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The problem of determining the number of “flooding operations” required to make a given coloured graph monochro-

matic in the one-player combinatorial game Flood-It has been studied extensively from an algorithmic point of view,

but basic questions about the maximum number of moves that might be required in the worst case remain unanswered.

We begin a systematic investigation of such questions, with the goal of determining, for a given graph, the maximum

number of moves that may be required, taken over all possible colourings. We give several upper and lower bounds

on this quantity for arbitrary graphs and show that all of the bounds are tight for trees; we also investigate how much

the upper bounds can be improved if we restrict our attention to graphs with higher edge-density.

Keywords: combinatorial games, flood-filling games, Free-Flood-It

1 Introduction

Flood-It is a one-player combinatorial game, played on a coloured graph. The goal is to make the entire

graph monochromatic (“flood” the graph) with as few moves as possible, where a move involves picking

a vertex v and a colour d, and giving all vertices in the same monochromatic component as v colour d, as

illustrated in Figure 1. Implementations of the game played on regular grids are widely available online

[5, 4] and as popular smartphone apps. More generally, when played on a planar graph, the game can be

regarded as modelling repeated use of the flood-fill tool in Microsoft Paint.
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Fig. 1: A sequence of moves to flood a graph; the colour of the monochromatic component containing the top left

vertex is changed at each move.

Questions arising from this game (and a two-player variant known as the Honey-Bee Game) have

received considerable attention from a complexity-theoretic perspective in recent years [9, 12, 15, 18, 19,
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21, 23, 24, 26, 30, 32, 33, 34, 37], with such work focussing on questions of the form, “Given a graph G
from a specified class, and a colouring ω of the vertices of G, what is the computational complexity of

determining the minimum number of moves required to flood G?” The problem is known to be NP-hard

in many situations, provided that at least three colours are present in the initial colouring, including in the

case that G is an n × n grid (as in the original version of the game) [12] and the case in which G is a

tree [21, 29] (the parameterised complexity of the problem restricted to trees has also been studied [18]).

On the other hand, there are polynomial-time algorithms to determine the minimum number of moves

required if G is a path or a cycle, or more generally for any graph if the initial colouring uses only two

colours. A more complete description of the complexity landscape for these problems can be found in a

recent survey [20].

Two different versions of the game have been considered in the literature, known as the “fixed” and

“free” versions. In the fixed version of the game (as in most implementations), players must always

change the colour of the monochromatic component containing a single distinguished pivot vertex, so the

only choice is what colour to assign to this component; in the free version players can choose freely at

each move the component whose colour is changed, in addition to the new colour.

In this paper, we initiate a systematic investigation of a different type of question about the game, raised

by Meeks and Scott [33] but as yet unanswered in the literature: given a graph G, what is the maximum

number of moves we may need to flood G, taken over all possible colourings of G with c colours? In

addition to providing a deeper insight into the behaviour of the game, questions of this form are motivated

by recent algorithmic work involving Integer Programming formulations for the optimisation problem,

whose running-times might be reduced by better bounds on the worst-case number of moves required.

In Section 2 we obtain a number of straightforward upper and lower bounds on the maximum number

of moves that might be required in the worst case in both the fixed and free versions of the game; perhaps

surprisingly, we are also able to demonstrate that all of these simple bounds are tight for suitable families

of trees. It follows from previous work [34] relating the number of moves required to flood a graph to

the number of moves required to flood its spanning trees that any bound on the worst-case number of

moves required is tight if and only if it is tight for some family of trees, but we might be able to obtain

much better upper bounds on the number of moves required if we know our graph is far from being a tree:

intuitively, we expect that a single colouring cannot simultaneously be the worst possible for all spanning

trees if the graph has many spanning trees. In Section 3 we investigate this issue, and in the process we

determine the worst-case number of moves required to flood a graph that is a blow-up of a long path.

In the remainder of this section, we introduce some key notation and definitions, and mention some

results from the existing literature that are of particular relevance to addressing extremal problems.

1.1 Notation and definitions

For any graph G = (V,E), we denote by |G| the number of vertices in G (so |G| = |V |). Throughout

this paper, we consider only connected graphs: if G is disconnected then it is impossible to flood G in the

fixed version of the game, and in the free version an optimal strategy for the entire graph is obtained by

playing optimal strategy in each connected component. We write T (G) for the set of spanning trees of G.

For u, v ∈ V (G), we let P(u, v) be the set of u-v paths in G, and the distance d(u, v) from u to v is

defined to be minP∈P(u,v) |P | − 1. The eccentricity of a vertex v ∈ V (G) is maxv∈V (G) d(u, v), and the

radius of G is the minimum eccentricity of any vertex in G, that is minu∈V (G) maxv∈V (G) d(u, v).
Let A ⊂ V (G). We write G[A] for the subgraph of G induced by A, and N(A) for the set of vertices

in V (G) \A with at least one neighbour in A.
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A graph G = (VG, EG) is said to be a blow-up of a graph H = (VH , EH) if VG can be partitioned into

sets {Vu : u ∈ VH} such that v1v2 ∈ EG if and only if v1 ∈ Vu and v2 ∈ Vw with uw ∈ EH .

Suppose the game is played on a graph G, equipped with an initial colouring ω : V → C (not necessar-

ily a proper colouring); we call C the colour-set. We say that u and v belong to the same monochro-

matic component of G with respect to ω if there is a path u = x1, x2, . . . , xℓ = v in G such that

ω(x1) = ω(x2) = · · · = ω(xℓ). In the fixed version, a move consists of a single colour d, and in-

volves assigning colour d to all vertices in the same monochromatic component as the pivot vertex u; in

the free version, a move m = (v, d) involves assigning colour d to all vertices in the same monochromatic

component as v. Given a colouring ω with colour-set C and any d ∈ C, we denote by Nd(G,ω) the

number of vertices v ∈ V such that ω(v) = d.

For any graph G with colouring ω, we can obtain a new graph and corresponding colouring by con-

tracting monochromatic components of G with respect to ω, that is repeatedly contracting an edge e = uv
such that ω(u) = ω(v). If G′ (with colouring ω′) is obtained from G (with initial colouring ω) in this

way, it is clear that any sequence of moves that floods G with initial colouring ω will also flood G′ with

initial colouring ω′, and vice versa (up to possibly changing the vertex at which a move is played to an-

other vertex in the same monochromatic component with respect to ω). We say that the graph G1 with

colouring ω1 is equivalent to the graph G2 with colouring ω2 if there is a colour-preserving isomorphism

(i.e. a bijection between vertices that preserves (non-)adjacency and colours) from the coloured graph ob-

tained by contracting monochromatic components of G1 with respect to ω1 to that obtained by contracting

monochromatic components of G2 with respect to ω2.

We define mG(G,ω, d) to be the minimum number of moves required to give all vertices of G colour

d in the free version of the game, and mG(G,ω) to be mind∈C mG(G,ω, d). Analogously, for the fixed

version of the game we write m
(v)
G (G,ω, d) to be the minimum number of moves required to give all

vertices of G colour d when all moves are played at the pivot vertex v, and define m
(v)
G (G,ω) to be

mind∈C m
(v)
G (G,ω, d).

Let Ω(V,C) be the set of all surjective functions from V to C. We then define

Mc(G) = max
ω∈Ω(V,{1,...,c})

mG(G,ω),

so Mc(G) is the maximum number of moves that might be required in the free version to flood G in the

worst case, taken over all possible initial colourings with c colours. We define M
(v)
c (G) analogously for

the fixed version.

Let A be any subset of V . We set mG(A,ω, d) to be the minimum number of moves we must play

in G (with initial colouring ω) in the free version to create a monochromatic component of colour d that

contains every vertex in A, and mG(A,ω) = mind∈C mG(A,ω, d). When the ground graph and area to

be flooded agree, we may henceforth omit the subscript.

We say a move m = (v, d) is played in A if v ∈ A, and that A is linked if it is contained in a single

monochromatic component. Subsets A,B ⊆ V are adjacent if there exists ab ∈ E with a ∈ A and

b ∈ B. We will use the same notation when referring to (the vertex-set of) a subgraph H of G as for a

subset A ⊆ V (G).

1.2 Background results

One key result which we will exploit throughout this paper gives a characterisation of the number of

moves required to flood a graph in terms of the number of moves required to flood its spanning trees.
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More precisely we will apply the following result by Meeks and Scott [34].

Theorem 1.1. Let G be a connected graph with colouring ω from colour-set C. Then, for any d ∈ C,

m(G,ω, d) = min
T∈T (G)

m(T, ω, d).

