a contradiction, since we need at least

two non-consecutive clause vertices.

Theorem 2 follows from the Lemmas 5, 6 and 7.

5 NP-Completeness for Maximum Cardinality Search

To the best of our knowledge, the end-vertex problem for Maximum Cardinality Search has not been

studied in the literature. It is easy to see that for trees the end-vertices correspond exactly to the leaves.

However, in this section, we will prove that the end-vertex problem isNP-complete on general graphs,

by giving a reduction from 3-SAT.
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K
s′ s

x1

x1

x2

x2

x3

x3

. . .

. . .

xk−1

xk−1

xk

xk

c1 c2 c3 cl−1 cl

. . .

t

Fig. 4: This represents a general construction of G(I) for an arbitrary instance I. The double edges denote a

construction linking the various literals and are explained in Figure 5

xi xj xi xj

Fig. 5: Each double edge in the construction shown in Figure 4 is to be replaced by the construction on the right-

hand side. Furthermore, each node, in particular the auxiliary vertices in the middle, is assigned to three exclusive

neighbors in the clique K.

Theorem 8. The MCS end-vertex problem is NP-complete.

For each instance I of 3-SAT we construct a corresponding graph G(I) as follows (see Figures 4, 5

and 6 for an example): Each literal is represented by an edge, and each clause by a triangle. The triangles

representing the clauses together form a clique C of size 3l. We also define start vertices s and s′, where

s is adjacent to all vertices of x1 and x1 and s′ is just adjacent to s. Two consecutive literals xj−1 and

xj are connected using two auxiliary vertices in the way described in Figure 5. For each literal one of its

two vertices is adjacent to all three vertices of each clause which contains the negation of that literal, as

depicted in Figure 6.

Additionally, the graph contains a clique K with 3(4k + 8(k − 1)) + 4 vertices, i.e., three vertices for

each literal and auxiliary vertex, as well as 4 connector vertices. Every vertex among the literal vertices

and the auxiliary vertices is adjacent to exactly 3 vertices in K such that every vertex in K apart from the

4 connector vertices are adjacent to exactly one vertex outside of K . Two of the connector vertices are

then completely connected to all vertices of xk and the other two to all vertices of xk.

Finally, we add a vertex t, for which we wish to decide whether it is an end-vertex, and this is adjacent

to all clause vertices.
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xi ∨ xj ∨ xm

xi

xj

xm

. . . . . .

Fig. 6: Each clause block consists of three nodes and each of these nodes is connected to one specific node of the

corresponding literals.

Lemma 9. If I has a satisfying assignment A, then there is a maximum cardinality search on G(I) that

ends in t.

Proof: Let A = (b1, b2, . . . , bl) be a satisfying assignment of I. We can construct a corresponding MCS

order σ ending in t as follows: As σ(1) we use the root s′ and σ(2) = s. If b1 = 1 we choose the vertices

of x1 next; if b1 = 0 we choose the vertices of x1. In the next step we use the construction described in

Figure 5 to choose either x2 or x2, depending on the value of b2. We proceed in this way, until we have

visited every literal given by A, that is until we reach xk or xk. This is possible, because we have chosen

a satisfying assignment and the label of every clause vertex is at most 2, while there is always an auxiliary

vertex or a literal vertex with label that is at least 2.

At the point where we have visited both vertices in the k-th literal, one pair of connector vertices of

the clique K will have label 2. As we have chosen a fulfilling assignment in the manner described above,

those connector vertices have maximal label at this point.

Hence, it is possible to visit the whole clique K next. Note that after every vertex in K has been chosen,

each vertex that has not been visited and that is neither a clause vertex nor t has a label larger or equal to

3, as each has three neighbors in the clique. On the other hand, every clause vertex can only have label

at most 3, unless t is visited, as it has only three neighbors in G − (C ∪ {t}). Thus, we can visit every

vertex apart from the clause vertices and t first, then choose all the clause vertices in any order possible

and finally visit t last.

Lemma 10. If I does not admit a satisfying assignment, then t cannot be an MCS end-vertex of G(I).

