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Bounds for the minimum oriented diameter
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We consider the problem of determining an orientation with minimum diameterMOD(G) of a connected and bridge-
less graph G. In 2001 Fomin et al. discovered the relation MOD(G) ≤ 9γ(G) − 5 between the minimum oriented
diameter and the size γ(G) of a minimum dominating set. We improve their upper bound to MOD(G) ≤ 4γ(G).
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1 Introduction
An orientation of an undirected graph G is a directed graph whose arcs correspond to assignments of
directions to the edges of G. An orientation H of G is strongly connected if every two vertices in H are
mutually reachable in H . An edge e in an undirected connected graph G is called a bridge if G − e is
not connected. A connected graph G is bridgeless if G− e is connected for every edge e, i. e. there is no
bridge in G.

Conditions when an undirected graph G admits a strongly connected orientation were determined by
Robbins (1939). A necessary and sufficient condition is that G is connected and bridgeless. Chung et al.
(1985) provided a linear-time algorithm for testing whether a graph has a strong orientation and finding
one if it does.

Definition 1.1 Let
→
G be a strongly connected directed graph. By diam(

→
G) we denote the diameter of

→
G.

For a simple connected graph G without bridges we define

MOD(G) := min
{
diam(

→
G) :

→
G is a strongly connected orientation of G

}
,

which we call the minimum oriented diameter of a simple graph G. By γ(G) we denote the smallest
cardinality of a dominating set of G.
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We are interested in graphs G which have a large minimum oriented diameter MOD(G) relative to
their domination numbers γ(G). To this end we set

Ξ(γ) := max {MOD(G) : G a connected, bridgeless graph with γ(G) ≤ γ} .

The aim of this paper is to prove a better upper bound on Ξ(γ) in terms of the domination number γ(G).
For bridgeless connected graphs G with γ = γ(G) the previously best known result was (i):

Theorem 1.2 (Fomin et al. (2004a))

MOD(G) ≤ Ξ(γ) ≤ 9γ − 5.

Our main results are

Theorem 1.3
MOD(G) ≤ Ξ(γ) ≤ 4γ

and

Conjecture 1.4

Ξ(γ) =

⌈
7γ + 1

2

⌉
.

Clearly we have that Ξ(γ) is weak monotone increasing, i. e. Ξ(γ + 1) ≥ Ξ(γ) for γ ∈ N. First we
observe that we have Ξ(γ) ≥

⌈
7γ+1

2

⌉
. For this purpose we consider the following set of examples, where

we have depicted the vertices of a possible minimum dominating set by solid black circles:
To formalize this construction we consider a path Pγ = (u1, . . . , uγ), where γ ∈ N is the domination

number of the resulting graph Gγ . In Pγ we replace the vertices u1 and uγ by the graph on the left hand
side of Figure 2. Finally we replace each edge {ui, ui+1} by the graph on the right hand side of Figure 2.
In Figure 1 these graphs are depicted for γ = 1, 2, 3, 4. Obviously we have MOD(Gγ) =

⌈
7γ+1

2

⌉
for all

γ ∈ N. In what follows we always depict vertices in a given dominating set by a solid black circle.

1.1 Related results
Additionally to an upper bound of MOD(G) in dependence of γ(G) one is also interested in an upper
bound in dependence of the diameter diam(G). Here the best known result is given by Chvátal and
Thomassen (1978):

Theorem 1.5 (Chvátal and Thomassen, 1978) Let g(d) denote the best upper bound onMOD(G) where
d = diam(G) and G is connected and bridgeless. If G is a connected and bridgeless graph then we have

1

2
diam(G)2 + diam(G) ≤ g(d) ≤ 2 · diam(G) · (diam(G) + 1).

(i) In Fomin et al. (2001) the upper bound MOD(G) ≤ 5γ − 1 was announced. Unfortunately, the proof presented in the
proceedings version had a gap whose correction was a bit lengthy. After that one of the authors found a shorter proof which is so
far unpublished Matamala (2009).
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Fig. 1: Examples with large minimum oriented diameter in dependence of the domination number γ(G) – the bad
examples.
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Fig. 2: Building bricks of the bad examples.

In Chvátal and Thomassen (1978) it was also shown that we have g(2) = 6. Examples attaining this
upper bound are given by the Petersen graph and by the graph obtained from K4 by subdividing the three
edges incident to one vertex. Recently in Kwok et al. (submitted) 9 ≤ g(3) ≤ 11 was shown.

The oriented diameter is trivially greater than or equal to the diameter. Graphs achieving equality are
called tight. In Koh and Tay (1999) some Cartesian products of graphs are shown to be tight. For n ≥ 4 the
n-cubes are tight McCanna (1988). The discrete tori Cn×Cm which are tight are completely determined
in König et al. (1998).

The origin of this problem dates back to 1938, when Robbins (1939) proved that a graph G has a
strongly connected orientation if and only if G has no bridge. As an application one might think of
making streets of a city one-way or building a communication network with links that are reliable only in
one direction.

There is a huge literature on the minimum oriented diameter for special graph classes, see e. g. Koh
and Ng (2005); Koh and Tan (1996a,b); Koh and Tay (1997, 2000a,b, 2001, 2006); Plesnı́k (1985).

From the algorithmic point of view the following result is known:

Theorem 1.6 (Chvátal and Thomassen (1978)) The problem whether MOD(G) ≤ 2 is NP-hard for
a given graph G.
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We remark that the proof is based on a transformation to the problem whether a hypergraph of rank 3
is two-colorable.

2 Preliminaries
A vertex set D ⊆ V (G) of a graph G is said to be a dominating set of G if for every vertex u ∈ V (G)\D
there is a vertex v ∈ D such that {u, v} ∈ E(G). The minimum cardinality of a dominating set of a
graph G is denoted by γ(G). If P is a path we denote by |P | its length which equals the number of its
edges. If multiple vertices are allowed we speak of a walk, i. e. by a path we mean a simple path without
multiple vertices. A simple cycle C of a graph G = (V,E) is a list (v0, . . . , vk) of vertices in V , where
v0 = vk, |{v0, . . . , vk−1}| = k and {vi, vi+1} ∈ E for 0 ≤ i < k. Similarly |C| denotes the length of C
which equals the number of its edges and vertices. By dG(x, y) we denote the distance between vertices
x and y, where we drop the subscript whenever the graph is clear from the context. As abbreviation of an
edge {u, v} directed from u to v we use the notation of an arc [u, v]. For further standard graph-theoretic
terminology we refer the reader to Diestel (2000).

Our strategy to prove bounds on Ξ(γ) is to apply some transformations on connected and bridgeless
graphs attaining Ξ(γ) to obtain some structural results. Instead of considering graphs G from now on we
will always consider pairs (G,D), where D is a dominating set of G.

Definition 2.1 For a graphG and a dominating setD ofGwe call {u, v} ⊆ V (G)\D an isolated triangle
if there exists a w ∈ D such that all neighbors of u and v are contained in {u, v, w} and {u, v} ∈ E(G).
We say that the isolated triangle is associated with w ∈ D.

The graph on the left hand side of Figure 2 depicts an isolated triangle which is associated with ui.

Definition 2.2 A pair (G,D) is in standard form if

(1) G = (V,E) is a simple connected graph without a bridge,

(2) D is both an independent set and a minimum dominating set of G,

(3) each vertex u ∈ V \D has a unique neighbor f(u) in D,

(4) G is edge-minimal, meaning one cannot delete an edge in G without creating a bridge, destroying
the connectivity or destroying the property of D being a dominating set, and

(5) for |D| = γ(G) ≥ 2 every vertex in D is associated with exactly one isolated triangle and for
|D| = γ(G) = 1 the vertex in D is associated with exactly two isolated triangles.

Lemma 2.3
Ξ(γ) = max {MOD(G) : |D| ≤ γ, (G,D) is in standard form} .

Proof: For a given γ ∈ N we start with a connected, bridgeless graph G1 attaining Ξ(γ) = MOD(G1)
and minimum domination number γ(G1). Let D be an arbitrary minimum dominating set of G1. Our
aim is to apply some graph transformations to (G1, D) to obtain a pair (G5, D) in standard form fulfilling
MOD(G5) ≥MOD(G1).

At the start condition (1) is satisfied for (G1, D). For each edge {d1, d2} in G1 with d1, d2 ∈ D we
replace the path (d1, d2) by the path (d1, u1, u2, d2), where u1, u2 are new vertices, see the following
picture:
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and (2).
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Fig. 3: Graph transformation to fulfill condition (3) of Definition 2.2

Now we look at all edges e of G3. If G3 − e is bridgeless connected with dominating set D we
iteratively delete e fromG3 until no such edge exists. The resulting pair (G4, D4) fulfills γ(G4) = γ(G3)
and MOD(G4) ≥ MOD(G3) as γ(G4) < |D| would be a contradiction to the minimality of D. Thus
(G4, D) satisfies conditions (1)-(4).

Finally we consider all vertices d ∈ D. If |D| = 1 we set k = 2 otherwise we set k = 1. If there are
k′ < k isolated triangles associated with d we add k− k′ isolated triangles. If there are more than k′ > k
isolated triangles associated with d we delete k′ − k isolated triangles. For two vertices x and y in two
different isolated triangles being associated with the same vertex v we have d(x, y) ≤ 4 in every strongly
connected orientation, which yields MOD(G5) ≥ MOD(G4) for the resulting graph G5. It is easy to
check that (G5, D) satisfies conditions (1)-(5). 2

Let G be a connected and bridgeless undirected graph, D be a dominating set of G and H be a strongly
connected orientation of G. By diami(H,D) we denote

max
{
dH(u, v) :

∣∣{u, v} ∩ (V (H)\D)
∣∣ = i

}
.

Clearly we have diam(H) = max
{
diam0(H,D), diam1(H,D), diam2(H,D)

}
. Now we refine a

lemma from Fomin et al. (2001):
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Lemma 2.4 Let G′ and G be connected, bridgeless graphs such that G is a subgraph of G′ and D is
a dominating set of both G′ and G. Then for every strongly connected orientation H of G there is an
orientation H ′ of G′ such that

diam(H ′) ≤ max
{
diam0(H,D) + 4, diam1(H,D) + 2, diam2(H,D)

}
.

Proof: (We rephrase most of the proof from Fomin et al. (2001).) We adopt the direction of the edges
from H to H ′. For the remaining edges we consider connected components Q of G′\V (G) and direct
some edges having ends in Q as follows.

