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The join of two varieties is the smallest variety containing both. In finite semigroup theory, the varieties of R-trivial
and L -trivial monoids are two of the most prominent classes of finite monoids. Their join is known to be decidable
due to a result of Almeida and Azevedo. In this paper, we give a new proof for Almeida and Azevedo’s effective
characterization of the join of R-trivial and L -trivial monoids. This characterization is a single identity of ω-terms
using three variables.
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1 Introduction

Green’s relations R and L are a standard tool in the study of semigroups [5]. In the context of finite
monoids, among other results, they have been used to give effective characterizations of language classes
such as star-free languages [3, 11] and piecewise testable languages [6, 12]. A deterministic extension
of piecewise testable languages yields the class of languages corresponding to R-trivial monoids, and a
codeterministic extension corresponds to L -trivial monoids [4, 9].

Almeida and Azevedo gave an effective characterization for the least variety of finite monoids containing
all R-trivial and all L -trivial monoids [2], i.e., for the join of the two varieties. Their proof is based
on sophisticated algebraic techniques, on Reiterman’s Theorem [10], and on a combinatorial result of
König [7]. In this paper, we give a new proof of Almeida and Azevedo’s Theorem. The current proof was
inspired by another proof of the authors [8], which in turn uses ideas of Klíma [6]. The main ingredient is
a system of congruences which relies on simple combinatorics on words.
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2 Preliminaries

Let A be a finite alphabet. The set of finite words over A is denoted by A∗. It is the free monoid over A.
The empty word is 1. The content of a word u = a1 · · ·an with ai ∈ A is α(u) = {a1, . . . ,an}, and its length

is |u|= n. The length of the empty word is 0. A word u is a prefix (respectively suffix) of v if there exists
x ∈ A∗ such that ux = v (respectively xu = v); if x 6= 1, then u is a proper prefix.

For more details concerning the algebraic concepts introduced in the remainder of this section, we refer
the reader to textbooks such as [1, 4, 9]. Green’s relations R and L are important tools in the study of
finite monoids. Let M be a finite monoid. We set u R v for u,v ∈ M if uM = vM, and the latter condition is
equivalent to the existence of x,y ∈ M with u = vx and v = uy. Symmetrically, u L v if Mu = Mv. The
monoid M is R-trivial (respectively L -trivial) if R (respectively L ) is the identity relation on M. We
write u <R v if uM ( vM, and we write u <L v if Mu ( Mv.

A variety of finite monoids is a class of monoids closed under finite direct products, submonoids, and
quotients. A variety of finite monoids is often called a pseudovariety in order to distinguish from varieties
in Birkhoff’s sense. Since we do not need this distinction in the current paper, whenever we use the term
variety we mean a variety of finite monoids. The join V1 ∨V2 of two varieties V1 and V2 is the smallest
variety containing V1 ∪V2. A monoid M is in V1 ∨V2 if and only if there exist M1 ∈ V1 and M2 ∈ V2

such that M is a quotient of a submonoid of M1 ×M2. If M is a finite monoid, then there exists an integer
ωM > 1 such that, for all u ∈ M, the element uωM is idempotent. Moreover, the element uωM is the unique
idempotent generated by u. Usually, the monoid M is clear from the context and thus, we simply write ω
instead of ωM . This leads to the following definition. An ω-term over a finite alphabet X is either a word
in X∗, or of the form tω for some ω-term t, or the concatenation t1t2 of two ω-terms t1, t2. A homomorphism
ϕ : X∗ → M to a finite monoid M uniquely extends to ω-terms over X by setting ϕ(tω) = ϕ(t)ωM . Let u,v be
two ω-terms over X . A finite monoid M satisfies the identity u = v if ϕ(u) = ϕ(v) for all homomorphisms
ϕ : X∗ → M. The class of finite monoids satisfying the identity u = v is denoted by Ju = vK. For all ω-terms
u,v, the class Ju = vK forms a variety. We need the following three varieties in this paper:

R = J(xy)ωx = (xy)ωK ,

L = Jx(zx)ω = (zx)ωK ,

W = J(xy)ωx(zx)ω = (xy)ω(zx)ωK .

A monoid is in R if and only if it is R-trivial. Symmetrically, a monoid is in L if and only if it is L -trivial.
The aim of this paper is to give a new proof of Almeida and Azevedo’s result R∨L = W. The inclusion
R∨L ⊆ W is trivial since R∪L ⊆ W and W is a variety.