Proof: Suppose that I does not admit a satisfying assignment and there is an MCS ending in t. First

observe that any maximum cardinality search that ends in t must begin in s or s′. If we start in an

arbitrary vertex that is neither s nor s′, then at any point of the search there will always be a vertex with

label larger or equal to 2 until s′ is the only vertex left. Without loss of generality, it begins in s′, as

otherwise we can choose s′ as the second vertex. It is enough to show that it is not possible to reach K

before visiting vertex t. First, note that K can only be entered through the connector vertices, which in

turn are only adjacent to xk or xk, as at any point of the MCS there is a vertex with label ≥ 2, while a

vertex in K has label ≤ 1 until the connector vertices are chosen.
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Suppose that at any point in the search a clause vertex is chosen for the first time before we have reached

K . Then either all of the vertices of that clause are visited consecutively, or the remaining vertices of that

clause will be labeled with 3 before we reach K (they must have had label 2 before the clause was entered

and the choice of one clause vertex increased the label to 3). In this case, therefore, t cannot be chosen

last in the search, as at least three clause vertices, and as a consequence also t, must be chosen before we

can enter K .

It remains to be shown, that a clause vertex has to be visited before entering K . We have already

argued that one of the literals of xk must be visited before we can enter K , as we can only enter through

the connector vertices. If we disregard the clause vertices and K , then the vertex set corresponding to a

given variable xi with i < k forms a separator between s and the vertices corresponding to the variable

xk. Therefore, any search must traverse at least one vertex of each variable. Furthermore, as soon as the

first vertex belonging to a literal is chosen, the other vertex in that literal has the largest label and must be

chosen next. Hence, at least one literal for every variable must be visited, before the search reaches xk

(note that it is possible to visit both literals of a variable). As a result, we need to traverse at least a whole

assignment A of the literals before entering K . However, as I does not admit a satisfying assignment,

this implies that by the time we have visited one literal of xk, at least one of the clause vertices must have

label 3, as all its literals have been assigned in the negative, and we must visit this vertex before entering

the clique K .

Therefore, it is impossible to reach K before we have chosen a clause vertex and t cannot be an end-

vertex of an MCS.

The following corollary concludes the proof of Theorem 8.

Corollary 11. Let I be an instance of 3-SAT. Then I has a satisfying assignment if and only if t is a

possible MCS end-vertex of G(I).

6 Linear Time Algorithms for some Chordal Graph Classes

While the end-vertex problem of MCS isNP-complete on general graphs, we will now present linear time

algorithms for the end-vertex problem on split graphs and unit interval graphs. With the used approaches

we were also able to improve some polynomial results for the other searches to linear time algorithms.

We begin with the following lemma which we will use repeatedly throughout.

Lemma 12. Given a graph G = (V,E) and a vertex t ∈ V . There is a linear time algorithm which

decides whether t is simplicial.

Proof: At first, we mark each neighbor of t with a special bit. Now for every neighbor v of t we count, how

many neighbors of v are also neighbors of t. Because of the special bits this can be done in O(|N(v)|).
If for every neighbor of t this number is equal to the degree of t, t is simplicial. Otherwise it is not.

The overall running time is linear in the size of G, since we visit each edge only a constant number of

times.

6.1 Split Graphs

As split graphs are chordal, we know that Lemma 1 yields a necessary condition for being an MCS end-

vertex. In Figure 7 we present an example which shows that this condition is not sufficient. However, in
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v

Fig. 7: Vertex v is an MNS end-vertex, since it fulfills the conditions of Lemma 1. However, by enumerating all

possible searches one can see that v is not an MCS end-vertex.

the following, we show that a slight strengthening of this condition is enough for a complete characteri-

zation.

Theorem 13. Let G = (V,E) be a split graph. Then t ∈ V is the last vertex of some MCS-ordering σ of

G if and only if

1. The vertex t is simplicial;

2. The neighborhoods of the vertices with a smaller degree than t are totally ordered by inclusion.

Proof: As G is a split graph, we can assume that its vertex set can be partitioned into a clique C and an

independent set I such that C is a maximal clique in G, i.e., the neighborhood of each vertex in I is a

proper subset of the neighborhood of each vertex in C.

Let t be an end-vertex of MCS on G. As G is chordal, we see that t must be simplicial. Now, assume

the second condition does not hold. Then there are two vertices v and w with smaller degrees than t

whose neighborhoods are incomparable with regard to inclusion. Without loss of generality assume that

v is taken before w in σ in the MCS where t is an end-vertex.