If Q consists of one vertex x then x is adjacent to at least one vertex u in D and to another vertex v 6= u
(the graphG is bridgeless andD is a dominating set). If also v is an element ofD then we direct one edge
from x and the second edge towards x. Otherwise v is in V \D and we direct the edges {x, u}, {v, x}
according to the direction of {f(v), v}: If {f(v), v} is directed towards v then we direct {x, u} from x
and {v, x} towards x. Otherwise we use the opposite direction for both edges. If there are more edges
incident with x (in both cases) we direct them arbitrarily. Then, we have assured the existence of vertices
u′, v′ ∈ D such that dH′(x, v′) ≤ 1 and dH′(u′, x) ≤ 2 or the other way round, i. e. dH′(x, v′) ≤ 2 and
dH′(u′, x) ≤ 1.

Suppose that there are at least two vertices in the connected component Q. Choose a spanning tree T
in this component rooted in a vertex v. We orient edges of this tree as follows: If a vertex x of the tree
has odd distance from v, then we orient all the tree edges incident to x towards x and all edges between
x and V (G) from x outwards. If a vertex x of the tree has even distance from v, then we orient all edges
between x and V (G) towards x, see Figure 1 in Fomin et al. (2001). The rest of the edges in the connected
component Q are oriented arbitrarily.

In such an orientation H ′, for every vertex x ∈ Q there are vertices u, v ∈ D such that dH′(x, v) ≤ 2
and dH′(u, x) ≤ 2. Therefore, for every x, y ∈ V (G′) the distance between x and y in H ′ is at most

max
{
diam0(H,D) + 4, diam1(H,D) + 2, diam2(H,D)

}
. 2

Due to the isolated triangles being associated with the vertices of the dominating set D, for every pair
(G′, D) in standard form, there exists an orientation H of G such that

MOD(G′) = diam(H ′) = max
{
diam0(H,D) + 4, diam1(H,D) + 2, diam2(H,D)

}
. (1)

If we say that H is a minimal orientation of (G′, D) we mean an orientation that satisfies Equation (1).
Fomin et al. (2001) described a nice construction to obtain such a subgraph G for a given connected,

bridgeless graphG′ fulfilling |V (G)| ≤ 5·γ (G′)−4. Although their analysis contains a gap as mentioned
in the introduction, we can utilize their construction for our proof.

Construction 2.5 For γ (G′) = 1 we may simply choose the single vertex in D as our subgraph G. Now
we assume |D| = γ(G′) ≥ 2. Iteratively, we construct a tree Tk for k = 1, . . . , |D|. The tree T1 consists
of one vertex x1 in D. To construct Tk+1 from Tk we find a vertex xk+1 in D\V (Tk) with minimum
distance to Tk. The tree Tk+1 is the union of Tk with a shortest path from xk+1 to Tk. Since D is a
dominating set this path has length at most 3. We say that the edges of this path are associated with xk+1.
At the last step we obtain a dominating tree T with D ⊆ T and with |V (T )| ≤ 2(|D| − 1) + |D|.

In order to transform T into a connected and bridgeless graph we construct a sequence of subgraphs
Gk for k = 1, . . . , |D|. We say that xj ∈ D is fixed in Gk if no edge associated with xj is a bridge in Gk.
Notice that x1 is fixed in T because it does not have any associated edge.
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We set G1 = T . Assume we have constructed the subgraph Gk. If xk+1 is already fixed in Gk we set
Gk+1 = Gk. If xk+1 is not fixed in Gk we add a subgraph to Gk to obtain Gk+1. Let Pk be the path
added to Tk to obtain Tk+1 and e ∈ Pk be the bridge in Gk whose vertices have maximum distance to
xk+1. By removing e we obtain two connected subgraphs H and H ′. Next we choose a shortest path R in
G′−e connectingH withH ′ and addR toGk. SinceD ⊆ V (T ) andD is a dominating set,R has length
at most three. By repeating this step for the at most two remaining bridges in Pk we obtain a subgraph
Gk+1 where xk+1 is fixed.

By using an arbitrary strongly connected orientation of G and by showing |V (G|D|)| ≤ ∆(γ) in Con-
struction 2.5 for a function ∆ : N→ N one can conclude MOD(G) ≤ ∆(γ) + 4− 1 using Lemma 2.4,
since a shortest path does contain every vertex at most once. ∆(γ) = 5 · γ − 4 seems to be best possible,
see Fomin et al. (2001) and Figure 4.
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Fig. 4: The two possible subgraphs for γ(G) = 2.

With Lemma 2.4 in mind we would like to restrict our investigations to connected, bridgeless subgraphs
containing the dominating set.

Definition 2.6 For a pair (G′, D) in standard form we call G a minimal subgraph of (G′, D), if

(1) D is a dominating set for G,

(2) G is a connected and bridgeless subgraph of G′, and

(3) G is vertex and edge-minimal with respect to properties (1) and (2).

Lemma 2.7
Ξ(1) = 4 and Ξ(2) = 8.

Proof: First we observe that the examples from Figure 1 yield Ξ(1) ≥ 4 and Ξ(2) ≥ 8. For the other
direction let (G,D) be a pair in standard form attaining MOD(G) = Ξ(γ(G)). For γ(G) = 1 we have
|D| = 1, choose the single vertex of D as a subgraph and apply Lemma 2.4.

For γ(G) = 2 we may assume D = {d1, d2}. Since dG(d1, d2) = 3 there is a path (d1, v1, v2, d2) in
G. Let (d1, u1, . . . , ur, d2) be a shortest path from d1 to d2 in G′ := G−

{
{v1, v2}

}
. From considering

the f(ui) we conclude r = 2. If {v1, v2} ∩ {u1, u2} = ∅, then the graph on the left-hand side of Figure 4
is a minimal subgraph ofG. Otherwise we assume u1 = v1 and u2 6= v2. Now let (d1, w1, . . . , wr, d2) be
a shortest path from d1 to d2 in G′′ := G −

{
{d1, v1}

}
. Due to the minimality we have f(wr−1) = d1.

If wr−1 6= v1 then either {v1, v2} ∩ {wr−1, wr} = ∅ or {v1, u2} ∩ {wr−1, wr} = ∅, so that the graph on
the left-hand side of Figure 4 is a minimal subgraph of G. In the remaining case we have wr−1 = v1 and
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vertex wr−2 is a neighbor of wr−1 and d1. Thus the graph on the right-hand side of Figure 4 is a minimal
subgraph of G.

Thus, up to symmetry, there are two possible minimal subgraphs for γ(G) = 2 given in Figure 4.
By H we denote the depicted corresponding orientation of the edges. Since in both cases we have
diam0(H,D) ≤ 4 and diam1(H,D), diam2(H,D) ≤ 5 we can apply Lemma 2.4 to obtain the stated
result. 2

Lemma 2.8
Ξ(3) = 11.

Proof: The third example from Figure 1 yields Ξ(3) ≥ 11. Construction 2.5 allows us to explicitly
construct a finite list of possible subgraphs G for γ = 3. We can assume that these graphs G are minimal
subgraphs of a suitable pair (G′, D) in standard form and so we can drop all graphs which are not minimal
(during the construction). Doing this we obtain a list of non-isomorphic minimal subgraphs. Since this
case differentiation is a bit laborious, but not difficult, we outsource it to Section B in the appendix. In
Figure 5 we give suitable orientations for all cases. It remains to check that we have diam0(H,D) ≤ 7,
diam1(H,D) ≤ 9, and diam2(H,D) ≤ 11 for all given orientations H . 2

Definition 2.9 Let (G′, D) be in standard form and G a minimal subgraph. By adding isolated triangles
toGwe can obtain a graph G̃ such that (G̃,D) is in standard form. We say thatH is a minimal orientation
of G, if H is strongly connected and we have

MOD(G̃) = max
{
diam0(H,D) + 4, diam1(H,D) + 2, diam2(H,D)

}
.

Using the same notation we have MOD(G′) ≤MOD(G̃).

Definition 2.10 We call a pair (G′, D) in standard form critical, if Ξ
(
γ(G′)

)
= MOD(G′) and we call

a minimal subgraph G of (G′, D) in standard form critical if for a minimal orientation H of G we have

Ξ
(
γ(G′)

)
= max

{
diam0(H,D) + 4, diam1(H,D) + 2, diam2(H,D)

}
.

Combined with Lemma 2.4 we obtain:

Lemma 2.11 For each integer γ there is a pair (G′, D) in standard form with |D| = γ and a critical
minimal subgraph G such that Ξ(γ) equals max {diam0(H,D) + 4, diam1(H,D) + 2, diam2(H,D)}
for a minimal orientation H of G.

3 Reductions
In this section we will propose some reductions for critical minimal subgraphs G of pairs (G′, D) in
standard form, in order to provide some tools for an inductive proof of Theorem 1.3. Additional reductions
which might be useful in an induction proof of Conjecture 1.4 are delayed to Section A in the appendix.

Lemma 3.1 Let G be a critical minimal subgraph of (G′, D) in standard form with γ = γ (G′) = |D| ≥
3, x a vertex contained in the dominating set D, and C1, . . . , Cr the connected components of G− x. If
r ≥ 2, then we have Ξ(γ) ≤ max

{
Ξ(γ + 1− i) + Ξ(i)− 4 : 2 ≤ i ≤ γ − 1

}
.
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Fig. 5: The orientations for the proof of Lemma 2.8.
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Proof: Let C̃i be the induced subgraphs of V (Ci) ∪ {x} in G. We set Di = {x} ∪ (V (Ci) ∩D) and
γi := |Di|−1 so that we have 1+

∑
i γi = γ. SinceG is a minimal subgraph we have γi ≥ 1 for all i. Now

we choose arbitrary minimal orientations H̃i of the C̃i. Thus we have diam0(H̃i, Di) ≤ Ξ(γi + 1) − 4,
diam1(H̃i, Di) ≤ Ξ(γi + 1) − 2, and diam2(H̃i, Di) ≤ Ξ(γi + 1) for all i. Since C̃i and C̃j are
edge-disjoint for i 6= j we can construct an orientation H of G by taking the directions of the H̃i. Now
we analyze the distance dH(u, v) in H for all pairs u, v ∈ V (G). If u and v are contained in the same
component C̃i we have dH(u, v) = dH̃i

(u, v). If u is contained in C̃i and v is contained in C̃j , then we
have dH(u, v) ≤ dH̃i

(u, x) + dH̃j
(x, v). Since x ∈ D we have

diam2(H,D) ≤ max
{
diam2(H̃i, Di), diam1(H̃i, Di) + diam1(H̃j , Dj) : i 6= j

}
≤ max

{
Ξ(γi + 1),Ξ(γi + 1) + Ξ(γj + 1)− 4 : i 6= j

}
diam1(H,D) ≤ max

{
diam1(H̃i, Di), diam1(H̃i, Di) + diam0(H̃j , Dj) : i 6= j

}
≤ max

{
Ξ(γi + 1)− 2,Ξ(γi + 1) + Ξ(γj + 1)− 6 : i 6= j

}
, and

diam0(H,D) ≤ max
{
diam0(H̃i, Di) + diam0(H̃j , Dj) : i 6= j

}
≤ max

{
Ξ(γi + 1) + Ξ(γj + 1)− 8 : i 6= j

}
.