A corollary of this result, proved in the same paper, is that the number of moves required to flood a

graph H cannot be increased when moves are played in a larger graph G which contains H as a subgraph.

Corollary 1.2. Let G be a connected graph with colouring ω from colour-set C, and H a connected

subgraph of G. Then, for any d ∈ C,

mG(V (H), ω, d) ≤ mH(H,ω, d).

We will also use a simple monotonicity result for paths, proved by the same authors in a previous

paper [32].

Lemma 1.3. Let P be a path, with colouring ω from colour-set C, and let P ′ be a second coloured path

with colouring ω′, obtained from P by deleting one vertex and joining its neighbours. Then, for any

d ∈ C, m(P ′, ω′, d) ≤ m(P, ω, d). We also have m(P ′, ω′) ≤ m(P, ω).

Another useful result, proved in an additional paper by Meeks and Scott [33], relates the number of

moves required to flood the same graph with different initial colourings.

Lemma 1.4. Let G be a connected graph, and let ω and ω′ be two colourings of the vertices of G (from

colour-set C). Let A be the set of all maximal monochromatic components of G with respect to ω′, and

for each A ∈ A let cA be the colour of A under ω′. Then, for any d ∈ C,

m(G,ω, d) ≤ m(G,ω′, d) +
∑

A∈A

m(A,ω, cA).

This result means that we do not normally need to worry about the possible effect that moves played to

flood a particular subgraph might have elsewhere.

2 General Bounds

In this section we obtain some general lower and upper bounds on the value of Mc(G) and M
(v)
c (G),

where G is an arbitrary connected graph. While these bounds are based on simple observations about the

flooding process, we are able to show that all of them are tight for suitably chosen trees.

2.1 Lower bounds

We begin with a simple observation about the minimum number of moves required to flood a graph

coloured with c colours.
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Proposition 2.1. Let G be any graph with colouring ω, where ω uses exactly c colours on G. Then

m(G,ω) ≥ c− 1.

Moreover, if every colour appears in at least two distinct monochromatic components with respect to ω,

then

m(G,ω) ≥ c.

Proof: To see that the first statement is true, note that any move can reduce the number of colours present

in the graph by at most one, and so, in order to reduce the total number of colours present from c to 1, at

least c−1 moves are required. For the second part of the result, observe that the first move played can only

change the colour of one monochromatic component under the initial colouring, and so if every colour

initially appears in at least two distinct monochromatic components then the first move cannot reduce the

total number of colours present on the graph; thus a total of at least c moves will be required to reduce the

number of colours in the graph to 1.

This gives an immediate lower bound on Mc(G). A vertex v is said to be a dominating vertex if every

other vertex is adjacent to v.

Corollary 2.2. For any connected graph G, Mc(G) ≥ c − 1. If G has no dominating vertex, then

Mc(G) ≥ c.

The same reasoning allows us to make a slightly stronger statement in the fixed case.

Proposition 2.3. For any connected graph G = (V,E) and v ∈ V , M
(v)
c (G) ≥ c − 1. If v is not a

dominating vertex, then M
(v)
c (G) ≥ c.

To see that this first pair of bounds is tight, consider the complete bipartite graph K1,n with any colour-

ing using c colours: we can always flood this graph by playing changing the colour of v, the unique

non-leaf vertex, c − 1 times. Now suppose that u is a leaf in K1,n; we obtain a new graph G by

adding an additional vertex x adjacent only to u. Now, for any colouring ω of G with c colours such

that ω(x) 6= ω(u) and ω(x) = ω(v), we can flood G by changing the colour of v precisely c times.

In order for the lower bounds we have obtained thus far to be tight, we required that some monochro-

matic component is adjacent to many others. We formalise this observation with a second general lower

bound based on the structure maximum number of vertices adjacent to any connected subgraph. Note

that this maximum number of neighbours will be bounded by a constant when the graph in question is

obtained from some fixed graph by subdividing edges.

Proposition 2.4. Let G = (V,E) be a connected graph on n ≥ 1 vertices, and let ω be a proper colouring

of G. Suppose that, for every set A ⊂ V such that G[A] is connected, we have |N(A)| ≤ s. Then

m(G,ω) ≥
1

s
(n− 1).

Proof: We proceed by induction on m(G,ω); the result is trivially true for m(G,ω) = 0, so assume that

m(G,ω) > 0. Let S be a sequence which floods G with some colour d, where |S| = m(G,ω); suppose
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that the first move of S is α = (v, d′), and let ω′ denote the colouring of G obtained by playing α from

the initial colouring ω. Let A denote the monochromatic component of G with respect to ω′ that contains

v. It is clear that every vertex of A other than v must belong to some monochromatic component with

respect to ω that is adjacent to A; since all monochromatic components with respect to ω are singletons

(as ω is a proper colouring) it follows that A ⊂ v ∪N({v}). Note that {v} trivially induces a connected

subgraph of G, so by assumption we have |N({v})| ≤ s, implying that |A| ≤ 1 + s.

Now consider the graph G′ obtained from G by contracting A to a single vertex; let ω′′ be the colouring

of G′ derived from ω′, and note that ω′′ is a proper colouring of G′. It is also clear that contracting edges

cannot create a set B such that G[B] is connected and |N(B)| > s, so we may apply the inductive

hypothesis to see that

m(G′, ω′′) ≥
1

s
(n− |A|) ≥

1

s
(n− s− 1) =

1

s
(n− 1)− 1.

Thus we can conclude that |S| ≥ 1 + 1
s
(n− 1)− 1 = 1

s
(n− 1), as required.

Again, the same argument can be applied to make a slightly stronger statement in the fixed case.

Proposition 2.5. Let G = (V,E) be a connected graph on n ≥ 1 vertices, fix v ∈ V , and let ω be a

proper colouring of G. Suppose that, for every set A ⊂ V such that v ∈ A and G[A] is connected, we

have |N(A)| ≤ s. Then

m(v)(G,ω) ≥
1

s
(n− 1).

We can immediately deduce lower bounds on Mc(G) and M
(v)
c (G).

Corollary 2.6. Let G = (V,E) be a connected graph and suppose that, for every set A ⊂ V such that

G[A] is connected, we have |N(A)| ≤ s. Then

Mc(G) ≥
1

s
(n− 1).

If, for some v ∈ V , we have |N(A)| ≤ s for all A ⊂ V such that v ∈ A and G[A] is connected, then

M (v)
c (G) ≥

1

s
(n− 1).

To see that these bounds are tight, consider a path on 2t + 1 vertices for some t ∈ N, whose vertices

are coloured alternately with colours 1 and 2. Here we have s = 2, and we can flood the path by changing

colour of the midpoint exactly t times.

2.2 Upper bounds

We start with a simple bound based on the initial colouring of G.

Proposition 2.7. Let G be any connected graph with colouring ω from colour-set C. Then, for any d ∈ C,

m(G,ω, d) ≤ n−Nd(G,ω).
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Proof: This result follows immediately from the fact that, provided at least one vertex does not yet have

colour d, it is always possible to play a move which increases the number of vertices having colour d by

at least one: changing the colour of a vertex that does not already have colour d to d may additionally give

some other vertices colour d, but all vertices that previously had colour d will be unchanged.

This result can also be reformulated in terms of the number of colours used in the initial colouring.

Proposition 2.8. Let G be any connected graph. Then

Mc(G) ≤ n−
⌈n
c

⌉
.

Proof: Let ω be any colouring of G with c colours. There must then be at least one colour d such that

Nd(G,ω) ≥
⌈
n
c

⌉
, implying by Proposition 2.7 that m(G,ω, d) ≤ n−

⌈
n
c

⌉
.

In the fixed version of the game, we do not necessarily benefit from having many vertices coloured

with the same colour initially. Consider a path on n vertices, whose vertices are coloured alternately with

colours 1 and 2, and fix the pivot to be one of the endpoints. By Proposition 2.5, we can see that we will

require at least n−1 moves to flood the graph, even though half the vertices already have the same colour.

Returning our attention to the free version, we can show that the two simple upper bounds above are in

fact tight for suitably coloured paths; we start by defining a useful family of colourings for paths.

Definition. Let P = v1 . . . vn be a path with edge-set E = {vivi+1 : 1 ≤ i ≤ n − 1}, C =
{d0, . . . , dc−1} a set of colours, and ω : V (P ) → C a proper colouring of P . The colouring ω is

said to be a C-rainbow colouring of P if there exists a permutation π : {0, . . . , c− 1} → {0, . . . , c− 1}
such that, for 1 ≤ i ≤ n, ω(vi) = dπ(i mod c).