We first show that v and w have to be elements of I . If t is an element of I , then this is easy to see, as

every vertex in C has a higher degree than the vertices in I . If t is an element of C, then t does not have

any neighbor in I , as it is simplicial. Therefore, v and w cannot be elements of C, since otherwise their

degree would not be smaller than the degree of t.

Now observe that all neighbors of v are visited before w. Indeed, after we have taken the vertex v in σ,

the remainder of N(v) has a larger label than the other vertices in C \ N(v). Since there is at least one

neighbor of v which is not a neighbor of w, the remainder of C will always have larger label than w after

we have taken all neighbors of v. Hence, all vertices of C have to be visited before w in σ. However, this

is a contradiction, since from the moment where all the vertices in C have been visited, the label of t is

always greater than the label of w and, thus, t has to be chosen before w in σ.

Let us now assume that both conditions hold for t. We claim that the following ordering is a valid MCS

search that has t as an end-vertex. We choose the neighborhoods of all vertices with lower degree than t

in the order of the inclusion ordering. Every time the complete neighborhood of such a vertex u has been

visited, we choose u next. If t is an element of C, there are no remaining vertices of I and we take the

remaining vertices of C in an arbitrary ordering, where t is the last vertex. If t is an element of I we take

the remaining vertices of C first. Since the neighborhood of t is not greater than the neighborhood of any

remaining vertex, we can visit t last.
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Proposition 14. The MCS end-vertex problem can be decided in linear time if the given input is a split

graph.

Proof: By Lemma 12 the simpliciality of t can be checked in linear time. To check the second condition,

we first sort the vertices with degrees smaller than t by their degree. This can be done in linear time using

counting sort. Let v1, . . . , vk be this order, where deg(v1) ≥ . . . ≥ deg(vk). Then we create an array

A of size n, whose elements correspond to the vertices of G. At first we mark each element of A which

corresponds to a neighbor of v1 with one. For each vi with 1 < i ≤ k we check, whether all elements

corresponding to a neighbor of vi are marked with i − 1. If this is not the case, the neighborhoods of

vi−1 and vi are incomparable with regard to inclusion. Otherwise, we mark each neighbor of vi with i.

The overall running time of this algorithm is O(n + m), since we visit each edge a constant number of

times.

Note, that the same approach can be used to improve the results of Charbit et al. [6] for the end-vertex

problems of LBFS and LDFS on split graphs to linear running time. Furthermore, we can use it to

improve the complexity of the end-vertex problem of MNS on chordal graphs. To decide this problem, we

can check the conditions of Lemma 1. As the minimal separators of a chordal graph can be determined in

O(n+m) using MCS [24], the technique of Proposition 14 leads to a linear time algorithm.

Corollary 15. The end-vertex problem of LBFS and of LDFS on split graphs can be solved in linear time.

Furthermore, the end-vertex problem of MNS on chordal graphs can be solved in linear time.

6.2 Unit Interval Graphs

As any MCS (and also every LDFS) is an MNS, we know that in a chordal graph G = (V,E) a necessary

condition for a vertex t ∈ V being an MCS (or LDFS) end-vertex is that t is simplicial and that the minimal

separators in its neighborhood can be ordered by inclusion (as seen in Lemma 1). In the following we will

proceed to show that in unit interval graphs this is also a sufficient condition.

In [16] Fulkerson and Gross showed that a graph G is an interval graph if and only if the maximal

cliques of G can be linearly ordered such that, for each vertex v, the maximal cliques containing v occur

consecutively. We will such an ordering a linear order of the maximal cliques. It is possible to find such

a linear order in linear time, as can be seen, for example, in [12] or [22].

This property of the maximal cliques can also be expressed through a linear ordering of the vertices.

It has been shown by numerous authors (for example by Olariu in [27]) that a graph G = (V,E) is

an interval graph if and only if it has an interval order, i.e., an ordering σ of its vertices such that for

u ≺σ v ≺σ w, the existence of uw ∈ E implies the existence of the edge uv ∈ E.

For unit interval graphs, Looges and Olariu [25] proved a similar result:

Lemma 16. [25] A graph G = (V,E) is a unit interval graph if and only if it has an ordering σ =
(v1, . . . , vn) of its vertices such that for u ≺σ v ≺σ w, the existence of uw ∈ E implies the existence of

the edges uv ∈ E and vw ∈ E. Consequently, for two indices i < j such that vivj ∈ E the set of vertices

{vi, vi+1, . . . vj−1, vj} forms a clique.