From 1 +
r∑
i=1

γi = γ we conclude γi ≤ γ − 2. Combining this with Ξ(n − 1) ≤ Ξ(n) yields the stated

upper bound. 2

Lemma 3.2 Let G be a critical minimal subgraph of (G′, D) in standard form with γ = γ(G′) = |D| ≥
3, x a vertex not contained in the dominating set D, and C1, . . . , Cr the connected components of G− x.
If either r ≥ 3 or r = 2 and |D ∩ V (C1)| ≥ 2, where f(x) ∈ C1, we have

Ξ(γ) ≤ max
{

Ξ(i) + Ξ(γ + 1− i)− 4 : 2 ≤ i ≤ γ − 1
}
.

Proof: W.l.o.g. let f(x) be contained in C1. Let C̃1 be the induced subgraph of V (C1) ∪ {x} in G and
D1 = D∩V (C1). For i ≥ 2 let C̃i be the induced subgraph of V (Ci)∪{x} in G with additional vertices
yi, zi, additional edges {x, yi}, {x, zi}, {yi, zi}, and Di = (V (Ci) ∩D) ∪ {zi}. We set γ1 = |D1| ≥ 1
and γi = |Di| − 1 ≥ 1 for i ≥ 2 so that we have

∑
i γi = γ. By H̃i we denote a minimal orientation of

C̃i. W.l.o.g. we assume that in H̃1 the edge {f(x), x} is directed from f(x) to x and that for i ≥ 2 in H̃i

the edges {x, yi}, {x, zi}, {yi, zi} are directed from x to yi, from yi to zi and from zi to x. Due to the
minimality of the orientations H̃i we have diam0(H̃1, D1) ≤ Ξ(γ1)− 4, diam1(H̃1, D1) ≤ Ξ(γ1)− 2,
diam2(H̃1, D1) ≤ Ξ(γ1), and for i ≥ 2 we have diam0(H̃i, Di) ≤ Ξ(γi + 1) − 4, diam1(H̃i, Di) ≤
Ξ(γi + 1)− 2, diam2(H̃i, Di) ≤ Ξ(γi + 1).

We construct an orientationH ofG by taking the directions of the common edges with the H̃i. Now we
analyze the distance dH(u, v) in H for all pairs u, v ∈ V (G). We only have to consider the cases where u
and v are in different connected components. Let us first assume u ∈ C̃i, v ∈ C̃j with i, j ≥ 2. We have

dH(u, v) ≤ dH̃i
(u, x) + dH̃j

(x, v) ≤ dH̃i
(u, zi)− 2 + dH̃j

(zj , v)− 1,

since every directed path from a vertex u ∈ V (G) to zi in H̃i uses the arcs [x, yi], [yi, zi], and every
directed path from zj to a vertex v ∈ V (G) in H̃j uses the arc [zj , x]. Now let u be in C̃1 and v be in C̃i
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with i ≥ 2. Since the edge {f(x), x} is directed from f(x) to x, both in H and in H̃1, we can conclude

dH(u, v) ≤ dH̃1
(u, x) + dH̃i

(x, v) ≤ dH̃1
(u, f(x)) + 1 + dH̃i

(zi, v)− 1.

If u ∈ C̃i with i ≥ 2 and v ∈ C̃1, then we similarly conclude

dH(u, v) ≤ dH̃i
(u, x) + dH̃1

(x, v) ≤ dH̃i
(u, zi)− 2 + dH̃1

(x, v).

Thus using Ξ(i− 1) ≤ Ξ(i) for i ∈ N, γi ≤ γ − 2 for i ≥ 2, and γi + γj ≤ γ − 1 for all i 6= j in total we
have

diam2(H,D) ≤ max
{
diam2(H̃1, D1), diam2(H̃i, Di), diam1(H̃i, Di) + diam1(H̃j , Dj)− 3,

diam1(H̃1, D1) + diam1(H̃i, Di), diam2(H̃1, D1) + diam1(H̃i, Di)− 2
}

≤ max
{

Ξ(γ − 1),Ξ(γi + 1) + Ξ(γj + 1)− 7,Ξ(γ1) + Ξ(γi + 1)− 4 : 2 ≤ i < j
}

≤ max
{

Ξ(i) + Ξ(γ + 1− i)− 4 : 2 ≤ i ≤ γ − 1
}

diam1(H,D) ≤ max
{
diam1(H̃1, D1), diam1(H̃i, Di), diam0(H̃i, Di) + diam1(H̃j , Dj)− 3,

diam0(H̃1, D1) + diam1(H̃i, Di), diam1(H̃1, D1) + diam0(H̃i, Di),

diam2(H̃1, D1) + diam0(H̃i, Di)− 2, diam1

(
H̃1, D1

)
+ diam1

(
H̃i, Di

)
− 2
}

≤ max
{

Ξ(γ−1)− 2,Ξ(γi+1) + Ξ(γj+1)− 9,Ξ(γ1) + Ξ(γi+1)− 6 : 2 ≤ i < j
}

≤ max
{

Ξ(i) + Ξ(γ + 1− i)− 6 : 2 ≤ i ≤ γ − 1
}

diam0(H,D) ≤ max
{
diam0(H̃1, D1), diam0(H̃i, Di), diam0(H̃i, Di) + diam0(H̃j , Dj)− 3,

diam0(H̃1, D1) + diam0(H̃i, Di), diam1(H̃1, D1) + diam0(H̃i, Di)− 2
}

≤ max
{

Ξ(γ−1)− 4,Ξ(γi+1) + Ξ(γj+1)− 11,Ξ(γ1) + Ξ(γi+1)− 8 : 2≤ i<j
}

≤ max
{

Ξ(i) + Ξ(γ + 1− i)− 8 : 2 ≤ i ≤ γ − 1
}
,

which yields Ξ(γ) ≤ max
{

Ξ(i) + Ξ(γ + 1− i)− 4 : 2 ≤ i ≤ γ − 1
}

. 2
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Fig. 6: The situation of Lemma 3.3.

Lemma 3.3 LetG be a critical minimal subgraph of (G′, D) in standard form with γ = γ(G′) = |D| ≥ 3
and x a vertex not contained in the dominating set D. If removing x produces exactly two connected
components C1, C2 with D ∩ V (C1) = f(x) and there exist y1 6= y2 ∈ V (G)\D with f(y1) = f(y2) 6=
f(x) and {x, y1}, {x, y2} ∈ E(G) then we have Ξ(γ) ≤ Ξ(γ − 1) + 4.
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Proof: Since G is a minimal subgraph, we have V (C1) = {f(x), w} and the neighbors of f(x) and w in
G are contained in {f(x), w, x}. As an abbreviation we set f(y1) = f(y2) = z ∈ D. See the drawing
on the left hand side in Figure 6 for a graphical representation of this situation. Now we consider the
subgraph C̃2 consisting of the induced subgraph of V (C2)∪{x} with the additional edge {x, f(y1)}. Let
H2 be a minimal orientation of C̃2, where we assume that the edge {z, y1} is directed from z to y1, see
the middle graph of Figure 6. Now we construct an orientation H of G by taking the directions from H2

and redirecting some edges. We direct the edges from x to w, from w to f(x), from f(x) to x, from x to
y1, from y1 to z, from z to y2, and from y2 to x, as depicted in the right drawing of Figure 6.

Now we analyze the distance dH(a, b) between two vertices in V (G). If a and b are both in C̃2, then
we can consider a shortest path P in H2. It may happen that P uses some of the redirected edges {x, y1},
{y1, z}, {z, y2}, {y2, x} or the missing edge {x, z}. In this case P contains at least two vertices from
{x, y1, y2, z}. If P uses more than two vertices from {x, y1, y2, z} then we only consider those two
vertices which have the largest distance on P . Looking at our redirected edges in H we see that the
distance between two such vertices is at most three while deleting at least one edge of P , so that we have
dH(a, b) ≤ dH2(a, b) + 2 in this case.

Now let b be in C̃2. InH we have dH(f(x), z) ≤ 3 due to the path (f(x), x, y1, z). Since dH(z, y2) = 1
we have dH(f(x), b) ≤ dH2

(z, b) + 3. Similarly we obtain dH(w, b) ≤ dH2
(z, b) + 4. With D2 =

D\{f(x)} the set D2 is a dominating set of C̃2 and we can check that |D2| = γ(C̃2). Since z ∈ D2 and
H2 is a minimal orientation, for b1 ∈ D2, b2 /∈ D2 we have dH2

(z, b1) ≤ Ξ(γ − 1)− 4 and dH2
(z, b2) ≤

Ξ(γ−1)−2 yielding dH(f(x), b1) ≤ Ξ(γ−1), dH(f(x), b2) ≤ Ξ(γ−1)+2, dH(w, b1) ≤ Ξ(γ−1)+1,
and dH(w, b2) ≤ Ξ(γ − 1) + 3. This is compatible with Ξ(γ) ≤ Ξ(γ − 1) + 4 due to f(x), b1 ∈ D and
w, b2 /∈ D.