Note that, up to relabelling of the colours, a C-rainbow coloured path must be as illustrated in Figure 2.

We say that a colouring ω of P is a rainbow colouring if it is a C-rainbow colouring for some colour-set

C.

d0 d1 d2 dc−1 d0 dc−1 d0 di

Fig. 2: A C-rainbow colouring of a path

We now demonstrate that any rainbow colouring of a path attains the upper bound from Proposition

2.7.

Lemma 2.9. Let P be a path on n vertices, and ω a rainbow colouring of P . Then, for any colour d,

m(P, ω, d) ≥ n−Nd(P, ω).

Proof: We proceed by induction on m(P, ω, d). For the base case, suppose that m(P, ω, d) = 0, which

is only possible if the path is already monochromatic with colour d; thus Nd(P, ω) = n and so n −
Nd(P, ω) = 0 ≤ m(P, ω, d), as required.
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Now suppose that m(P, ω, d) > 0 and that the result holds for any path P ′, colouring ω′ and colour

d′ such that m(P ′, ω′, d′) < m(P, ω, d). Let S be an optimal sequence of moves to flood P with colour

d (starting from the initial colouring ω), and let α be the final move of S. There are now two cases to

consider, depending on whether or not P is monochromatic immediately before α is played.

Suppose first that P is monochromatic in some colour d′ 6= d immediately before α is played. In this

case we know that m(P, ω, d′) ≤ m(P, ω, d) − 1 and so we may apply the inductive hypothesis to see

that

m(P, ω, d′) ≥ n−Nd′(P, ω).

Note that the number of vertices with colours d and d′ in a rainbow colouring can differ by at most one,

so we see that

m(P, ω, d) ≥ m(P, ω, d′) + 1

≥ n−Nd′(P, ω) + 1

≥ n− (Nd(P, ω) + 1) + 1

= n−Nd(P, ω),

as required.

Now suppose that P is not monochromatic immediately before α is played. In this case, before the final

move, there must be either two or three monochromatic segments; we denote these segments P1, . . . , Pℓ

(where ℓ ∈ {2, 3}), and without loss of generality we may assume that P2 does not have colour d before

α is played. For each i ∈ {1, . . . , ℓ}, let Si be the subsequence of S \ α consisting of moves played in

a monochromatic component that intersects Pi; note that these subsequences partition S \ α. Moreover,

observe that Si, played in Pi, must make Pi monochromatic; for each i 6= 2 the sequence Si must flood

Pi with colour d, while S2 must flood P2 with some colour d′ 6= d. Thus we see that, for i 6= 2,

m(Pi, ω, d) ≤ |Si|,

and also

m(P2, ω, d
′) ≤ |S2|.

Observe further that ω is a rainbow colouring of Pi so, as |Si| ≤ |S \ α| < m(P, ω, d) for all i, we can

then apply the inductive hypothesis to see that, for i 6= 2,

|Si| ≥ m(Pi, ω, d) ≥ |Pi| −Nd(Pi, ω),

and that

|S2| ≥ m(P2, ω, d
′) ≥ |P2| −Nd′(P2, ω) ≥ |P2| −Nd(P2, ω)− 1

as the number of vertices that initially have colours d and d′ can differ by at most one.
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This then implies that

m(P, ω, d) = |S|

= 1 +

ℓ∑

i=1

|Si|

= 1 + |S2|+
∑

i6=2

|Si|

≥ 1 + |P2| −Nd(P2, ω)− 1 +
∑

i6=2

(|Pi| −Nd(Pi, ω))

= |P | −Nd(P, ω),

as required.

As the number of occurrences of each colour in a rainbow colouring of an n-vertex path with c colours

is either ⌊n
c
⌋ or

⌈
n
c

⌉
, we see that Proposition 2.8 is also tight.

Corollary 2.10. Let Pt denote the path on t vertices, and assume that t ≥ c. Then

Mc(Pt) = t−

⌈
t

c

⌉
.

Moreover, this maximum possible number of moves is obtained with a rainbow colouring.

Since the tightness of these bounds is demonstrated by means of a long path, it is natural to ask how

much better we can do if we exclude the presence of such paths; in the next result we show that we can

bound the number of moves required in the fixed version in terms of only the total number of colours and

the length of the longest induced path starting at the pivot vertex.

Proposition 2.11. Let G = (V,E) be a connected graph, fix v ∈ V , and suppose that v has eccentricity

r, Then

M (v)
c (G) ≤ (c− 1)r.

Proof: For 1 ≤ i ≤ r, let Vi = {u ∈ V : d(u, v) = i}, and note that V = {v} ∪
⋃

1≤i≤r Vi. Now fix

any colouring ω ∈ Ω(V, {1, . . . , c}). We will argue, by induction on r, that there is a sequence of moves

played at v which will flood the graph. The base case, for r = 0, is trivial, so we will assume that r > 0
and that the result holds for all graphs with radius smaller than r.

Let C1 be the set of colours, other than ω(v), that occur at vertices of V1 underω; note that |C1| ≤ c−1.

Then, cycling v through all colours in C1 will create a monochromatic component containing (at least)

all of {v} ∪ V1; we will denote the new colouring of G resulting from these moves by ω′. Note that,

in the graph obtained from G by contracting monochromatic components with respect to ω′, the pivot

vertex has eccentricity at most r − 1, so by the inductive hypothesis we see that at most (c − 1)(r − 1)
further moves are required to flood G. Hence the total number of moves required to flood G is at most

(c− 1) + (c− 1)(r − 1) = (c− 1)r, as required.

In the free version, we can choose to play all moves at a vertex whose eccentricity is equal to the radius

of the graph; this gives the following immediate corollary.
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Corollary 2.12. Let G = (V,E) be a connected graph with radius r. Then

Mc(G) ≤ (c− 1)r.

We now argue that both of these bounds are tight. To do this, we will make use of a specific family of

trees: we define Ta,b to be the tree obtained from the star K1,a by subdividing every edge exactly b − 1
times (so Ta,b is composed of a paths on b+ 1 vertices, all having a common first vertex). We begin with

the fixed case.

Lemma 2.13. Let v be the unique vertex of T(c−1)r,r with degree (c− 1)r. Then

M (v)
c (G) ≥ (c− 1)r.

Proof: We define a c-colouring ω of V (T(c−1)r,r) such that m(v)(T(c−1)r,r, ω) ≥ (c − 1)r. We first

set ω(v) = 1. Now let Sc,r be the set of all sequences of elements from {1, . . . , c} of length r with the

following properties:

1. the first element of the sequence is not 1, and

2. no two consecutive elements of the sequence are the same.

Note that this definition implies that |Sc,r| = (c − 1)r. We will set our colouring ω to colour one of the

paths in our tree with each σ ∈ Sc,r: to colour a path with σ, we give the vertex adjacent to v the colour

that is the first element of σ, the next vertex the colour that is the second element, and so on. Note that the

conditions on elements of Sc,r ensure that this colouring ω is a proper colouring of Tc,r.

Let S be any sequence of moves played at v which floods G. Note that there must be a colour c1,

other than 1, that is none of the first c − 2 moves of S. We now define ci inductively: set Si−1 to be

the shortest initial segment of S that is a supersequence of c1, . . . , ci−1, and choose ci to be a colour, not

equal to ci−1, that does not appear in the first c−2 moves of the sequence S after Si−1 has been removed.

Observe that c1, . . . , cr is an element of Sc,r, so there is some path in Tc,r whose vertices (starting from

the vertex adjacent to v) are coloured, in order, c1, . . . , cr. In order to flood this path, we must play Sr;

but by construction, |Sr| ≥ (c− 1)r, so we must have |S| ≥ (c− 1)r, as claimed.

We now generalise this argument to the free version; we use an almost identical construction, but with

even more paths incident with the central vertex.

Lemma 2.14. Let Tr(c−1)r+1,r denote the tree obtained from K1,r(c−1)r+1 by subdividing each edge r−1
times. Then

Mc(Tr(c−1)r+1,r) ≥ (c− 1)r.

Proof: Once again, we set v to be the vertex of Tr(c−1)r+1,r with degree r(c − 1)r+1. We define a

colouring ω of V (Tr(c−1)r+1,r) by setting ω(v) = 1 and, for each σ ∈ Sc,r, we colour r(c − 1) of the

paths in our tree with σ.
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If all moves are played at v, we can use exactly the same reasoning as in the proof of Lemma 2.13, so

it remains only to argue that no sequence of fewer than r(c− 1) moves in which not all moves are played

at v can flood the tree. Suppose that some number α of the moves are not played in monochromatic

components containing v, with 1 ≤ α < (c− 1)r. Note that any such move cannot change the colour of

any vertex outside the path in which it is played. Thus, even if α = (c − 1)r − 1, there must still be at

least one path with each colouring from Sc,r whose colouring is not changed by any of these moves that

is not played at v; at least (c− 1)r moves played at v will be required to flood these remaining paths.