3 Congruences

In this section, we introduce the main combinatorial tool for our proof. It is a family of congruences ≡n

on A∗ for some finite alphabet A such that A∗/≡n ∈ R∨L for all integers n > 0, see Lemma 2 below. As a
first step towards the definition of ≡n we need to introduce an asymmetric, weaker congruence ≡R

n . Let
u,v ∈ A∗. We let u ≡R

0 v if α(u) = α(v). For n > 0, we let u ≡R
n+1 v if the following conditions hold:

1. α(u) = α(v),
2. for all factorizations u = u1au2 and v = v1av2 with a ∈ A\

(

α(u1)∪α(v1)
)

we have u1 ≡
R
n v1 and

u2 ≡
R
n v2, and
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3. for all factorizations u = u1au2 and v = v1av2 with a ∈ A\
(

α(u2)∪α(v2)
)

we have u1 ≡
R
n v1.

By a straightforward verification we see that ≡R
n is an equivalence relation. The factorization u1au2 with

a ∈ A \α(u1) is unique. Therefore, induction on n shows that the index of ≡R
n is finite. If u ≡R

n+1 v,
then u ≡R

n v. Moreover, if u ≡R
n v and a ∈ A, then au ≡R

n av and ua ≡R
n va. Therefore, the relation ≡R

n is
a finite index congruence on A∗.

Lemma 1 For every finite alphabet A and every integer n > 0 we have A∗/≡R
n ∈ R.

Proof: It suffices to show (xy)n+1x ≡R
n (xy)n+1 for all words x,y ∈ A∗. We note that for y = 1 this

yields xn+2 ≡R
n xn+1. The proof is by induction on n. For n = 0, the claim is true since α(xyx) = α(xy).

Let now n > 0. As before, α
(

(xy)n+1x
)

= α
(

(xy)n+1
)

. Suppose (xy)n+1x = u1au2 and (xy)n+1 = v1av2

for a ∈ A \
(

α(u1)∪α(v1)
)

. Then u1 = v1 and both are proper prefixes of xy. Thus u2 = p(xy)nx and
v2 = p(xy)n for some p ∈ A∗. By induction (xy)nx ≡R

n−1 (xy)n and hence, u2 ≡
R
n v2.

Suppose now (xy)n+1x = u1au2 and (xy)n+1 = v1av2 for a ∈ A\
(

α(u2)∪α(v2)
)

. Then av2 is a suffix
of xy and au2 is a suffix of yx. We can therefore write v1 = (xy)n p′ for some prefix p′ of xy. Similarly,
u1 = (xy)k p for some k ∈ {n,n+1} and some prefix p of xy, i.e., we have pq = xy for some q ∈ A∗. By
induction, we have (xy)n+1 ≡R

n−1 (xy)n and thus (xy)n+1 p ≡R
n−1 (xy)n p. We can therefore assume k = n.

Without loss of generality, let |p|6 |p′|, i.e., p′ = ps for some s ∈ A∗. It follows

u1 = (pq)n p and v1 = (pq)n ps.

Since p′ = ps is a prefix of xy = pq, the word s is a prefix of q. In particular, there exists t ∈ A∗ such that
qp = st. This yields

u1 = p(st)n and v1 = p(st)ns.

By induction, (st)n ≡R
n−1 (st)

ns and thus u1 ≡
R
n−1 v1. This shows (xy)n+1x ≡R

n (xy)n+1 which concludes
the proof. ✷

There is a left-right symmetric congruence ≡L
n on A∗. It can be defined by setting u ≡L

n v if and only if
uρ ≡R

n vρ. Here, uρ = an · · ·a1 is the reversal of the word u = a1 · · ·an with ai ∈ A. It satisfies A∗/≡L
n ∈ L

for every n > 0. We define u ≡n v if and only if both u ≡R
n v and u ≡L

n v. The following lemma puts
together some properties of the finite index congruence ≡n.

Lemma 2 For every finite alphabet A and every integer n > 0 the following properties hold:

1. A∗/≡n ∈ R∨L.

2. If u1au2 ≡n+1 v1av2 for a ∈ A\
(

α(u1)∪α(v1)
)

, then u1 ≡
R
n v1 and u2 ≡n v2.

3. If u1au2 ≡n+1 v1av2 for a ∈ A\
(

α(u2)∪α(v2)
)

, then u1 ≡n v1 and u2 ≡
L
n v2.