We call such a linear vertex order a unit interval order. Both a interval order as well as a unit interval

order can be computed in linear time [7, 12, 22, 25]. Note that even in unit interval graphs MNS, MCS

and LDFS can output different search orders. In Figure 8 we give an example of a unit interval graph for

which there is an MCS order that is not an LDFS order and vice versa. Furthermore, this example gives
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Fig. 8: The graph depicted here is a unit interval graph for which the orderings of MNS, LDFS and MCS differ. The

order (b, c, d, a, e) is an MCS order that is not an LDFS order, while (b, c, d, e, a) is an LDFS order that is not an

MCS order. Furthermore, the order (d, b, c, e, a) is an MNS order that is neither an MCS nor an LDFS order.

an MNS order that is neither an MCS nor an LDFS order. However, the following theorem shows that the

end-vertices of these searches are the same.

Theorem 17. Let G = (V,E) be a unit interval graph and let t be a vertex of G. Then the following

statements are equivalent:

i) Vertex t is simplicial and G−N [t] is connected.

ii) Vertex t is the last vertex of some unit interval order.

iii) Vertex t is an end-vertex of MNS (MCS, LDFS).

Proof: To prove that i) implies ii), let σ = (v1, . . . , vn) be a unit interval order of G and let t = vl. As t

is simplicial, the closed neighborhood of t forms a maximal clique of G. Thus, all vertices of N [t] must

appear consecutively in σ, i.e. N [t] = {vi, vi+1, . . . vj−1, vj} for some i ≤ l ≤ j, due to Lemma 16.

Suppose that i 6= 1 and j 6= n. Then G−N [t] is disconnected, as there can be no edge between a vertex

left of vi and a vertex to the right of vj , again due to Lemma 16. This is a contradiction to the choice of

t. Therefore, we can suppose without loss of generality that j = n. Because {vi, vi+1, . . . vj−1, vj} is a

clique, it is easy to see that σ′ = (v1, . . . , vl−1, vl+1, . . . vn, vl = t) is also a unit interval order.

To prove that ii) implies iii), let σ = (v1, . . . , vn) be a unit interval order of G and let t = vn. Let

σ′ = (w1, . . . , wn) be an MNS (MCS, LDFS) order such that the first index k at which vk 6= wk is

rightmost among all such search orders. This implies that at moment k − 1 in the search the vertex wk

must have a larger label than vk. In other words, there is a vertex vi with i < k such that vi is adjacent to

wk but not vk. Since vk ≺σ wk this is a contradiction to the fact that σ is a unit interval order.

To show that iii) implies i) assume that G−N [t] is not connected. Let C1 and C2 be distinct connected

components of G − N [t]. Suppose there is a vertex w in N(t) that is adjacent to a vertex c1 ∈ C1 and a

vertex c2 ∈ C2. Then t, w, c1 and c2 form an induced claw in G which is a contradiction to the fact that

G is a unit interval graph [5]. Therefore, the neighborhood of C1 in N(t), say N1, and the neighborhood

of C2 in N(t), say N2 are disjoint. Both N1 and N2 form separators of G and, thus, each of these

must contain a minimal separator. Therefore, the minimal separators in N(t) are not totally ordered by

inclusion. As t is an MNS end-vertex, this is a contradiction to Lemma 1.

Since Condition i) in Theorem 17 can be decided in linear time, we can state the following corollary.

Corollary 18. The MCS and LDFS end-vertex problem can be decided in linear time on unit interval

graphs.



On the End-Vertex Problem of Graph Searches 15

For DFS there is a simple characterization of the end-vertices of (claw, net)-free graphs using hamilto-

nian paths. This also holds for unit interval graphs, as they form a subclass of (claw, net)-free graphs [5].

Theorem 19. Let G = (V,E) be a (claw, net)-free graph. Then t ∈ V is the end-vertex of some DFS if

and only if t is not a cut vertex.

Proof: It is clear, that a cut vertex cannot be an end-vertex of a DFS, since it cannot be an end-vertex of

the generic search [6]. It remains to show, that every other vertex t can be an end-vertex. Let G′ = G− t.

G′ is still a (claw, net)-free graph. Furthermore, it contains a hamiltonian path P since it is connected [5].

Thus, we can start the DFS in G with P and then take t as the last vertex.