3 Graphs with high edge density

While we have seen that the upper bounds on Mc(G) that we derived in the previous section are tight, it is

natural to ask to whether they are only tight for graphs with few edges: intuitively, increasing the number

of edges in the graph should make it easier to flood the graph.

One simple question we might ask is as follows: given δ ∈ (0, 1), are the upper bounds in Propositions

2.11 and 2.12 tight for any graph G = (V,E) such that |E|/|V |2 ≥ δ? The answer to this question is yes:

we can obtain a graph with arbitrarily high edge-density by adding a large clique to the constructions used

in Lemmas 2.13 and 2.14, every vertex of which is adjacent to the central vertex of the tree. The addition

of this clique does not change the radius of the graph, and no matter how we colour the clique the same

number of moves will still be required to flood the whole graph.

However, this construction seems somewhat artificial: the value of Mc(G) is determined by some small

part of the graph whose edge-density remains small. A more meaningful line of investigation is therefore

to ask whether adding many edges (but no new vertices) to these constructions, in such a way that the

radius remains unchanged, will significantly reduce Mc(G).
In this section, we provide a partial answer to this question. If v denotes the central vertex of some tree

Ta,b, we define Vi = {u ∈ V (Ta,b) : d(v, u) = i − 1} for 1 ≤ i ≤ b + 1. Then the set of edges we can

add without changing the number of vertices in each Vi is precisely

{uw : u ∈ Vi, w ∈ Vj , |i− j| ≤ 1}.

Notice that the resulting graph is obtained from a blow-up of a path on b + 1 vertices by making each

vertex class (which is an independent set in the blow-up) into a clique. Since adding edges cannot increase

the number of moves required (by Corollary 1.2), the following result tells us that b+ c− b−1
c

− 2 moves

suffice to flood this graph in the free version.

Proposition 3.1. Let G = (V,E) be a blow-up of the path Pt on t vertices, and let ω : V (G) → C be a

colouring of G. Suppose that Q is a subpath of G such that every vertex of G has a neighbour on Q. Then

m(G,ω) ≤ m(Q,ω) + (c− 1),

and in particular

m(G,ω) ≤ t− 2−

⌈
t− 2

c

⌉
+ (c− 1).

Proof: Note that, by Corollary 1.2, mG(Q,ω) ≤ mQ(Q,ω), so it is possible to play at most mQ(Q,ω)
moves in G to create a monochromatic component A of some colour d ∈ C, where A contains all of Q;
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by our assumptions on Q, every vertex in G either belongs to A or has a neighbour in A. We can therefore

flood the remainder of G with at most c− 1 further moves, changing the colour of A repeatedly to give it

every colour in C \ {d}. This implies that

m(G,ω) ≤ m(Q,ω) + (c− 1),

as required. The second part of the result then follows immediately from Proposition 2.8, together with

the observation that a path containing precisely one vertex from every class except for the two end classes

has the required property.

The same argument gives an analogous result for the fixed version.

Proposition 3.2. Let G = (V,E) be a blow-up of the path Pt on t vertices, fix v ∈ V , and let ω :
V (G) → C be a colouring of G. If v belongs to one of the end classes of G, then

m(v)(G,ω) ≤ (t− 2) + (c− 1) = t+ c− 3;

if v does not belong to either end class, then

m(v)(G,ω) ≤ (t− 3) + (c− 1) = t+ c− 4.

The main result of this section is that, provided b is sufficiently large compared with the number of

colours, we can in fact improve on the simple bound of Proposition 3.1 in the free version: the number of

moves required to flood a blow-up of a long path is in fact the same as the number required, in the worst

case, to flood a path of the same length.

Theorem 3.3. Let G be a blow-up of a path on t vertices, and suppose that c ≥ 3 and t ≥ 2c10. Then

Mc(G) = t−

⌈
t

c

⌉
.

We have made no attempt to optimise the dependence of t on c in the statement of Theorem 3.3, and

indeed conjecture that the result is true for much smaller values of t. However, it is clear that some

dependence on c is necessary, as it follows from Proposition 2.1 that if G is a blow-up of a path on c
vertices in which every vertex class has size at least two and, for 1 ≤ i ≤ c, ω assigns colour i to both

vertices corresponding to the ith vertex of the path.

We also remark that we cannot improve on the bound of Proposition 3.2 in the fixed case: suppose that

the vertex classes are V1, . . . , Vt, with the pivot v ∈ V1, and that the classes V1, . . . , Vt−1 are alternately

coloured with colours 1 and 2, while Vt contains a vertex of every colour. It is easy to verify that we

require t+ c− 3 moves in this case.

The remainder of the section is devoted to the proof of Theorem 3.3. In Section 3.1 we consider a

generalisation of rainbow colourings to blow-ups of paths and obtain an upper bound on the number of

moves required in this case; in Section 3.2 we generalise our results to colourings in which all vertices

“blown up” from a single vertex receive the same colour; finally, in Section 3.3, we deal with arbitrary

colourings.
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First, we observe that the upper bound in Theorem 3.3 is optimal. Recall from the definition of a blow-

up of a graph that, if G is a blow-up of a path on t vertices, the vertices of G can be partitioned into

vertex-classes V1, . . . , Vt such that each class Vi is an independent set in G and uw is an edge in G if and

only if u ∈ Vi and w ∈ Vj where |i− j| = 1.

Lemma 3.4. Let G be a blow-up of a path on t vertices. Then

Mc(G) ≥ t−

⌈
t

c

⌉
.

Proof: We define a colouring ω : V (G) → {0, . . . , c − 1} by setting ω(v) = i mod c, where v ∈ Vi,

for 1 ≤ i ≤ t. Let G′ be the graph obtained from G by adding all edges within each Vi; by Corollary

1.2 this cannot increase the number of moves required to flood the graph. Moreover, it is clear that G′

with colouring ω is equivalent (contracting monochromatic components) to a path on t vertices with a

C-rainbow colouring. We therefore know from Corollary 2.10 that m(G′, ω) ≥ t−
⌈
t
c

⌉
, so we also have

m(G,ω) ≥ t−
⌈
t
c

⌉
, as required.

3.1 Rainbow colourings

We begin by defining an important restricted family of colourings for graphs that are blow-ups of paths.

Definition. Let G = (V,E) be a blow-up of the path Pt on t vertices, and let C = {d0, . . . , dc−1} be a

set of colours. We say that the colouring ω : V → C is a path colouring of G if there exists a function

f : {1, . . . , t} → C such that, for each 1 ≤ i ≤ t, we have ω(v) = f(i) for every v ∈ Vi.

Using this definition, we extend our definition of C-rainbow colourings to blow-ups of paths, to define

a subfamily of path colourings.

Definition. Let G = (V,E) be a blow-up of the path Pt on t vertices. Suppose that C = {d0, . . . , dc−1}
is a set of colours, and ω : V → C is a path colouring of V . The colouring ω is said to be a C-rainbow

colouring of G if the corresponding colouring of Pt is a C-rainbow colouring of the path.

As for paths, we say that ω is a rainbow colouring if it is a C-rainbow colouring for some colour-set C.

Note that the colouring used in the proof of Lemma 3.4 is a rainbow colouring.

We now prove that Theorem 3.3 holds if we restrict our attention only to rainbow colourings.

Lemma 3.5. Let G be a blow-up of the path Pt, and let ω be a C-rainbow colouring of G. Then, if

t ≥ c+ 2, we have

m(G,ω) ≤ t−

⌈
t

c

⌉
.

Proof: We prove the result by induction on t. We begin by considering several base cases, which together

cover the situation in which c+2 ≤ t ≤ 3c+1. As usual, we will denote by V1, . . . , Vt the vertex-classes

of G, and we may assume without loss of generality that Vi receives colour i mod c under ω.