Proof: “1”: We have A∗/≡n ∈ R∨L since it is a submonoid of (A∗/≡R
n )× (A∗/≡L

n ), and A∗/≡R
n ∈ R

and A∗/≡L
n ∈ L by Lemma 1 and its left-right dual. The properties “2” and “3” trivially follow from the

definition of ≡n. ✷
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4 An Equation for the Join

The goal of this section is to prove W ⊆ R∨L. By Lemma 2 it suffices to show that for every A-generated
monoid M ∈ W there exists an integer n > 0 such that M is a quotient of A∗/≡n. The outline of the proof
is as follows. First, in Lemma 3, we give a substitution rule valid in W. Then, in Lemma 5, we show that
≡n-equivalence allows a factorization satisfying the premise for applying this substitution rule; this relies
on a property of W shown in Lemma 4. Finally, in Theorem 6, all the ingredients are put together.

Lemma 3 Let M ∈ W and let u,v,x ∈ M. If u R ux and v L xv, then uxv = uv.

Proof: Since u R ux and v L xv, there exist y,z ∈ M with u = uxy and v = zxv. In particular, we have
u = u(xy)ω and v = (zx)ωv. By M ∈ W we conclude uxv = u(xy)ωx(zx)ωv = u(xy)ω(zx)ωv = uv. ✷

We will apply the previous lemma as follows. Let M ∈ W and u,v,s, t ∈ M such that u R us R ut

and v L sv L tv. Then usv = utv since usv = uv and utv = uv by Lemma 3. The R-equivalences and
L -equivalences for being able to apply this substitution rule are established in Lemma 5. Before, we give
a simple property of W. It is the link between Green’s relations and the congruence ≡n.

Lemma 4 Let M ∈ W and let u,v,a ∈ M. If u R v R va, then u R ua. If u L v L av, then u L au.

Proof: Since u R v and u R va, there exist x,y ∈ M with v = ux and u = vay. Now, u = uxay =
u(xay)2ω+1 = u(xay)ωx(ayx)ωay = u(xay)ω(ayx)ωay = u(ayx)ωay ∈ uaM where the fourth equality uses
M ∈ W. This shows uM ⊆ uaM and thus u R ua. The second implication is left-right symmetric. ✷

The intuitive interpretation of the algebraic statement in Lemma 4 is the following: For M ∈ W it only
depends on the element a and the R-class of u whether u R ua or not (but not on the element u itself). The
statement for L -classes is analogous.

Lemma 5 Let M ∈ W and let ϕ : A∗ → M be a homomorphism. If u ≡n v for n > 2 |M|, then there

exist factorizations u = a1s1 · · ·aℓ−1sℓ−1aℓ and v = a1t1 · · ·aℓ−1tℓ−1aℓ with ai ∈ A and si, ti ∈ A∗ and with

ℓ6 2 |M| such that for all i ∈ {1, . . . , ℓ−1} we have:

ϕ(a1s1 · · ·ai−1si−1ai) R ϕ(a1s1 · · ·aisi) R ϕ(a1s1 · · ·ai−1si−1aiti),

ϕ(ai+1ti+1 · · ·aℓ−1tℓ−1aℓ) L ϕ(tiai+1 · · · tℓ−1aℓ) L ϕ(siai+1ti+1 · · ·aℓ−1tℓ−1aℓ).

Proof: To simplify notation, for some relation G on M we write u G v for words u,v ∈ A∗ if ϕ(u) G ϕ(v).
Consider the R-factorization of u, i.e., let u = b1u1 · · ·bkuk with bi ∈ A such that

b1u1 · · ·bi R b1u1 · · ·biui for all i ∈ {1, . . . ,k},

b1u1 · · ·biui >R b1u1 · · ·biuibi+1 for all i ∈ {1, . . . ,k−1}.

Similarly, let v = v1c1 · · ·vk′ck′ be the L -factorization of v, i.e., we have ci ∈ A and

ci · · ·vk′ck′ L vici · · ·vk′ck′ for all i ∈
{

1, . . . ,k′
}

,

vici · · ·vk′ck′ >L ci−1vici · · ·vk′ck′ for all i ∈
{

2, . . . ,k′
}

.
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We have k,k′ 6 |M| because neither the number of R-classes nor the number of L -classes can exceed |M|.
By Lemma 4, we have bi 6∈ α(ui−1) for all i ∈ {2, . . . ,k} and ci 6∈ α(vi+1) for all i ∈ {1, . . . ,k′−1}. We use
these properties to convert the R-factorization of u to v and to convert the L -factorization of v to u: Let
v = b1v′1 · · ·bkv′k such that bi 6∈ α(v

′
i−1), and let u = u′1c1 · · ·u

′
k′

ck′ with ci 6∈ α(u
′
i+1). These factorizations

exist because u ≡n v; in particular, by Lemma 2,

uibi+1ui+1 · · ·bkuk ≡n−i v′ibi+1v′i+1 · · ·bkv′k

v1c1 · · ·v j−1c j−1v j ≡n−k′−1+ j u′1c1 · · ·u
′
j−1c j−1u′j

for all i ∈ {1, . . .k} and j ∈ {1, . . . ,k′}. Moreover, we see that α(ui) = α(v
′
i) and α(v j) = α(u

′
j).