Now let a be in C̃2. We consider a shortest path P in H2 from a to z. In H we have dH(z, f(x)) ≤ 4
by considering the path (z, y2, x, w, f(x)). Since P cannot use an arc from y1 to z (this arc is directed
in the opposite direction in H2) either P contains a vertex in {x, y2} or P also exists in H , so that we
have dH(a, f(x)) ≤ dH2(a, z) + 4. Similarly we obtain dH(a,w) ≤ dH2(a, z) + 3. Since H2 is a
minimal orientation we conclude similarly as in the above paragraph that all distances are compatible
with Ξ(γ) ≤ Ξ(γ − 1) + 4. 2

Lemma 3.4 Let G be a minimal subgraph of a pair (G′, D) in standard form. If there exist z1, z2 ∈
V (G)\D with f(z1) = f(z2) and {z1, z2} ∈ E(G), then either z1 or z2 is a cut vertex.

Proof: If z1 has no other neighbors besides z2 and x := f(z1) then either z2 is a cut vertex or z1 can be
deleted from G without destroying the properties of Definition 2.6. We assume that neither z1 nor z2 is
a cut vertex. Thus both z1 and z2 have further neighbors y1 and y2, respectively. Since {z1, z2} cannot
be deleted we have y1 6= y2. Let P1 be a shortest path from y1 to z2 in G\{z1}. Since {z1, z2} cannot
be deleted P1 contains the edge {x, z2}. Similarly there exists a shortest path from y2 to z1 containing
the edge {x, z1}. Thus the existence of P1 and P2 implies that {z1, z2} could be deleted, which is a
contradiction to the minimality of G. 2

So far we have presented reduction techniques for almost all cases of cut vertices in minimal subgraphs
G of a pair (G′, D) in standard form. The remaining cases are rather special. So let x be a cut vertex of
G. If we cannot apply neither Lemma 3.1 nor Lemma 3.2 then G − x decomposes into two connected
components C1, C2 with D ∩ C1 = f(x). As shown in the proof of Lemma 3.3 we have |V (C1)| = 2
due to the minimality of G. For the second vertex in C1, besides f(x), we introduce the notation t(x) and
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Fig. 7: The situation of Lemma 3.5.

remark that all edges being incident in G with vertices of V (C1) are given by {x, f(x)}, {f(x), t(x)},
and {t(x), x}. For brevity we call such a vertex x a special cut vertex.

Lemma 3.5 Let G be a critical minimal subgraph of (G′, D) in standard form with γ = γ(G′) = |D| ≥
3. If x1 and x2 are two adjacent special cut vertices in G then we have Ξ(γ) ≤ Ξ(γ − 1) + 4.

Proof: We construct a graph G̃ from G by deleting the vertices in I := {f(x1), t(x1), f(x2), t(x2)}
together with their incident edges, and inserting a new dominating vertex z into the edge {x1, x2}, see
Figure 7. Let D̃ = D ∪ {z}\{f(x1), f(x2)} and H̃ be a minimal orientation of G̃, where we assume that
the edges {x1, z}, {z, x2} are directed from x1 to z and from z to x2. Since the size of the dominating set
decreases by one, i. e. |D̃| = |D|−1, we have diam2(H̃, D̃) ≤ Ξ(γ−1), diam1(H̃, D̃) ≤ Ξ(γ−1)−2,
and diam0(H̃, D̃) ≤ Ξ(γ − 1) − 4. Next we construct an orientation H of G by keeping the directions
of all common edges with H̃ , directing the edge {x1, x2} from x1 to x2, and for i = 1, 2 directing the six
remaining edges from xi to f(xi), from f(xi) to t(xi), and from t(xi) to xi.

Now we analyze the distances in H . Let a, b be two arbitrary vertices in V (G)\I and ai be a vertex in
{f(xi), t(xi)} for i = 1, 2. With this we have

dH(a, b) ≤ dH̃(a, b)

dH(a1, a2) ≤ 5

dH(f(x2), f(x1)) ≤ 2 +
(
dH̃(z, x1)− 1

)
+ 1

dH(f(x2), t(x1)) ≤ 2 +
(
dH̃(z, x1)− 1

)
+ 2

dH(t(x2), f(x1)) ≤ 1 +
(
dH̃(z, x1)− 1

)
+ 1

dH(t(x2), t(x1)) ≤ 1 +
(
dH̃(z, x1)− 1

)
+ 2

dH(a1, a) ≤ 2 + dH̃(z, a)

dH(a2, a) ≤ 2 +
(
dH̃(z, a)− 1

)
dH(a, a1) ≤

(
dH̃(a, z)− 1

)
+ 2

dH(a, a2) ≤ dH̃(a, z) + 2,

resulting in diami(H,D) ≤ diami(H̃, D̃) + 4 for i = 0, 1, 2. 2
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4 Proof of the main theorem
In this section we want to prove Theorem 1.3. We use induction on γ(G) and minimal counter examples
with respect to γ(G).

Definition 4.1 We call (G,G′, D) a counter example to Theorem 1.3 if (G′, D) is in standard form, G
a minimal subgraph, and max

{
diam0(H,D) + 4, diam1(H,D) + 2, diam2(H,D)

}
> 4|D| for every

orientation H of G. If |D| is minimal with respect to this property we call it a minimal counter example.

Lemma 4.2 For a minimal counter example (to Theorem 1.3) (G,G′, D) each triangle Y in G is given
by V (Y ) = {x, f(x), t(x)}, where x is a special cut vertex.

Proof: Let Y be a triangle in G with vertex set {u, v, w}. Since (G′, D) is in standard form at most one
of these three vertices is a dominating vertex. If one of these three vertices, say u, is a dominating vertex,
then we can apply Lemma 3.4 and deduce that either v or w is a special cut vertex using the fact that we
cannot apply Lemma 3.2.

In the remaining cases we have {u, v, w} ∩ D = ∅. If f(u) = f(v) then edge {u, v} can be deleted
without creating a bridge, which contradicts the minimality of G. Thus f(u), f(v), f(w) are pairwise
distinct and we consider shortest paths P1 from f(u) to f(v) and P2 from f(u) to f(w) in G− u. Since
at least one of the paths P1 or P2 does not contain the edge {v, w} we can either delete {u, v} or {u,w}
without creating a bridge, which contradicts the minimality of G. 2
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Fig. 8: The situation of Lemma 4.3 and Lemma 4.4.

Lemma 4.3 For a minimal counter example (to Theorem 1.3) (G,G′, D) there is no simple cycle C =
(v0, . . . , v3k = v0) in G with k ≥ 2 and v3j ∈ D for all 0 ≤ j < k.

Proof: We assume the existence of such a cycle C, see the graph on the left hand side in Figure 8 for an
example, and consider another graph G̃ arising from G by:

(1) deleting the edges of C,

(2) deleting the vertices v3j for 0 < j < k,

(3) inserting vertices uj and edges {v0, vj}, {v0, uj}, {uj , vj} for all 0 < j < 3k with 3 - j, and by
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(4) identifying all vertices v3j ∈ G with the vertex v0 ∈ G̃, meaning that we replace edges {v3j , x} in
G, where x /∈ C, by edges {v0, x} in G̃.

We remark that this construction does not produce multiple edges since (G′, D) is in standard form. The
set D̃ := D\

{
v3, v6, . . . , v3k−3

}
is a dominating set of G̃ with |D̃| = |D| − k + 1. Let H̃ be a minimal

orientation of (G̃, D̃). We construct an orientation H of G by keeping the directions of all common edges
with H̃ and by orienting the edges of C from vj to vj+1, see the graph on the left hand side in Figure 8.

Now we analyze the distances in H . For brevity we set I :=
{
v3j : 0 ≤ j < k

}
(these are the vertices

in G which are identified with v0 in G̃). The distance of two vertices in I in the orientation H is at most
3k− 3 and the distance of two vertices in V (C) is at most 3k− 1. Thus we may assume |D| > k. Let a, b
be vertices in V (G). If a ∈ I we set ã = v0 otherwise we set ã = a. Analogously we set b̃ = v0 for b ∈ I
and b̃ = b otherwise. Let P̃ be an arbitrary shortest path in H̃ connecting ã and b̃. It may happen that this
path P̃ does not exist in H since it may contain the vertex v0 corresponding to two different vertices v3i
and v3j in G or it may contain one of the edges {v0, vj}, {v0, uj}, or {uj , vj} with 3 - j.

Now we want to construct a path P which connects a and b in H . The path P̃ may use one of the edges
{v0, vj}, {v0, uj}, or {uj , vj} with 3 - j. Deleting all these edges decomposes P̃ into at least two parts
P̃1, . . . , P̃m with |P̃1| + |P̃m| ≤ |P̃ | − 1. Using a suitable segment C̃ of the cycle C we obtain a path
P = P̃1 ∪ C̃ ∪ P̃m of length at most |P̃1| + |P̃m| + |C̃| ≤ |P̃ | + 3k − 2 in H . If P̃ does not use any of
these edges then v0 is used in P̃ corresponding to two different vertices v3i and v3j in G. In this case we
can use a suitable segment C̃ of the cycle C, which starts and ends in a vertex of I , to obtain a path P
connecting a and b in H of length at most |P̃ |+ 3k − 3.

Thus in general we have dH(a, b) ≤ |P̃ | + 3k − 1 and in some special cases we have the following
slightly better bounds:

(i) If a and b are elements of {vj : 0 ≤ j < 3k} then we have dH(a, b) ≤ 3k − 1.

(ii) If a, b ∈ I then dH(a, b) ≤ 3k − 3.

(iii) If |{a, b} ∩ I| =
∣∣{a, b} ∩ {vj : 0 ≤ j < 3k}

∣∣ = 1 then dH(a, b) ≤ |P̃ |+ 3k − 2.

This yields

diam2(H,D) ≤ max
{
diam2(H̃, D̃) + 3k − 2, diam1(H̃, D̃) + 3k − 1, 3k − 1

}
≤ 4 · |D| − k + 2 ≤ 4 · |D|

diam1(H,D) ≤ max
{
diam1(H̃, D̃) + 3k − 2, diam0(H̃, D̃) + 3k − 1, 3k − 1

}
≤ 4 · |D| − k ≤ 4 · |D| − 2

diam0(H,D) ≤ max
{
diam0(H̃, D̃) + 3k − 2, 3k − 3

}
≤ 4 · |D| − k − 2 ≤ 4 · |D| − 4

2

Lemma 4.4 For a minimal counter example (to Theorem 1.3) (G,G′, D) there is no simple cycle C =
(v0, . . . , vl = v0) in G with |V (C) ∩D| ≥ 2 and for each vj ∈ V (C)\D we have f(vj) ∈ V (C) or vj
is a cut vertex in G.
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Proof: To the contrary let C be such a cycle of minimal length. W.l.o.g. we can assume v0 ∈ D. Since
(G′, D) is in standard form we conclude l ≥ 6 from k := |V (C) ∩ D| ≥ 2. Due to the minimality of
C we have f(vj) ∈ {vj−1, vj+1} for each vertex vj ∈ V (C)\D satisfying f(vj) ∈ V (C). Thus C is
chordless since G is a minimal subgraph.