For the first of these cases, suppose that c + 2 ≤ t ≤ 2c. We describe a strategy to flood G with

t−
⌈
t
c

⌉
= t− 2 moves; this strategy is illustrated in Figures 3 and 4. First, we play c− 1 moves at some

vertex v ∈ V2, giving this vertex colours 3, 4, . . . , c − 1, 0, 1 in turn; this will create a monochromatic
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1

V1

2

V2

v

. . . c − 1

Vc−1

0

Vc

1

Vc+1

2

Vc+2

3

Vc+3

. . . tc

Vt

c − 1 moves

1
2

v (colour 1)

. . . 1 1 1 2 3 . . . tc

1 move

2

2

v

. . . 2 2 2 2 3 . . . tc

t − (c + 2) moves

tc tc . . . tc tc tc tc tc . . . tc

Fig. 3: The first base case for Lemma 3.5: detailed version. We write tc for t mod c.

component containing v and all of V1 ∪ V3 ∪ · · · ∪ Vc+1. Note that the only vertices of V1 ∪ · · · ∪ Vc+1

that do not belong to this monochromatic component are in V2 and have colour 2. Now we change the

colour of this component to take colours 2, . . . , t mod c in turn; this will extend our monochromatic

component to contain all of Vc+2 ∪ · · · ∪ Vt and, as the component takes colour 2 at the start of this

subsequence of moves, all remaining vertices of V2 will also be flooded. Thus we have described a

sequence of c− 1 + t− (c+ 1) = t− 2 moves which floods G, as required.

For the second base case, suppose that 2c+1 ≤ t ≤ 3c. In this case we play t−
⌈
t
c

⌉
= t− 3 moves, all

at a vertex v ∈ Vc+1, as illustrated in Figure 5. We first change the colour of v to take colours 2, 3, . . . , 0
in turn; this creates a monochromatic component containing v and all of Vc ∪ Vc+2 ∪ · · · ∪ V2c. Next we

give v colours c − 1, c − 2, . . . , 2 in turn; at this point there is a monochromatic component containing

all of V2 ∪ · · · ∪ V2c except for some vertices in Vc+1 of colour 1. Playing one further move to give this

component colour 1 therefore creates a monochromatic component containing all of V1 ∪ · · · ∪ V2c+1. To

flood the remainder of G, we give this component colours 2, . . . , t mod c in turn. This strategy allows

us to flood G in a total of c− 1 + c− 2 + 1 + t− (2c+ 1) = t− 3 moves, as required.

For the final base case, suppose that t = 3c + 1. In this case we play t − 4 = t −
⌈
t
c

⌉
moves, all
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Vc+3

. . . tc

Vt

c − 1 moves

1 move

t − (c + 2) moves

Fig. 4: A reduced schematic of the first base case of Lemma 3.5. We write tc for t mod c.
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2
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0
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1
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v
2

Vc+2

3

Vc+3

. . . 0

V2c

1

V2c+1

2

V2c+2

. . . tc

Vt

c − 1 moves

c − 2 moves

1 move

t − (2c + 1) moves

Fig. 5: The second base case for Lemma 3.5

at a vertex v ∈ Vc+2, as illustrated in Figure 6. We begin by giving v colours 3, . . . , c − 1, 0, 1 in turn,

which creates a monochromatic component containing all of Vc+1 ∪ · · · ∪ V2c+1 except for vertices in

Vc+2 having colour 2. We play a further c− 1 moves in this component, giving it colours 0, c− 1, . . . , 2
in turn, which creates a monochromatic component containing all of V2 ∪ · · · ∪ V2c+2. Finally, we give

this component colours 3, . . . , c − 1, 0, 1 in turn, which floods the remainder of the graph. Thus we can

flood G with a total of c− 1 + c− 1 + c− 1 = 3c− 3 = t− 4 moves, as required.

From now on, therefore, we may assume that t ≥ 3c+ 2, and that the result holds for any graph that is

a blow-up of Ps for s < t. Using a similar strategy to that described in the second base case above, we

can play 2c− 2 moves which create a monochromatic component in G containing all of V1 ∪ · · · ∪V2c+1.

To achieve this, we play 2c− 1 moves at a vertex v ∈ Vc+1: we give this vertex colours 2, . . . , c − 1, 0,

followed by c− 1, . . . , 2, 1. Note that the resulting monochromatic component ends up with colour 1, and

that playing the sequence of moves described above in G will not change the colour of any vertex outside

V1 ∪ · · · ∪ V2c+1. Thus, after playing this sequence, the resulting coloured graph is equivalent to a graph

G′ with colouring ω′, where G′ is a blow-up of the path Pt−2c and ω′ is a C-rainbow colouring of G′.

Note that t− 2c ≥ c+ 2, so we can apply the inductive hypothesis to see that

m(G′, ω′) ≤ t− 2c−

⌈
t− 2c

c

⌉
= t− 2c+ 2−

⌈
t

c

⌉
.
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Fig. 6: The third base case for Lemma 3.5

This implies that

m(G,ω) ≤ 2c− 2 + t− 2c+ 2−

⌈
t

c

⌉
= t−

⌈
t

c

⌉
,

as required.

3.2 General path colourings

Before proving that the upper bound is also valid for path blow-ups with any path colouring (provided that

the path is sufficiently long compared with the number of colours), we need some auxiliary results. First

of all, it is straightforward to verify the following characterisation of path colourings that are not rainbow

colourings.

Proposition 3.6. Let G be a blow-up of the path Pt, let f : {1, . . . , t} → {0, . . . , c− 1} be any function

and C = {d0, . . . , dc−1} a set of colours, and let ω be defined by setting ω(u) = df(i) for all u ∈ Vi (for

1 ≤ i ≤ t). If ω is not a C-rainbow colouring of G, then there exists 1 ≤ i < j ≤ t such that j − i < c
and f(i) = f(j).

We also need another result relating the number of moves required to flood a path and a collection of

subpaths.

Lemma 3.7. Let P be a path on t vertices with colouring ω from colour-set C, where |C| = c, and let

Q1, . . . , Qr be a collection of disjoint subpaths of P . Then

m(P, ω) ≤ t−
r∑

i=1

(|Qi| − 1)−

⌈
t−

∑r
i=1(|Qi| − 1)

c

⌉
+

r∑

i=1

m(Qi, ω).

Proof: For each 1 ≤ i ≤ r, fix di ∈ C such that m(Qi, ω) = m(Qi, ω, d). We now define a new

colouring ω′ of P by setting

ω′(v) =

{
di if v ∈ Qi

ω(v) otherwise.
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Observe that P with colouring ω′ is equivalent to a path on at most t −
∑r

i=1(|Qi| − 1) vertices, so by

Corollary 2.10 we have

m(P, ω′) ≤ t−
r∑

i=1

(|Qi| − 1)−

⌈
t−

∑r

i=1(|Qi| − 1)

c

⌉
.

Let A be the set of maximal monochromatic components of P with respect to ω′, where each A ∈ A has

colour dA under ω′. Then, by Lemma 1.4, we have

m(P, ω) ≤ m(P, ω′) +
∑

A∈A

m(A,ω, dA)

≤ t−
r∑

i=1

(|Qi| − 1)−

⌈
t−

∑r

i=1(|Qi| − 1)

c

⌉
+

∑

A∈A

m(A,ω, dA).

So it remains to check that
∑

A∈A m(A,ω, dA) ≤
∑r

i=1 m(Qi, ω). Note that it is possible that more than

one of the subpaths Q1, . . . , Qr belongs to the same maximal monochromatic component with respect

to ω′; suppose that A1, . . . , As are the elements of A that contain at least one subpath Qi, and observe

therefore that s ≤ r. Moreover, it is clear that, for each 1 ≤ i ≤ s,

m(Ai, ω, dAi
) ≤

∑

Qj⊆Ai

m(Qj , ω, dj) =
∑

Qj⊆Ai

m(Qj , ω).

Observe also that, for A ∈ A with A /∈ {A1, . . . , As}, A is also a monochromatic component of P
with respect to ω, so we have m(A,ω, dA) = 0. Hence, as no subpath Qj belongs to more than one

monochromatic component Ai, we have

∑

A∈A

m(A,ω, dA) ≤
s∑

i=1

∑

Qj⊆Ai

m(Qi, ω) =

r∑

i=1

m(Qi, ω),

completing the proof.

We now use these auxiliary results to extend our upper bound to cover all initial colourings that are

path colourings. The key idea of the proof is to define a quantity that captures in a sense how far away

the initial colouring is from a rainbow colouring. If the initial colouring is sufficiently different from

a rainbow colouring, we can argue that we must be able to create a monochromatic end-to-end path

significantly more quickly than in the rainbow case, meaning that we are then able to flood any remaining

vertices greedily. In the event that the colouring does not differ so much from a rainbow colouring, we

demonstrate how we may perform a sequence of flooding moves that is not too long and which results in

a rainbow-coloured path blow-up, allowing us to apply the previous result.