Corollary 20. The end-vertex problem of DFS can be decided in linear time on (claw, net)-free graphs,

and, in particular, on unit interval graphs.

6.3 Interval graphs

In the same vein as for unit interval graphs, we can use a result by Kratsch, Liedloff and Meister [23] to

characterize DFS end-vertices on interval graphs using hamiltonian paths.

Lemma 21. [23] Let G = (V,E) be a connected graph, and let t be a vertex of G. Then t is an end-vertex

of DFS if and only if there is a set X ⊆ V such that N [t] ⊆ X and G[X ] has a hamiltonian path with

endpoint t.

On interval graphs this characterization can be simplified to the following.

Theorem 22. Let G be an interval graph. Then t ∈ V is the end-vertex of a DFS if and only if G[N(t)]
contains a hamiltonian path.

Proof: Suppose t ∈ V such that G[N(t)] contains a hamiltonian path. Then G[N [t]] must contain a

hamiltonian path ending in t and by Lemma 21 t is a DFS end-vertex of G.

Now assume that t is a DFS end-vertex. By Lemma 21 there exists a set X ⊆ V such that N [t] ⊆ X

and G[X ] has a hamiltonian path with endpoint t. Let X be the set of smallest cardinality that fulfills

these properties. We claim that X = G[N [t]].

Let P = (v1, . . . , vl) be the hamiltonian path of G[X ] with endpoint t (i.e. vl = t). Suppose there is

a vertex vi ∈ X \ N [t] and let vi be the leftmost such vertex in P . If i = 1, then P ′ = (v2, . . . vl) is a

hamiltonian path in X \ vi with endpoint t, in contradiction to the minimality of X .

Therefore, let j < i < k such that vj is the rightmost vertex of N [t] to the left of vi in P and vk is

the leftmost vertex of N [t] to the right of vi, i.e. vj+1, . . . , vk−1 ∈ X \ N [t]. If t is equal to vk , then

vjvk ∈ E and P ′ = (v1, . . . , vj , vk) is a hamiltonian path of X \{vj+1, . . . , vk−1}; this is a contradiction

to the minimality of X . Otherwise, (t, vj , . . . , vk, t) forms a cycle of length ≥ 4 in G. As vj+1, . . . , vk−1

are not adjacent to t, there must be an edge between some non-consecutive vertices in (vj , . . . , vk). As

above, this is a contradiction to the minimality of X .

As the hamiltonian path problem can be solved on interval graphs in linear time, as was shown by

Arikati and Rangan [1], we can state the following corollary.

Corollary 23. The end-vertex problem of DFS can be decided in linear time on interval graphs.
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t t

Fig. 9: Both graphs are interval graphs, but not unit interval graphs, since both contain an induced claw. On the left

hand side the MCS end-vertex t is such that G − N [t] is disconnected. On the right hand side vertex t is an MNS

end-vertex but not an MCS end-vertex.

The end-vertex problem for MCS on the class of interval graphs, however, appears to be more com-

plicated than in the case of unit interval graphs, as implication iii) ⇒ i) from Theorem 17 does not

necessarily hold here. As a result, not only simplicial vertices that are end-vertices of an interval order

are candidates for being an MCS end-vertex. Furthermore, in interval graphs MCS is able to “jump” be-

tween non-consecutive cliques, making an analysis much harder. Figure 9 contains an example where an

end-vertex t is such that G−N [t] is disconnected.

The lemma below gives a relaxed necessary condition which covers the cases similar to the one given

in Figure 9.

Lemma 24. Let G = (V,E) be an interval graph and let C1, C2, . . . , Ck be a linear order of the maximal

cliques of G. Suppose t ∈ V satisfies the following conditions:

1. t is simplicial.

2. If Ci is the unique clique containing t, then i = 1 or i = k or

Ci−1 ∩Ci ⊆ Ci ∩ Ci+1

and

|Ci ∩Ci+1| ≤ |Cj ∩ Cj+1| for all j > i,

or the same holds for the reverse order Ck, Ck−1, . . . , C1.

Then t is the end-vertex for some MCS on G.

Proof: As G is an interval graph, we can assume that there is a linear orderC1, C2, . . . , Ck of the maximal

cliques of G, in the sense that for any vertex v ∈ V all cliques containing v are consecutive. Also, it is

easy to see that any vertex is simplicial if and only if it is contained in exactly one of these maximal

cliques.