By y we denote the number of vertices vj in V (C) with vj /∈ D and f(vj) /∈ V (C) and by Y the
corresponding set. We remark that all elements of Y are special cut vertices. For each vj ∈ Y we set zj =
f(vj) /∈ V (C) and denote the unique common neighbor t(vj) of vj and zj by wj ∈ V (G)\(V (C) ∪D).

Due to Lemma 4.3 we can assume y ≥ 1. Since the two neighbors on the cycle C of a vertex in Y
both are not contained in D and exactly one neighbor on the cycle C of a vertex in v ∈ V (C)\(D ∪ Y )
is contained in D we have |C| = 3k + y ≥ 7. On the right hand side of Figure 8 we have depicted an
example with k = 2 and y = 4.

Now we consider another graph G̃ arising from G by:

(1) deleting the edges of C,

(2) deleting the vertices
(
{zj , wj : 0 < j < l} ∪ (V (C) ∩D)

)
\{v0},

(3) inserting vertices uj and edges {v0, vj}, {v0, uj}, {uj , vj} for all 0 < j < l with vj /∈ D, and by

(4) identifying all vertices vj ∈ D with the vertex v0 ∈ G̃, meaning that we replace edges {vj , x} in G
by edges {v0, x} in G̃.

We remark that this construction does not produce multiple edges since (G′, D) is in standard form. The
set D̃ := D\{v1, . . . , vl−1, z1, . . . , zl−1} is a dominating set of G̃ with |D̃| = |D| − k − y + 1. Let H̃
be a minimal orientation of (G̃, D̃). We construct an orientation H of G by keeping the directions of all
common edges with H̃ and by orienting the edges of C from vj to vj+1. The missing edges {vj , zj},
{zj , wj}, and {wj , vj} are oriented from vj to zj , from zj to wj , and from wj to vj , see the graph on the
right hand side of Figure 8. For brevity we set A := V (C) ∪ {wj , zj : 0 < j < l}.

Now we analyze the distances in H . For a1, b1 ∈ A we have dH (a1, b1) ≤ 3k+ y+ 3 ≤ 4(k+ y)− 2,
for a2, b2 ∈ V (C) we have dH (a2, b2) ≤ 3k + y − 1 ≤ 4(k + y) − 4, and for a3, b3 ∈ V (C) ∩D we
have dH (a3, b3) ≤ 3k + y − 3 ≤ 4(k + y)− 2. Thus we may assume |D| > k + y. Let a, b be vertices
in V (G). If a ∈ A we set ã = v0 and ã = a otherwise. Analogously we set b̃ = v0 for b ∈ A and b̃ = b
otherwise. Let P̃ be a shortest path in H̃ connecting ã and b̃. Similarly as in the proof of Lemma 4.3
we construct a path P in H connecting a and b. If P̃ uses vertex v0 for a, b /∈ A we obtain a path P
by inserting a segment C̃ of C connecting two dominating vertices. Since |C̃| ≤ 3k + y − 2 we have
dH(a, b) ≤ |P̃ |+ 3k+ y − 2 in this case. If |{a, b} ∩A| = 1 we have dH(a, b) ≤ |P̃ |+ 3k+ y since for
every vertex of A there is a vertex in D ∩ V (C) at distance at most two (in both directions).

Thus for |D| ≥ k + y + 1, k ≥ 2, y ≥ 1 we have

diam2(H,D) ≤ max
{
diam2(H̃, D̃) + 3k + y − 2, diam1(H̃, D̃) + 3k + y, 3k + y + 3

}
≤ 4 · |D| − k − 3y + 3 ≤ 4 · |D|

diam1(H,D) ≤ max
{
diam1(H̃, D̃) + 3k + y, diam0(H̃, D̃) + 3k + y, 3k + y + 3

}
≤ 4 · |D| − k − 3y + 3 ≤ 4 · |D| − 2

diam0(H,D) ≤ max
{
diam0(H̃, D̃) + 3k + y, 3k + y + 3

}
≤ 4 · |D| − k − 3y ≤ 4 · |D| − 4.
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2

In the following we want to show that for a minimal counter example (G,G′, D), where we cannot
apply the reductions from one of the previous lemmas, the number of vertices in G will be that small
that every strongly connected orientation of G can be used in combination with Lemma 2.4 to deduce
MOD(G′) ≤ 4 · |D| = 4 · γ(G′). For this purpose we slightly enhance the concept of the trees Tk of
Construction 2.5 a bit:

Definition 4.5 Let G be a minimal subgraph of (G′, D) in standard form. We call a subgraph T of G a
backbone tree ofG if it is a tree,D ⊆ V (T ), for each vertex v ∈ V (T )\D the edge {v, f(v)} is contained
inE(T ), and each leaf of T is contained inD, i. e. it is a dominating vertex. If we have |V (T )| ≥ |V (T ′)|
for all backbone trees T , T ′ of G we say that T is a maximum backbone tree.

We remark that the existence of a backbone tree is guaranteed by Construction 2.5 and the order of a
backbone tree is bounded from above:

Lemma 4.6 For each backbone tree T of a minimal subgraph G of (G′, D) in standard form we have
|V (T )| ≤ 3 · |D| − 2.

Proof: Iteratively we construct trees Tk for k = 1, . . . , |D|which are subgraphs of T and satisfy |V (Tk)∩
D| = k, |V (Tk)| ≤ 3k − 2. The tree T1 is composed of one vertex x1 in D. To construct Tk+1 from Tk
we find a vertex xk+1 in D\V (Tk) with minimum distance to Tk in T . Let P = (v1, . . . , vl, xk+1) be the
corresponding shortest path. Next we show |V (P )\V (Tk)| ≤ 3 so that appending P to Tk yields a tree
Tk+1 with |Tk+1∩D| = k+1 and |V (Tk+1)| ≤ 3(k+1)−2. For this purpose we observe that v2, . . . , vl /∈
D. Suppose that l ≥ 2 and vl−1, vl /∈ D. Due to the definition of T we have {f(vl−1), vl−1} ∈ E(T ).
If f(vl−1) ∈ Tk then P ′ = (f(vl−1), vl−1, vl, xk+1) satisfies |V (P ′)\V (Tk)| ≤ 3. If f(vl−1) /∈ Tk then
P ′′ = (v1, . . . , vl−1, f(vl−1))) would be a shorter path than P . Thus finally we end up with a tree T|D|
satisfying D ⊆ V (T|D|) and |V (T|D|)| ≤ 3 · |D| − 2.

It remains to show that T|D| = T . Suppose that there is a vertex v ∈ V (T )\V (T|D|). Since v /∈ D
is not a leaf there exists a neighbor u ∈ V (T )\D, i. e. u 6= f(v), and we conclude that the edges of
R = (f(v), v, u, f(u)) are contained in E(T ). Since there is a path S connecting f(v) and f(u) in T|D|
the path R and S form a cycle in T , which is a contradiction. 2

An example of a backbone tree is given in Figure 10, where the graph on the left hand side is a backbone
tree of the graph on the left hand side of Figure 9.

Lemma 4.7 Let (G,G′, D) be a minimal counter example to Theorem 1.3 and T be a maximum backbone
tree of G. Then for every edge {u, v} ∈ E(G) we have {u, v} ∩ V (T ) 6= ∅.

Proof: Suppose to the contrary that there is an edge {u, v} ∈ E(G) with {u, v} ∩ V (T ) = ∅. First we
show f(u) 6= f(v). If otherwise f(u) = f(v) then due to Lemma 4.2 either u or v is a special cut vertex
in G. For |D| > 1 this special cut vertex has to be contained in T so that we have {u, v} ∩ V (T ) 6= ∅ in
this case.

Adding the path P = (f(u), u, v, f(v)) to T yields a cycle C = (v0, . . . , vl−1) containing f(u), u,
v, and f(v). Due to Lemma 4.3 there exists an index i such that vi−1, vi, vi+1 /∈ D, where the indices
are read modulo l, i. e. v−1 = vl−1 and vl = v0. W.l.o.g. we assume vi+2 ∈ D and construct another
backbone tree T ′ as follows. If vi+1 has another neighbor besides vi and f(vi+1) = vi+2 in T then
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deleting the edge {vi, vi+1} in T and adding path P yields a backbone tree. Otherwise deleting vertex
vi+1 with its two incident edges from T and adding path P yields a backbone tree. In both cases we have
|V (T ′)| > V (T ), which contradicts the maximality of T . 2

In order to bound |V (G)| for a minimal subgraph G from above we perform a technical trick and count
the number of vertices of a different graph Ĝ arising from G as follows. We label the special cut vertices
of G by v1, . . . , vm and set D̂ =

(
D ∪ {vi : 1 ≤ i ≤ m}

)
\{f(vi) : 1 ≤ i ≤ m}. Next we delete the

vertices in {f(vi), t(vi) : 1 ≤ i ≤ m} and their incident edges from G. We replace each edge {vi, x} by
a pair of two edges {vi, yx,vi}, {yx,vi , x}, where the yx,vi are new vertices, i. e. we insert a new vertex
into each such edge. Assuming that we cannot apply Lemma 3.5, the distance between vertices in D̂
is at least three. (In general we could require that the edges are subdivided for each special vertex, so
that an original vertex can be subdivided several times. This would result in a graph where the distance
between vertices in D̂ is always at least three.) With this we have |D̂| = |D|, |V (Ĝ)| ≥ |V (G)|, the set
D̂ is a dominating set of Ĝ, and Ĝ is a subgraph of a suitable pair in standard form. If Ĝ would not be a
minimal subgraph then also G would not be a minimal subgraph. In the sequel the symbol f̂ refers to the
new “domination” function in Ĝ instead of G. We will call this graph transformation the construction.
An example is given in Figure 9. Due to Lemma 4.2 for each minimal counter example (G,G′, D) to
Theorem 1.3 the graph Ĝ does not contain a triangle.
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Fig. 9: An example for the construction of Ĝ from G.