Lemma 3.8. Let G be a blow-up of the path Pt, let c ≥ 3 and let f : {1, . . . , t} → {1, . . . , c} be

any function, and let ω be defined by setting ω(u) = f(i) for all u ∈ Vi (for 1 ≤ i ≤ t). Then, if

t ≥ 2c2(c− 1)3,

m(G,ω) ≤ t−

⌈
t

c

⌉
.
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Proof: Without loss of generality, we may assume that, for every 1 ≤ x < t, f(x) 6= f(x + 1), as

otherwise we could contract all vertices of Vx ∪ Vx+1 to a single vertex, obtaining an equivalent coloured

graph which is a blow-up of a path on t − 1 vertices. Now observe that, for any path colouring ω of G,

the graph G can be decomposed into subgraphs G1, . . . , Gr, where each Gi is a blow-up of the path Pti

and
∑r

i=1 ti = t, in such a way that ω is a C-rainbow colouring of Gi for each 1 ≤ i ≤ r; it is clear that

such a decomposition must exist since setting Gi = G[Vi] for 1 ≤ i ≤ t will do.

A more meaningful decomposition with the required properties can be constructed greedily, as illus-

trated in Figure 7. We set s1 = 1 and choose t1 to be the largest integer such that ω is a rainbow

colouring of G[V1 ∪ · · · ∪ Vt1 ]; given t1, . . . , ti, we set si+1 = 1 +
∑i

j=1 tj and choose ti+1 to be the

largest integer such that ω is a rainbow colouring of G[Vsi+1
∪ · · · ∪ Vsi+1+ti+1−1]. We call the decom-

position constructed in this way the greedy rainbow decomposition of (G,ω), and denote by grd(G,ω)
the collection of subgraphs in this decomposition. Then grd(G,ω) = {G1, . . . , Gr} (for some r ≥ 1),

where Gi = G[Vsi ∪ Vsi+1 ∪ · · · ∪ Vsi+1−1], and the greedy construction guarantees that, for each

1 ≤ i ≤ r = | grd(G,ω)|, there exists xi with max{si, si+1 − c + 1} ≤ xi ≤ si+1 − 1 such that

f(xi) = f(si+1).

1

V1

2

V2

3
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2
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3
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4

V6

5

V7

1
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2
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3
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4

V11

2

V12

4

V13

5

V14

1

V15

3

V16

2

V17

G1 G2 G3

Fig. 7: An example of a greedy rainbow decomposition

Suppose first that | grd(G,ω)| > 2c(c − 1). We will argue that in this case we can flood G in at

most m(G,ω) moves by first creating a monochromatic end-to-end path and then cycling through any

remaining colours.

Fix Q to be any path that contains precisely one vertex from each vertex class V1, . . . , Vt. Now, for each

1 ≤ i ≤ r − 1, set Qi to be the segment of Q induced by Q ∩ (Vxi
∪ · · · ∪ Vsi+1

). Observe that for each

Qi, by definition of xi, we have |Qi| ≤ c, and m(Qi, ω, f(xi)) ≤ |Qi|−2, by Proposition 2.7. We are not

quite able to apply Lemma 3.7, as for any i it is possible that Qi and Qi+1 intersect in one vertex; however,

it is clear that Qi ∩ Qi+2 = ∅ for any i, so it is certainly the case that {Q2i : 1 ≤ i ≤
⌊
| grd(G,ω)|

2

⌋
} is a

collection of disjoint subpaths of Q. Setting r = | grd(G,ω)|, Lemma 3.7 now tells us that

m(Q,ω) ≤ t−

⌊ r
2⌋∑

i=1

(|Q2i| − 1)−



t−

∑⌊ r
2⌋

i=1 (|Q2i| − 1)

c



+

⌊ r
2⌋∑

i=1

m(Q2i, ω)

≤ t−

⌈
t

c

⌉
− (c− 1),

since |Qi| ≤ c, m(Q2i, ω) ≤ |Qi| − 2, and r = | grd(G,ω)| ≥ 2c(c − 1). Proposition 3.1 then gives

m(G,ω) ≤ t−
⌈
t
c

⌉
, as required.
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So we may assume from now on that | grd(G,ω)| ≤ 2c(c − 1). In this case it suffices to prove the

following claim, by our initial assumption that t ≥ 2c2(c− 1)3.

Claim. If t ≥ c(c− 1)2| grd(G,ω)| then

m(G,ω) ≤ t−

⌈
t

c

⌉
.

The base case, for | grd(G,ω)| = 1, follows from Lemma 3.5 (since in this case ω must be a rainbow

colouring of G), so we may assume from now on that | grd(G,ω)| ≥ 2 and that the claim holds for any

such graph G̃ with colouring ω̃ such that | grd(G̃, ω̃)| < | grd(G,ω)|.
By our assumption that t ≥ c(c − 1)2| grd(G,ω)|, there must be some 1 ≤ i ≤ | grd(G,ω)| such that

ti ≥ c(c − 1)2 > 2c. Note that we may assume without loss of generality that i 6= | grd(G,ω)|: if the

only such subgraph in the decomposition is G| grd(G,ω)| then we can reverse the ordering of the vertex

classes so that we instead have t1 > 2c after re-ordering (the subgraphs of the decomposition may not be

the same as before, but our longest section can only increase in length in this new setting). We will now

consider the subgraph H0 = G[V (Gi) ∪ V (Gi+1)], where ω0 is the restriction of ω to V (H0).

We will describe how to play a sequence of moves in H0 which results in a rainbow colouring of this

subgraph; if this does not decrease the length of the underlying path too much (when monochromatic

components are contracted) we then invoke the inductive hypothesis, and otherwise we can complete the

proof directly. Specifically, we describe how to obtain a sequence of graphs (Hj)
s
j=1 (for some s ≥ 1),

with corresponding colourings (ωj)
s
j=1, with three key properties. Note that H0 itself is not included in

this sequence; it does not have the second property listed below.

We denote by U
(0)
1 , . . . , U

(0)
ℓ0

the vertex classes of H0, where ℓ0 = ti+ ti+1, and let f0 : {1, . . . , ℓ0} →

C be the function such that, for every 1 ≤ z ≤ ℓ0, ω0(u) = f0(z) for each u ∈ U
(0)
z . For each j, the

coloured graph (Hj , ωj) then has the following properties:

1. Hj is a blow-up of a path Pℓj , where ℓj ≥ ℓ0− (j+1)(c−1)−1, and ωj is a proper path colouring

of Hj ,

2. There exists xj ∈ {1, . . . , ℓj} such that, if the vertex classes of Hj are U
(j)
1 , . . . , U

(j)
ℓj

, then |U
(j)
xj | =

1 and ωj is a C-rainbow colouring of both Hj [U
(j)
1 ∪ · · · ∪ U

(j)
xj ] and Hj [U

(j)
xj ∪ · · · ∪ U

(j)
ℓj

] (as

illustrated in Figure 8), and

3. If the colouring ω′
j of V (H0) is defined by

ω′
j(v) =

{
ω0(v) if v ∈ U

(0)
z and either z < xj or z > ℓ0 − (ℓj − xj)

ωj(xj) otherwise,

then H0 with colouring ω′
j is equivalent to Hj with colouring ωj; moreover, if Aj is the set of

maximal monochromatic components of H0 with respect to ω′
j , where each A ∈ Aj has colour djA

under ω′
j , then

∑
A∈Aj

m(A,ω0, d
j
A) ≤ ℓ0 − ℓj − j − 1.
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U
(j)
1 U

(j)
2

. . . U
(j)
xj−1

U
(j)
xj

U
(j)
xj+1

. . . U
(j)
lj

ωj is a c-rainbow colouring of this subgraph

ωj is a c-rainbow colouring of this subgraph

Fig. 8: The structure of Hj

Informally, we repeatedly perform moves to create a single monochromatic component at the boundary

of the two rainbow-coloured segments (whose colour is consistent with both rainbow colourings), taking

care to make sure that we do not play too many moves or shorten the path too much at any stage. The key

idea is to exploit the fact that some colour must occur more frequently, as we traverse the subgraph from

left to right, than would happen under a rainbow colouring.

We describe in detail how to obtain the first pair (H1, ω1); the method for constructing further pairs is

very similar but somewhat simpler. Throughout, the only assumption we require, in addition to the fact

that (Hj , ωj) has the three stated properties, is that ωj is not a rainbow colouring of Hj .