We assume that t fulfills both properties. We now construct an MCS search ordering which starts in a

simplicial vertex of C1 and ends in the vertex t. Without loss of generality, we assume that the second

property holds for C1, C2, . . . , Ck, as otherwise we can just begin our search at Ck and use the same

arguments.

We proceed by visiting the maximal cliques of G consecutively – choosing the vertices of each clique in

an arbitrary order – until we have completely visitedCi−1. As Ci−1∩Ci ⊆ Ci∩Ci+1, we can visit a vertex

of Ci+1 \ Ci next, ignoring the simplicial vertices of Ci. Due to the fact that |Ci ∩ Ci+1| ≤ |Cj ∩ Cj+1|
for all j > i we can then visit all vertices of Ci+1 and the vertices of all other maximal cliques apart from

Ci. Finally, we visit the remaining simplicial vertices of Ci, choosing t last.
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Fig. 10: An example of an interval graph G and a vertex t ∈ V (G), where t is an MCS end-vertex of the search

(a, b, u, h, i, c, d, e, f, g, t). However, it is easy to see that for the linear order of the maximal cliques of the form

C1 = {a, b}, C2 = {b, u}, C3 = {c, d, u}, C5 = {d, e, u}, C6 = {e, t, u}, C7 = {e, f, u}, C8 = {f, g, u},

C9 = {u, h} and C10 = {h, i} the second condition of Lemma 24 is not fulfilled. In fact, this condition is false for

any linear order of the maximal cliques.

Note that the sufficient condition given by Lemma 24 may not be necessary in general. For example,

Figure 10 shows an example of a graph where the second condition from Lemma 24 is not true for

vertex t, however it is still an MCS end-vertex. Nonetheless, we believe that it is still possible to give a

characterization of MCS end-vertices for the family of interval graphs which may be checked efficiently.

Conjecture 25. The MCS end-vertex problem can be decided in polynomial time if the given input is an

interval graph.

7 Conclusion

We have shown that the end-vertex problem is NP-complete for MNS on weakly chordal graphs and

for MCS on general graphs. Moreover, we have given linear time algorithms to compute end-vertices

for LDFS and MCS on unit interval graphs as well as for DFS on interval graphs and for MCS on split

graphs. Using the same techniques, we were able to improve the analyses of running times of various

previous results from polynomial time to linear time. A complete list of the achieved results can be found

in Table 1. However, many open questions still remain.

For all the searches investigated here, apart from DFS, the complexity of the end-vertex problem on

chordal graphs is still open. This is especially interesting, as nearly all of these problems are already hard

on weakly chordal graphs. Even on interval graphs the complexity for some end-vertex problems is open.

Besides the complexity results for the end-vertex problem on graphs with bounded chordality, there are

further results on bipartite graphs. Charbit, Habib, Mamcarz [6] showed, that it isNP-complete for BFS.

Gorzny and Huang [18] showed the same result for LBFS. Furthermore, they present a polynomial time

algorithm for the LBFS end-vertex problem on AT-free bipartite graphs. It is an open question, whether

these results can be extended to the end-vertex problems of MCS and MNS.

As mentioned in the introduction, the recognition of search trees of BFS and DFS is easy [20, 21, 26],

although the corresponding end-vertex problems are hard. In [2] the authors show that LDFS-trees can

be recognized in polynomial time, while the recognition of LBFS-trees is NP-complete on the class

of weakly chordal graphs. Furthermore, they showed that recognition of both MNS and MCS-trees is

NP-complete. However, it remains an interesting question, whether there exists a search and a graph

class, such that recognition of the search trees on that class is hard, whereas the end-vertex problem is

polynomial.
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and Martin Strehler. Recognizing graph search trees. In Proceedings of the X Latin and American

Algorithms, Graphs and Optimization Symposium (LAGOS 2019), 2019. To appear. Preprint on

arXiv: https://arxiv.org/abs/1811.09249.

[3] Anne Berry, Jean R. S. Blair, Jean-Paul Bordat, and Genevieve Simonet. Graph extremities defined

by search algorithms. Algorithms, 3(2):100–124, 2010.

[4] Anne Berry, Richard Krueger, and Genevieve Simonet. Maximal label search algorithms to compute

perfect and minimal elimination orderings. SIAM Journal on Discrete Mathematics, 23(1):428–446,

2009.
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