Since a backbone tree T of a minimal subgraphG is a subgraph ofG, we can apply the hat-construction
from above to obtain a tree T̂ , see Figure 10.

Lemma 4.8 For each backbone tree T of a minimal subgraph G of (G′, D) in standard form, T̂ is a
backbone tree of Ĝ. If T is maximum then so is T̂ .

Proof: We perform the hat-construction step-by-step for each special cut vertex x ∈ V (G). We remark
that f(x) is a leaf in T with unique neighbor x since t(x) cannot be contained in T . T̂ arises from T by
deleting f(x) and subdividing every edge in T − f(x) which is adjacent to x. For D̂ = D ∪ {x}\{f(x)}
we have that D̂ is a dominating set and D̂ ⊆ V (T̂ ). Clearly T̂ is a tree without leafs in V (T̂ )\D̂ and
containing all edges {v, f̂(v)} where v ∈ V (T̂ )\D̂. Reversing the hat-construction yields the maximality
of T̂ . 2

Similar as in Lemma 4.7 we show that each edge of Ĝ has at least one vertex in T̂ :
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Fig. 10: An example for the construction of T̂ from a backbone tree T .

Lemma 4.9 Let (G,G′, D) be a minimal counter example to Theorem 1.3 and T̂ be a maximum backbone
tree of Ĝ with respect to its dominating set D̂. Then for every edge {u, v} ∈ E(Ĝ) we have {u, v} ∩
V (T̂ ) 6= ∅.

Proof: Suppose to the contrary that there is an edge {u, v} ∈ E(Ĝ) with {u, v} ∩ V (T̂ ) = ∅. Adding
the path P = (f(u), u, v, f(v)) to T̂ yields a cycle C = (v0, . . . , vl−1) containing f(u), u, v, and f(v).
Since Ĝ does not contain a triangle we have f(u) 6= f(v). Using the same argument as in the proof of
Lemma 4.7 we conclude that there does not exist an index i with vi−1, vi, vi+1 /∈ D̂, where the indices
are read modulo l, i. e. v−1 = vl−1 and vl = v0.

The cardinality of DC := V (C) ∩ D̂ is at least two. Since we cannot apply Lemma 4.4 or Lemma 3.5
DC contains exactly one vertex which does not correspond to a special cut vertex in G and one vertex,
say v2, which does correspond to a special cut vertex s in G, i. e. we have |DC | = 2 and l = 6. Since
v2 corresponds to a special cut vertex in G the vertices v1 and v3 arise during the hat-construction while
subdividing incident edges of s. Thus in G we have the edges {v2, v0}, {v2, v4} and f(v0) = f(v4) =
v5 6= f(v2) so that we can apply Lemma 3.3 and finally end up in a contradiction. 2

Proof of Theorem 1.3: Let (G,G′, D) be a minimal counter example to Theorem 1.3 and T be a maxi-
mum backbone tree ofG. We will show that we have |V (G)| ≤ 4·(|D|−1)+1, which is sufficient for our
claim due to the following consideration. The diameter of an arbitrary strongly connected orientation H
of G is at most 4 · (|D| − 1) since a shortest path uses every vertex at most once. By applying Lemma 2.4
we conclude MOD(G′) ≤ 4 · |D| = 4 · γ(G′).

For this purpose we apply the hat-construction to G, T and obtain another minimal subgraph Ĝ with
maximum backbone tree T̂ . As mentioned before we have |V (Ĝ)| ≥ |V (G)| so that it is sufficient to
show |V (Ĝ)| ≤ 4 · (|D̂| − 1) + 1 = 4 · (|D| − 1) + 1. For brevity we set k := |D|.

Obviously there exists a sequence T1, . . . , Tk of trees which are subgraphs of T̂ satisfying |V (Ti) ∩
D̂| = i, |V (T1)| = 1, and Tk = T̂ . Similar as in Construction 2.5 we denote the unique vertex of T1 by
x1 and for 2 ≤ i ≤ k we denote the unique vertex of

(
V (Ti)\V (Ti−1)

)
∩ D̂ by xi. The tree Ti+1 is the

union of Ti with a path Pi from xi+1 to Ti of length 2 or 3. The edges in Pi are called associated with
xi+1. Reusing the idea of Construction 2.5 we construct a sequence of graphs G1, . . . , Gk containing
T̂ as a subgraph. We say that xj is fixed in Gi if no edge associated with xj is a bridge in Gi. So
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finally Gk is a bridgeless connected subgraph of Ĝ containing all vertices in D̂. Via induction we prove
|V (Gi)\V (Ti)| ≤ i− 1 so that we have

|V (Gk)| ≤ |V (Tk)|+ |V (Gk)\V (Tk)| ≤ (3k − 2) + (k − 1) = 4(k − 1) + 1.

We set G1 = T̂ . Assume that we have constructed the subgraph Gi. If xi+1 is already fixed in Gi we
set Gi+1 = Gi. Otherwise we consider the path Pi = (xi+1, v2, v1, . . . ), where v2, v1 /∈ D̂. To simplify
things we introduce the path P ′i :=

(
xi+1, v2, v1, f̂(v1)

)
. Either Pi = P ′i or Pi = P ′i − f̂(v1).

Suppose that e1 := {f̂(v1), v1} is a bridge in Gi. Deleting e1 from Gi yields two connected com-
ponents C1, C2 where we assume that xi+1 ∈ V (C2). If there is a path R1 in Ĝ − e1 connecting C1

with a vertex from V (C2)\{v1, v2} without using the vertices v1 or v2, then adding the path R1 to Gi
yields a graph Gi+1 where xi+1 is fixed. Due to Lemma 4.9 the path R1 contributes at most one extra
vertex. So let us assume that no such path R1 exists. Suppose there is a path R2 in Ĝ− e1 connecting C1

with v2 without using vertex v1. As special cut vertices do not exist in Ĝ and we cannot use one of the
previous reduction lemmas v2 cannot be a cut vertex. Since Ĝ is bridgeless connected there exists a path
R′2 in Ĝ − e1 connecting v1 with C2 without using v2. From the existence of R2 and R′2 we conclude
that deleting the edge {v1, v2} does not produce a bridge in Ĝ, which contradicts the minimality of Ĝ. So
let us further assume that neither such a path R1 nor such a path R2 exists. In this situation all paths in
Ĝ− e1 connecting C1 with C2 end in v1 so that v1 should be a cut vertex, which is not possible. So in all
cases where e1 is a bridge we can construct Gi+1 having the desired properties.

Next suppose that e1 is not a bridge but e2 := {v1, v2} is a bridge in Gi. If there is a path R1 in Ĝ− e2
connecting C1 with a vertex from V (C2)\{v2} without using vertex v2, then adding the path R1 to Gi
yields a graph Gi+1 where xi+1 is fixed. Due to Lemma 4.9 the path R1 contributes at most one extra
vertex. So let us assume that no such path R1 exists. In this situation all paths in Ĝ − e2 connecting C1

with C2 end in v2 so that v2 should be a cut vertex, which is not possible.
The last remaining possibility is that only the edge e3 := {v2, xi+1} is a bridge in Gi. Since Ĝ is

bridgeless connected there is a path R connecting C1 with C2 in Ĝ − e3 such that appending R yields a
graph Gi+1 where xi+1 is fixed. Due to Lemma 4.9 the path R1 contributes at most one extra vertex.

Thus the sequence of graphs G1, . . . , Gk exists and Gk is a minimal subgraph. So either Gk = Ĝ or Ĝ
is not a minimal subgraph. 2

We would like to remark that our reduction technique is constructive in the following sense: If we
have a graph G and a dominating set D, not necessarily a minimum dominating set of G, then we can
construct an orientation H of G in polynomial time satisfying diam(H) ≤ 4 · |D|: First we apply the
transformations of the proof of Lemma 2.3 to obtain a graph G̃, which satisfies conditions (1), (3)-(6) of
Definition 2.2 and where D remains a dominating set. In the following we will demonstrate how to obtain
an orientation H̃ of G̃ satisfying diam(H̃) ≤ 4 · |D|. From such an orientation we can clearly reconstruct
an orientation H of G. Since Lemma 2.4 does not use the minimality of the dominating set D we can
restrict our consideration on a minimal subgraph Ġ of G̃. Since neither Lemma 4.3, Lemma 4.4 nor one
of the lemmas in Section 3 uses the minimality of the domination set D, we can apply all these reduction
steps on Ġ. These steps can easily be reversed afterwards. If no reduction step can be applied then either
we ended up with a graph whose dominating set consists of at most two vertices or the graph has so few
vertices that we can use an arbitrary strongly connected orientation due to the proof of Theorem 1.3. By
reversing all previous steps we obtain the desired orientation and remark that all steps can be performed
in polynomial time.
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5 Conclusion and outlook
In this article we have proven

MOD(G) ≤ 4 · γ(G)

for all connected, bridgeless graphs and conjecture

MOD(G) ≤
⌈

7γ(G) + 1

2

⌉
to be the true upper bound. Lemma 2.8 shows that Theorem 1.3 is not tight for γ = 3. Some of our
reduction steps in Section 3 can also be used for a proof of Conjecture 1.4. Key ingredients might be the
lemmas 4.3 and 4.4, which can be utilized as reductions for Conjecture 1.4 if k+y is large enough. Figure
5 indicates several cases which cannot be reduced so far.

Besides a proof of Conjecture 1.4 one might consider special subclasses of general graphs to obtain
stronger bounds on the minimum oriented diameter. E. g. for C3-free graphs and C4-free graphs we
conjecture that the minimum oriented diameter is at most 3 · γ + c for a suitable constant c.
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A Reductions being compatible with Conjecture 1.4
We have some hope that it is possible to prove Conjecture 1.4 using a similar approach as in Section 3
while including some new ideas and a more sophisticated analysis. To this end we give some reductions
which are compatible with Conjecture 1.4. For γ = 2 there are only two possible subgraphs, see Figure 4,
which might occur as building bricks for critical minimal subgraphs.

Lemma A.1 Let G be a critical minimal subgraph of (G′, D) in standard form with γ = γ(G′) =
|D| ≥ 3. If G contains vertices x, y ∈ D, l1, l2, r1, r2 ∈ V (G)\D, two edge disjoint paths P1 =
(x, l1, r1, y), P2 = (x, l2, r2, y), all neighbors of l1, r1 are in {x, l1, r1, y}, and all neighbors of l2, r2 are
in {x, l2, r2, y}, then we have Ξ(γ) ≤ Ξ(γ − 1) + 3.