By construction of grd(G,ω), we know that there is some y ∈ {ti − c + 2, . . . , ti} such that f0(y) =
f0(ti + 1): if not, then we would have chosen Gi to include at least one more vertex class. In fact, by

our assumption that no two consecutive vertex classes receive the same colour under ω, we know that

y ∈ {ti − c + 2, . . . , ti − 1}. Since ω0 is a C-rainbow colouring of Gi, and ti > 2c, we also know

that f0(y − c) = f0(y) = f0(ti + 1). Now set F0 = H0[U
(0)
y−c ∪ · · · ∪ U

(0)
ti+1]. We now describe a

sequence of moves to flood F0 with colour f(y) in at most ti + c − y − 1 moves, all played at some

vertex v0 ∈ U
(0)
y ; this sequence of moves is illustrated in Figure 9. We begin by giving v0 colours

f0(y− 1), . . . , f0(y− c+1) = f(y+1) in turn; this will create a monochromatic component containing

v0 and all of U
(0)
y−c+1∪· · ·∪U

(0)
y−1∪U

(0)
y+1, and so that the only vertices of U

(0)
y−c+1∪· · ·∪U

(0)
y+1 not linked

to this component have colour f0(y). We then give this component colours f0(y + 2), . . . , f0(ti + 1) =
f0(y) = f0(y − c) in turn, which will clearly flood all remaining vertices in F0. The total number of

moves played is therefore c−1+ ti−y = ti+c−y−1, implying that m(F0, ω0, f0(y)) ≤ ti+c−y−1.

f0(y − c) f0(y − c+ 1) . . . f0(y) f0(y + 1) . . . f0(ti) f0(ti + 1)

c − 1 moves

ti − y − 1 moves

1 move

Fig. 9: Flooding the subgraph F0

Now define H1 to be the graph obtained from H0 by contracting all vertices of F0 to a single vertex

w1, and ω1 to be the colouring of H1 that agrees with ω0 on all vertices of H1 except w1, and gives w1
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colour f0(y). We claim that H1 with colouring ω1 has the three properties listed above. It is clear that H1

is a blow-up of a path on

ℓ1 = ℓ0 − (ti + 1− y + c) ≥ ℓ0 − 2c+ 1 = ℓ0 − (1 + 1)(c− 1)− 1

vertices and that ω1 is a proper path colouring of H1, as required to satisfy the first condition. For the

second condition, set x1 = y − c, and note that U
(1)
x1 = {w1}. Further define f1 : {1, . . . , ℓ1} → C to

be the function so that ω1(u) = f1(z) for every u ∈ U
(1)
z , for 1 ≤ z ≤ ℓ1. Observe that f1(z) = f0(z)

for 1 ≤ z ≤ y − c, so it follows from the fact that ω0 is a C-rainbow colouring of H0[U
(0)
1 ∪ · · · ∪

U
(0)
ti

] ⊃ H0[U
(0)
1 ∪ · · · ∪ U

(0)
y−c] that ω1 is a C-rainbow colouring of H1[U

(1)
1 ∪ · · · ∪ U

(1)
x1

]. Moreover,

for y − c ≤ z ≤ ℓ1, we see that f1(z) = f0(z + ℓ0 − ℓ1), so the fact that ω0 is a C-rainbow colouring of

H0[U
(0)
ti+1 ∪ · · · ∪ U

(0)
ℓ0

] implies that ω1 is a C-rainbow colouring of

H1[U
(0)
ti+1−(ℓ0−ℓ1)

∪ · · · ∪ U
(0)
ℓ0−(ℓ0−ℓ1)

] = H1[U
(1)
x1

∪ · · · ∪ U
(1)
ℓ1

].

Thus the second condition holds. Finally, for the third condition, it is clear from the definition of ω1 that

H1 with colouring ω1 is equivalent to the graph H0 with colouring ω′
1 (with ω′

1 defined with respect to ω1

as in the statement of the third condition); note also that the only maximal monochromatic component of

H0 with respect to ω′
1 that is not also a maximal monochromatic component with respect to ω0 is F0 (and

it is straightforward to verify that F0 is indeed a maximal monochromatic component of H0 with respect

to ω′
1). Thus, if A1 denotes the set of maximal monochromatic components of H0 with respect to ω′

1 and

each A ∈ A1 has colour dA under ω′
1, we see that

∑

A∈A1

m(A,ω0, dA) = m(F0, ω0, ω1(x1))

= m(F0, ω0, f0(y))

≤ ti + c− y − 1

= (ti + 1− y + c)− 2

= ℓ0 − ℓ1 − 2,

as required to satisfy the third condition. This completes the definition of H1 and ω1.

Observe that we can continue applying the same general procedure (omitting the part of the process

that makes F0 monochromatic) to obtain a new pair (Hj+1, ωj+1) with the same three properties so long

as (Hj , ωj) has the three stated properties and wj is not a rainbow colouring of Hj . Suppose that we

construct a sequence of pairs (Hj , ωj) for 1 ≤ j ≤ s in this way, where s is as large as possible. By

maximality of s, we may assume that ωs is a rainbow colouring of Hs, as otherwise we could continue.

(Note that if our colouring is not a rainbow colouring, this imposes a minimum condition on the length of

the path, so we do not need to consider separately the possibility of our path becoming too short to apply

the procedure.) We define ω′ to be the colouring of G which agrees with ω on all vertices that do not

belong to H0, and with ω′
s on all vertices of H0. Note that the maximal monochromatic components of G

with respect to ω′ that are not also maximal monochromatic components with respect to ω are precisely

the maximal monochromatic components of H0 with respect to ω′ = ω′
s (and recall also that ω0 is the



22 Kitty Meeks, Dominik K. Vu

restriction of ω to H0). Thus we can apply Lemma 1.4 to see that

m(G,ω) ≤ m(G,ω′) +
∑

A∈As

m(A,ω0, d
s
A)

≤ m(G,ω′) + ℓ0 − ℓs − s− 1 (3.1)

by the third condition on (Hs, ωs). There are now two cases to consider, depending on the value of s.

First, suppose that s ≥ c(c−1). In this case we argue that we can continue by creating a monochromatic

end-to-end path and then cycling through any remaining colours. Let Q be a path in G which contains

precisely one vertex from each class. Note that there will be a segment of ℓ0− ℓs+1 consecutive vertices

on Q which have the same colour under ω′ so, under this colouring, Q is equivalent to a path of length

|Q| − ℓ0 + ℓs; Proposition 3.1, together with Corollary 2.10, therefore implies that

m(G,ω′) ≤ t− ℓ0 + ℓs −

⌈
t− ℓ0 + ℓs

c

⌉
+ c− 1.

Substituting this in (3.1) and using both the fact that ℓs ≥ ℓ0 − (s+ 1)(c− 1)− 1 (the first condition on

(Hs, ωs)) and the assumption that s ≥ c(c− 1), this gives

m(G,ω) ≤ t−

⌈
t

c

⌉
,

as required.

Now suppose instead that s < c(c − 1); in this case we invoke the inductive hypothesis. Since ωs is a

C-rainbow colouring of H0, it is clear that | grd(G,ω′)| < | grd(G,ω)|. Moreover, G with colouring ω′

is equivalent to a graph G̃ with colouring ω̃, where G̃ is a blow-up of a path on r vertices with

r = t− (ℓ0 − ℓs)

> c(c− 1)2| grd(G,ω′)|

(making use of our assumption on the value of t and the fact that | grd(G,ω′)| ≤ | grd(G,ω)| − 1). Thus

we can apply the inductive hypothesis to see that the claim holds for G with colouring ω′, implying that

m(G,ω′) ≤ t− (ℓ0 − ℓs)−

⌈
t− (ℓ0 − ℓs)

c

⌉
.

Substituting into (3.1), then gives the required result, completing the proof of the claim, and hence proving

the result.

3.3 Arbitrary colourings

In this section we show that our upper bound can be extended to all initial colourings. The structure of this

proof is in some ways similar to the previous result: we define a notion of the distance of a colouring from

a path colouring, and then consider two cases. If the colouring differs sufficiently from a path colouring,

we can quickly create an end-to-end path and flood any remaining vertices greedily, whereas if our initial

colouring is sufficiently close to a path colouring we demonstrate how to play a sequence of moves that

results in a path-coloured graph, allowing us to apply the previous result.
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Lemma 3.9. Let G be a blow-up of the path Pt, where t ≥ 2c10. Then

Mc(G,ω) ≤ t−

⌈
t

c

⌉
.

Proof: let ω be any colouring of G from colour-set C = {1, . . . , c}. We begin by setting

θ(G,ω) = |{i : 1 ≤ i ≤ t and ω is not constant on Vi}|.

Suppose first that θ(G,ω) ≥ c(c− 1), and set

nj = |{i : 1 ≤ i ≤ t and ∃u ∈ Vi with ω(u) = j}.