We now show that the relative positions of the bi’s and c j’s in the above factorizations are the same in u

and v. Let p be the position of bi in the R-factorization of u and let q be the position of c j in the above
factorization of u. Similarly, let p′ be the position of bi in v and let q′ be the position of c j in v. First,
suppose p < q. Let

u = b1u1 · · ·bi−1ui−1bi u′ c ju
′
j+1c j+1 · · ·u

′
k′ck′ .

By an i-fold application of property “2” in Lemma 2 with a ∈ {b1, . . . ,bi} (which is possible for u) we
obtain v = b1v′1 · · ·bi−1v′i−1biz with z ≡n−i u′c ju

′
j+1c j+1 · · ·u

′
k′

ck′ . By a (k′ + 1− j)-fold application of

property “3” in Lemma 2 with a ∈
{

ck′ , . . . ,c j

}

(which is possible for the word u′c ju
′
j+1c j+1 · · ·u

′
k′

ck′ ) we
obtain z = v′c jv j+1c j+1 · · ·vk′ck′ . Thus

v = b1v′1 · · ·bi−1v′i−1bi v′ c jv j+1c j+1 · · ·vk′ck′

showing that p′ < q′. Symmetrically, one shows that p′ < q′ implies p < q. We conclude p < q if and only
if p′ < q′. Similarly, we have p = q if and only if p′ = q′. It follows that the relative order of the bi’s and
c j’s in u and v is the same. By factoring u and v at all bi’s and c j’s, we obtain u = a1s1 · · ·aℓ−1sℓ−1aℓ and
v = a1t1 · · ·aℓ−1tℓ−1aℓ with ai ∈ A and ℓ6 k+ k′ 6 2 |M|.

We have a1s1 · · ·ai−1si−1ai R a1s1 · · ·ai−1si−1aisi since the factorization u = a1s1 · · ·aℓ−1sℓ−1aℓ is a
refinement of the R-factorization. Note that we cannot assume α(si) = α(ti). But each ti is a factor of
some v′j, and at the same time si is a factor of u j. More precisely, there exists m 6 i such that

b1v′1 · · ·b j−1v′j−1b j = a1t1 · · ·am−1tm−1am and tmam+1 · · · ti−1aiti is a prefix of v′j.

Furthermore, smam+1 · · ·si−1aisi is a prefix of u j. Now, α(ti) ⊆ α(v′j) = α(u j) and, by Lemma 4, for
all words z with α(z) ⊆ α(u j) we have a1s1 · · ·ai−1si−1ai R a1s1 · · ·ai−1si−1aiz. Symmetrically we see
ai+1ti+1 · · ·aℓ−1tℓ−1aℓ L tiai+1 · · · tℓ−1aℓ L siai+1ti+1 · · ·aℓ−1tℓ−1aℓ. ✷

Theorem 6 (Almeida /Azevedo, 1989 [2])

R∨L = J(xy)ωx(zx)ω = (xy)ω(zx)ωK

Proof: The inclusion R∨L ⊆ W is trivial since R∪L ⊆ W and W is a variety of finite monoids. Let
M ∈ W be generated by A, and let ϕ : A∗ → M be the homomorphism induced by A ⊆ M. Let n = 2 |M| and
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suppose u ≡n v. Let u = a1s1 · · ·aℓ−1sℓ−1aℓ and v = a1t1 · · ·aℓ−1tℓ−1aℓ be the factorizations from Lemma 5.
Applying Lemma 3 repeatedly, we get

ϕ(v) = ϕ(a1t1a2t2 · · ·aℓ−2tℓ−2aℓ−1tℓ−1aℓ)

= ϕ(a1s1a2t2 · · ·aℓ−2tℓ−2aℓ−1tℓ−1aℓ)

= ϕ(a1s1a2s2 · · ·aℓ−2tℓ−2aℓ−1tℓ−1aℓ)

...

= ϕ(a1s1a2s2 · · ·aℓ−2sℓ−2aℓ−1tℓ−1aℓ)

= ϕ(a1s1a2s2 · · ·aℓ−2sℓ−2aℓ−1sℓ−1aℓ) = ϕ(u).

Note that the substitution rules ti → si are ϕ-invariant only when applied from left to right. This shows that
M is a quotient of A∗/≡n, and the latter is in R∨L by Lemma 2. Thus M ∈ R∨L. ✷
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