Proof: Let G̃ be the graph which arises from G by deleting l1, l2, r1, r2 and identifying x with y. Now
let D̃ := D\{y} and H̃ be an arbitrary minimal orientation of G̃. Thus we have diam0(H̃, D̃) ≤
Ξ(γ−1)−4, diam1(H̃, D̃) ≤ Ξ(γ−1)−2, and diam2(H̃, D̃) ≤ Ξ(γ−1). We construct an orientation
H of G by directing the two paths P1 and P2 in opposite directions, and by taking the directions from
H̃ . Now we analyze the distance dH(u, v) in H for all pairs u, v ∈ V (G). If both u and v are in
I := {l1, l2, r1, r2}, then we have dH(u, v) ≤ 5 ≤ Ξ(γ − 1) + 3. If none of u and v is in I , then we have
dH(u, v) ≤ dH̃(u, v) + 3. In the remaining cases we have |{u, v} ∩ I| = 1. For u ∈ I , v /∈ I we have
dH(u, v) ≤ dH̃(x, v) + 5. Similarly, for u /∈ I , v ∈ I we have dH(u, v) ≤ dH̃(u, x) + 5. Thus we obtain

diam2(H,D) ≤ max
{
diam2(H̃, D̃) + 3, diam1(H̃, D̃) + 5, 5

}
≤ Ξ(γ − 1) + 3,

diam1(H,D) ≤ max
{
diam1(H̃, D̃) + 3, diam0(H̃, D̃) + 5, 5

}
≤ Ξ(γ − 1) + 1, and

diam0(H,D) ≤ diam0(H̃, D̃) + 3 ≤ Ξ(γ − 1)− 1,

yielding Ξ(γ) ≤ Ξ(γ − 1) + 3. 2

We remark that Lemma A.1 applies to a graph containing the graph on the left hand side of Figure 4 as
an induced subgraph, where the vertices depicted by empty circles have no further neighbors in the whole
graph.

Lemma A.2 Let G be a critical minimal subgraph of (G′, D) in standard form with γ = γ(G′) =
|D| ≥ 3. If G contains vertices x, y, z ∈ D, four edge disjoint but not necessarily vertex disjoint walks
W1 = (x, v1, v2, v3, y), W2 = (y, v4, v5, v6, z), W3 = (x, u1, u2, y), W4 = (y, u3, u4, z), and all edges
being incident to vertices in I := {v1, v2, v3, v4, v5, v6, u1, u2, u3, u4} are contained in the union of the
edge sets E(W1) ∪ E(W2) ∪ E(W3) ∪ E(W4), then we have Ξ(γ) ≤ Ξ(γ − 2) + 7.

Proof: First we want to determine some structure information on the vertices vi, uj and the incident
edges. We have f(v1) = f(u1) = x, f(v3) = f(v4) = f(u2) = f(u3) = y, f(v6) = f(u4) = z,
and f(v2), f(v5) ∈ {x, y, z}. Additionally we have |{u1, u2, u3, u4, v1, v3, v4, v6}| = 8. Indeed we will
prove |I| = 8. Using the minimality of G we can determine the possibilities for v2 and v5 depending on
their f -values.

(a) f(v2) = x: If v2 6= u1 then G− v1 would also be bridgeless connected, which is a contradiction to
the minimality of G. Thus we have v2 = u1 in this case.
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(b) f(v2) = y: If v2 = v4, v2 = v5, v2 = u3, or |{u1, u2, u3, u4, v1, v2, v3, v4, v6}| = 9 then G − v3
would also be bridgeless connected, which is a contradiction to the minimality of G. Thus we have
v2 = u2 in this case.

(c) f(v2) = z: This case is not possible asG−v3 would also be bridgeless connected otherwise, which
is a contradiction to the minimality of G.

By symmetry we can conclude v5 = u4 iff f(v5) = z, v5 = u3 iff f(v5) = y, and f(v5) 6= x.
As in the proof of Lemma A.1 we define G̃ as the graph arising from G by deleting the vertices ui, vi

and by identifying x, y and z. Obviously G̃ is connected and bridgeless. Now let D̃ := D\{y, z} and H̃
be an arbitrary minimal orientation of G̃. Thus we have diam0(H̃, D̃) ≤ Ξ(γ − 2)− 4, diam1(H̃, D̃) ≤
Ξ(γ − 2)− 2, and diam2(H̃, D̃) ≤ Ξ(γ − 2).

We construct an orientationH ofG by directing the two pairs of walks (W1,W3), (W2,W4) in opposite
directions such that the two paths (v3, y), (y, v4) are directed differently, by taking the directions from H̃
and by directing remaining edges arbitrarily.

Now we analyze the distance dH(u, v) in H for all pairs u, v ∈ V (G). Due to dH(x, z), dH(z, x) ≤ 7,
dH(y, x), dH(y, z), dH(x, y), dH(z, y) ≤ 4 we have dH(u, v) ≤ dH̃(u, v)+7 for u, v /∈ I . We can easily
check that dH(u, v) ≤ 9 for u, v ∈ I ∪ {x, y, z}. Thus we have

diam2(H,D) ≤ max
{
diam2(H̃, D̃) + 7, diam1(H̃, D̃) + 9, 9

}
≤ Ξ(γ − 2) + 7,

diam1(H,D) ≤ max
{
diam1(H̃, D̃) + 7, diam0(H̃, D̃) + 9, 9

}
≤ Ξ(γ − 2) + 5, and

diam0(H,D) ≤ diam0(H̃, D̃) + 7 ≤ Ξ(γ − 2) + 3,

which yields Ξ(γ) ≤ Ξ(γ − 2) + 7. 2

We remark that Lemma A.2 applies to a graph containing two copies of the graph on the right hand side
of Figure 4 as an induced subgraph for x, y, z ∈ D depicted by solid circles, where the vertices depicted
by empty circles have no further neighbors in the whole graph.

If the number of arising components in the setting of Lemma 3.1 or Lemma 3.2 is at least three, then
we can obtain a reduction being compatible with our conjecture on Ξ(γ).

Lemma A.3 Let G be a critical minimal subgraph of (G′, D) in standard form with γ = γ (G′) = |D| ≥
3, x a vertex contained in the dominating set D, and C1, . . . , Cr the connected components of G− x. If
r ≥ 3, then we have Ξ(γ) ≤ max

{
Ξ(γ − i) + Ξ(i)− 4 : 1 ≤ i ≤ γ − 1

}
.

Proof: We can rephrase most of the proof of Lemma 3.1. Our estimations on diami(H,D) remain valid.
Since there are at least three connected components we have γi + γj ≤ γ− 2 for all i 6= j. Using this and
Ξ(n− 1) ≤ Ξ(n) we conclude Ξ(γ) ≤ max

{
Ξ(γ − i) + Ξ(i)− 4 : 1 ≤ i ≤ γ − 1

}
. 2

Lemma A.4 Let G be a critical minimal subgraph of (G′, D) in standard form with γ = γ(G′) = |D| ≥
3, x a vertex not contained in the dominating set D, and C1, . . . , Cr the connected components of G− x.
If r ≥ 3, then we have

Ξ(γ) ≤ max
{

Ξ(i) + Ξ(γ + 1− i)− 7,Ξ(i− 1) + Ξ(γ + 1− i)− 4 : 2 ≤ i ≤ γ − 1
}
.
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Proof: We can rephrase most of the proof of Lemma 3.2.
Using γi + γj ≤ γ − 1 for all i 6= j, Ξ(i− 1) ≤ Ξ(i) and γi ≤ γ − 2 for i ∈ N yields

diam2(H,D) ≤ max
{

Ξ(γ − 1),Ξ(γi + 1) + Ξ(γj + 1)− 7,Ξ(γ1) + Ξ(γi + 1)− 4 : 2≤ i<j
}

≤ max
{

Ξ(i) + Ξ(γ + 1− i)− 7,Ξ(i− 1) + Ξ(γ + 1− i)− 4 : 2≤ i≤γ − 1
}

diam1(H,D) ≤ max
{

Ξ(γ − 1)− 2,Ξ(γi + 1) + Ξ(γj + 1)− 9,Ξ(γ1) + Ξ(γi + 1)− 6 : 2≤ i<j
}

≤ max
{

Ξ(i) + Ξ(γ + 1−i)− 9,Ξ(i− 1) + Ξ(γ + 1− i)− 6 : 2≤ i≤γ − 1
}

diam0(H,D) ≤ max
{

Ξ(γ−1)− 4,Ξ(γi+1) + Ξ(γj+1)− 11,Ξ(γ1) + Ξ(γi+1)− 8 : 2≤ i<j
}

≤ max
{

Ξ(i) + Ξ(γ + 1− i)− 11,Ξ(i− 1) + Ξ(γ + 1− i)− 8 : 2≤ i≤γ − 1
}
,

so that Ξ(γ) ≤ max
{

Ξ(i) + Ξ(γ + 1− i)− 7,Ξ(i− 1) + Ξ(γ + 1− i)− 4 : 2 ≤ i ≤ γ − 1
}

. 2

We would like to remark that Lemma 4.3 become compatible with Conjecture 1.4 if the size of the cycle
is large enough. By slightly adjusting the estimations in the last lines of the proof of Lemma 4.3 one sees
that k ≥ 3 is already sufficient.

Similarly there is also a reduction based on the idea of Lemma 4.4 which is compatible with Conjec-
ture 1.4. For this purpose one has to require the special structure of the small components S arising by
deleting a cut vertex on the cycle. In its current form the estimations are too weak for some subcases so
that the adopted statement should become compatible with Conjecture 1.4 only for relatively large l, e. g.
k + y ≥ 17 should definitely work. On the other hand we are quite sure that the analysis could be refined
so that the reduction works also for smaller values of l and larger connected components S.

B Minimal subgraphs for γ = 3

In this section we outline how the 25 non-isomorphic minimal subgraphs G for γ = 3, see Figure 5, can
be obtained along the lines of Construction 2.5.