Since there are θ(G,ω) vertex classes that each contain vertices of at least two distinct colours, we see

that
c∑

j=1

nj ≥ t+ θ(G,ω) ≥ t+ c(c− 1).

Thus there exists some j ∈ {1, . . . , c} such that nj ≥
⌈
t
c

⌉
+(c− 1). Observe therefore that there exists a

path Q containing precisely one vertex from each vertex class V1, . . . , Vt and so that at least
⌈
t
c

⌉
+(c−1)

vertices onQ have colour j underω. It then follows from Proposition 2.7 that m(Q,ω) ≤ t−
⌈
t
c

⌉
−(c−1),

so Proposition 3.1 gives

m(G,ω) ≤ t−

⌈
t

c

⌉
− (c− 1) + (c− 1) = t−

⌈
t

c

⌉
,

as required.

Thus from now on we will assume that θ(G,ω) < c(c − 1). In this case it clearly suffices to prove the

following claim, since we are assuming that t ≥ 2c10 > 2c8(θ(G,ω) + 1).

Claim. Suppose that t > 2c8(θ(G,ω) + 1). Then

m(G,ω) ≤ t−

⌈
t

c

⌉
.

We prove the claim by induction on θ(G,ω). In the base case, for θ(G,ω) = 0, we know that ω
must in fact be a path-colouring of G and so the result follows immediately from Lemma 3.8. Thus we

may assume that θ(G,ω) ≥ 1 and that the result holds for any graph G′ with colouring ω′ such that

θ(G′, ω′) < θ(G,ω).
Since t ≥ 2c8(θ(G,ω) + 1), there exists some vertex class Vi such that ω is not constant on Vi, but for

1 ≤ j ≤ 2c8 we either have ω constant on every Vi+j , or else ω is constant on every Vi−j ; reversing the

order of the vertex classes if necessary, we may assume without loss of generality that we have ω constant

on every Vi+j for 1 ≤ j ≤ 2c8.

The first step in our strategy to flood G is to perform a series of moves in the (2c5 + 1)(c2(c− 1) + 1)
classes to the right of Vi, resulting in a colouring of these vertices that makes the subgraph they induce
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(after contracting monochromatic components) equivalent to a path. Note that ω defines a path colouring

on the subgraph induced by these classes.

We split this subgraph into c2(c − 1) + 1 consecutive blocks, B1, . . . , Bc2(c−1)+1, where each block

consists of the subgraph induced by 2c5 + 1 consecutive vertex classes. As the restriction of ω to any

block Bℓ is a path colouring, it follows from Lemma 3.8 that Bℓ can be made monochromatic in some

colour dℓ with at most

2c5 + 1−

⌈
2c5 + 1

c

⌉
= 2c5 − 2c4

moves. Let ω be the colouring of V (G) that assigns dℓ to every vertex of Bℓ (for 1 ≤ ℓ ≤ c2(c− 1) + 1),

and agrees with ω elsewhere. Then Lemma 1.4 tells us that

m(G,ω) ≤ m(G,ω) + (c2(c− 1) + 1)(2c5 − 2c4). (3.2)

We now consider the graph G′, obtained by contracting monochromatic components of G with respect

to ω, and the corresponding colouringω′. Note that G′ is a blow-up of a path on t′ ≤ t−2c5(c2(c−1)+1)

vertices. In the remainder of the proof we will argue that in factm(G′, ω′) ≤ t′−
⌈
t′

c

⌉
; it is straightforward

to check that substituting this bound on m(G,ω) in (3.2) gives the required result.

We now prove this bound on m(G′, ω′). Recall from the construction of G′ that, if the vertex classes

of G′ are U1, . . . , Ut′ , we have |Ui+ℓ| = 1 for 1 ≤ ℓ ≤ c2(c − 1) + 1. We may also assume without loss

of generality that the colours assigned to vertices of Ui by ω′ are {1, . . . , r} for some r ≥ 2.

If every colour in {1, . . . , r} is assigned to one of the first c vertex classes to the right of Ui by ω′,

then we can create a monochromatic component containing all of Ui and the c vertex classes to its right

using at most c−1 moves: we give the unique vertex in Ui+1 the colours of Ui+2, Ui+3, . . . , Ui+c in turn.

Otherwise, there must be some d ∈ {1, . . . , r} that is not assigned to any of the first c vertex-classes to the

right of Ui by ω′. Then, by Proposition 2.7, we can perform an “efficient flooding sequence” in which we

flood this subpath on c vertices with at most c−2 moves (as some colour must be repeated), thus reducing

the length of an end-to-end path by c − 1. We continue in this way until either we have performed an

efficient flooding operation c(c − 1) times, or else we are able, by the method described above, to flood

Ui and the c vertex classes immediately to the right with c− 1 moves.

In the latter case, we have played a(c− 2)+ (c− 1) moves, for some a < c(c− 1), to create a coloured

graph equivalent to a graph G̃ with colouring ω̃, where G̃ is a blow-up of a path on t′′ = t′−(a(c−1)+c)

vertices and θ(G̃, ω̃) < θ(G,ω).(i) It is straightforward to verify that t′′ ≥ 2c8(θ(G̃, ω̃) + 1) and so it

follows from the inductive hypothesis that

m(G̃, ω̃) ≤ t′′ −

⌈
t′′

c

⌉
= t′ − (a(c− 1) + c)−

⌈
t′ − (a(c− 1) + c)

c

⌉
;

the required bound on m(G′, ω′) then follows easily from the fact that m(G′, ω′) ≤ a(c− 2)+ (c− 1)+

m(G̃, ω̃).
It remains to consider the case that we terminate after performing c(c− 1) efficient flooding sequences.

In this case, we have (after contracting monochromatic components) reduced the length of an end-to-end

(i) In fact the moves we have played might have flooded a larger component than is described here; but by Lemma 1.4 this can only

help us.
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path by c(c−1)2, with at most c(c−1)(c−2) moves. Thus, by Proposition 3.1 we can flood the resulting

graph with a further

t′ − c(c− 1)2 −

⌈
t′ − c(c− 1)2

c

⌉
+ c− 1 = t′ −

⌈
t′

c

⌉
− c(c− 1)(c− 2)

moves, from which the bound on m(G′, ω′) follows immediately, completing the proof.

4 Conclusions and Open Problems

We have given several upper and lower bounds on the maximum number of moves, taken over all possible

colourings, that may be required to flood a given graph G in both the fixed and free variants of the game,

and we have demonstrated that these bounds are tight for suitable families of trees.

Motivated by the intuition that adding a large number of edges to the graph should reduce the num-

ber of moves required in the worst case, we also demonstrate that the number of moves required in the

worst case (in the free version) to flood a blow-up of a sufficiently long path is the same as the number

required to flood a path of the same length. If we add all possible edges to a tree of radius r that do not

reduce the length of a shortest path between any vertex u and the vertex v of minimum eccentricity, the

resulting graph contains a blow-up of a path of length r+1 as a subgraph, so our result on path blow-ups

demonstrates that adding edges in this way gives a dramatic reduction in the worst-case number of moves

required to flood the graph. It would be interesting to investigate precisely how many edges must be added

to a tree of radius r to decrease the worst-case number of move required.

Our results provide a partial answer to a question raised by Meeks and Scott in [33], that of determining

the maximum number of moves, taken over all possible colourings, that may be required to flood a given

graph G. This general question remains open, and given the emphasis on k × n grids in the existing

algorithmic analysis of flood-filling games, a natural first direction for further research would be that of

determining the exact value of Mc(G) and M
(v)
c (G) in the case that G is a k × n grid. Using Proposi-

tion 2.7 and Lemma 2.9, we only have n−
⌈
n
c

⌉
and n−

⌈
n
c

⌉
+ (c− 1)

⌈
k−1
2

⌉
as lower and upper bounds

in the free version, respectively; the bounds for the fixed version are even worse.

The parameterised complexity of determining whether a given coloured graph can be flooded with a

specified number of moves has been studied with a wide range of different parameterisations (as in, for

example, [18]), but this investigation of extremal properties gives rise to a new natural parameterised

problem: given a graph G, for which we know the value of Mc(G), and a colouring ω of G, what is the

(parameterised) complexity of determining whether G with initial colouring ω can be flooded in at most

Mc(G)− k moves, where k is the parameter? It can easily be deduced from the hardness proof for 2× n
boards in [33] that determining the minimum number of moves required to flood a blow-up of a path is

NP-hard, so it is already meaningful to consider this parameterised problem for graphs drawn from the

classes considered here.
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