First we start to consider the trees Tk from Construction 2.5, where we assume w.l.o.g. that Tk is a
maximum backbone tree. As G has to contain two dominating vertices at distance three we can assume
w.l.o.g. that T2 is a path of length three. For T3 there are only two possible cases up to symmetry, see
Figure 11.
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Fig. 11: The two possible trees T3 for γ = 3.
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The next steps are to construct all possible graphs G1 and G2, where the dominating vertices are fixed.
So let us assume that T3 is given by the graph on the left hand side of Figure 11 and call it type 1. Deleting
the edge {v1, v2} results in two connected subtrees and we consider a shortest path P connecting vertex v1
with V (T3)\{v1} inG−{v1, v2}. Due to the proof of Lemma 4.7 P has either length two or length three.
In the latter case appending P to T3 produces a simple cycle satisfying the requirements of Lemma 4.3.
W.l.o.g. we assume that the end vertex of P in V (T3)−{v1} is given by vi, where the index i is maximal
with this property. The entire list of possible cases is depicted in Figure 12.
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Fig. 12: Fixing v2 for a maximum backbone tree of type 1.

Next we consider all possible extensions of case [5] in Figure 12. Since deleting the edge {v7, v6}
produces two connected components with vertex sets {v7} and {v1, . . . , v6} there is a connecting path P
in G − {v6, v7}. Let us denote the at most two new vertices of P by y3 and y4. Due to the minimality
of G several cases cannot occur. For the path (v7, y3, v5) the edge {v5, v6} becomes redundant, for the
path (v7, y3, y4, v4) vertex v5 and its incident edges become redundant, and for the path (v7, y3, y4, v1)
vertex y1 and its incident edges become redundant. The remaining three cases are depicted in Figure 13.
Suitable orientations, with respect to Lemma 2.8, are given in Figure 5.
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Fig. 13: Fixing v7 for a maximum backbone tree of type 1 in case [5].

Next we consider all possible extensions of case [4] in Figure 12. Since deleting the edge {v7, v6}
produces two connected components with vertex sets {v7} and {v1, . . . , v6} there is a connecting path
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P in G − {v6, v7}. Let us denote the at most two new vertices of P by y3 and y4. The possibility
P = (v7, y3, y1) contradicts the minimality ofG since the edge {v5, y1} could be deleted without creating
a bridge. Also the possibility P = (v7, y3, y4, v1) contradicts the minimality of G since the vertex y1
with its incident edges could be deleted without creating a bridge. The remaining cases are depicted in
Figure 14. We remark that the graph on the right hand side of Figure 14 is isomorphic to the graph in the
middle of Figure 13. Suitable orientations, with respect to Lemma 2.8, for the three graphs in the middle
of Figure 14 are given in Figure 5.
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Fig. 14: (Almost) fixing v7 for a maximum backbone tree of type 1 in case [4].

It remains to extend the graph on the left hand side of Figure 14. Here we can assume that vertex
v7 has no additional neighbor due to the minimality of G. Deleting the edge {v5, v6} produces two
connected components so that there is a connecting path P in G−{v5, v6}. There is no edge {y3, x} with
x ∈ {y1, v2, v3, v5} since otherwise the edge {y3, v6} would be redundant. Next we conclude that vertex
y3 does not have an additional neighbor y5 /∈ {y1, v1, . . . , v7}. Otherwise the edge {y3, v6} would be
redundant due to the edge {f(y5), y5} ∈ E(G). So we can assume that the connecting path P starts with
v6. For paths of length 1 we have the possibilities P = (v6, v2) and P = (v6, v3), see the two graphs on
the right hand side of Figure 15. It remains to consider the cases where P has length two. Here we have
a neighbor y5 of v6 with f(y5) ∈ {v1, v4}. If f(y5) = v1 then vertex y1 can be deleted without creating
a bridge, which is a contradiction to the minimality of G. If f(y5) = v4 then we obtain the bridgeless
connected minimal subgraph drawn in Figure 15. Since there obviously exists an orientation H of G with
diam0(H,D) ≤ 7 and diam1(H,D), diam2(H,D) ≤ 9, see Figure 5, all minimal subgraphs arising as
extensions of case [4] do not contradict Lemma 2.8.

Next we consider all possible extensions of case [3] in Figure 12. Deleting the edge {v4, v5} produces
two connected components, so that there is a connecting path P inG−{v4, v5}. Let us denote the at most
two new vertices of P by y3 and y4. Since we have exhaustively treated the cases [4], [5], and [6], we can
assume that P is not given by (v1, y3, v5), (v1, y3, v6), or (v1, y3, y4, v7). Thus the first vertex of P is not
given by v1.

If P starts with one of the vertices v2, v3, y1, or y2, then we can assume, due to symmetry, that the path
starts either with v2 or with v3. Let us first consider paths of length one, i. e. we add an edge. If we add
the edge {v2, v5} or the edge {v2, v6} we could delete vertex v3 with its incident edges, without creating
a bridge, which is a contradiction to the minimality of G. Adding the edge {v3, v5} or {v3, v6} yields the
cases [3.6] and [3.7] depicted in Figure 16. Since there are no other possible edges we can assume that
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Fig. 15: Fixing v7 for a maximum backbone tree of type 1 in case [4.1].

the second vertex of P is the new vertex y3 and we consider f(y3). Unattached whether the first vertex
of P is given by v2 or v3, we have f(y3) = v7. If P = (v2, y3, v7), then we can delete vertex v3 and
its incident edges, which is a contradiction to the minimality of G. If P = (v3, y3, v7), then the arising
graph is isomorphic to the third graph of Figure 14. Thus we may assume that the first vertex of P is
given by v4 and the second vertex is given by y3. This P has length at most three and connects the two
connected components we have the possibilities (v4, y3, v5), (v4, y3, v6), or (v4, y3, y4, v7), see the three
graphs on the left hand side of Figure 16. For case [3.3] there is obviously an orientation H satisfying
diam0(H,D) = 6, diam1(H,D) = 8, and diam2(H,D) = 10, see Figure 5.
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Fig. 16: Fixing v7 for a maximum backbone tree of type 1 in case [3].

In cases [3.1] and [3, 2] we consider the two connected components arising by deleting the edge
{v7, v6}. Let P be a shortest connecting path starting at vertex v7. P has length two since otherwise
vertex y3 can be deleted without creating a bridge. So let us denote the second vertex of P by y4. If the
third vertex on P is an element of {v2, v3, y1, y2}, then we can delete vertex y3 without creating a bridge,
which contradicts the minimality of G. If the third vertex of P is given by y3 then G contains the graph
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of case [3.3] as a subgraph. Thus the third vertex of P is either given by v5 or v6.
If P = (v7, y4, v5) in case [3.2], then the edge {v4, v5} is redundant, which contradicts the minimality

of G. If P = (v7, y4, y6) in case [3.1], then we can easily check that adding a connecting path of
G − {v5, v6} produces at least one redundant edge. The two remaining possibilities are given by the
graphs of case [3.4] and case [3.5] in the middle of Figure 16. In both cases we can easily give a suitable
orientation, see Figure 5.

Next we extend the cases [3.6] and [3.7] on the right hand side of Figure 16. Deleting the edge {v6, v7}
results in two connected components. Let P we a connecting path starting in v7. The second vertex of
P has to be new vertex, call it y5. We can easily check that the resulting graph would not be minimal
if we add a path being different from P1 = (v7, y5, v6) and P2 = (v7, y5, v5). Due to the minimality
of G and due to the edge {v5, v6} we cannot have path P2 in case [3.7]. If we would have path P1 in
case [3.6] then deleting the edge {v5, v6} results in two connected components. Here we can check that
adding a connecting path ends up in a bridgeless connected graph which is not minimal. The remaining
two possibilities are depicted in Figure 17. We remark that the graph on the right hand side of Figure 17
is isomorphic to the graph on the left hand side of Figure 15, i. e. we have rediscovered case [4.1.1].
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Fig. 17: Extensions for a maximum backbone tree of type 1 in the cases [3.6] and [3.7].

Next we consider all possible extensions of the cases [1] and [2] in Figure 12. First we remark that y1
cannot have an additional neighbor besides the two depicted in Figure 12. The previous edge e = {v2, y1}
or e = {v3, y1}would be redundant if an edge {y1, vi} is added. If y1 would have a new neighbor y3, then
we can consider f(y3) and conclude that vertex y1 or the previous edge e is redundant. Similar we can
argue that v1 does not have any further neighbors. Thus in case [1] vertex v2 and in case [2] vertex v3 is a
cut vertex. Since we have exhaustively treated the cases [3], [4], [5], and [6], we can conclude that deleting
the edge {v7, v6} from T3 and adding a shortest path connecting the two arising connected components
ends either in case [1] or case [2]. So up to isomorphism we obtain the three cases of Figure 18.

Let us proceed in extending case [2.2]. Here the only vertices which can have further neighbors are
v3, v4, and v5. If G contains the edge {v3, v5}, then all vertices are fixed. Otherwise vertex v3 has a
new neighbor y3 with f(y3) = v4. So also vertex v5 has a new neighbor, which can be either y3 or
another vertex y4, with f(y3) = v4 or f(y4) = v4. The three bridgeless connected graphs are depicted in
Figure 19. As before we refer to Figure 5 for suitable orientations being compatible with Lemma 2.8.

In case [2.1] only the vertices v3, v4, v5, and v6 can have additional neighbors. If G contains the edge
{v3, v6}, then all vertices are fixed. If G contains the edge {v3, v5}, then there has to be a new neighbor
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Fig. 18: Fixing v7 for a maximum backbone tree of type 1 in case [1] or case [2].
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Fig. 19: Fixing v5 for a maximum backbone tree of type 1 in case [2.2].

y3 of v6 with f(y3) = v4. Both resulting graphs are bridgeless connected and drawn on the left hand side
of Figure 20. In the remaining cases we can assume that there are no edges with both end vertices from
{v3, . . . , v6}. Thus v6 has a new neighbor y3 with f(y3) = v4. The same is true for vertex v3. If the new
neighbor of v3 coincides with y3, then we obtain a bridgeless connected graph being isomorphic to the
graph in the middle of Figure 20. Otherwise v3 has another new neighbor y4 with f(y4) = v4, see the
graph on the right hand side of Figure 20. Suitable orientations can be found in Figure 5.

In case [1.1] only the vertices v2, . . . , v5 can have additional neighbors. IfG contains the edge {v2, v6},
then all vertices are fixed. IfG contains the edges {v2, v5} and {v3, v6}, then all vertices are fixed. Due to
symmetry we assume next thatG contains the edge {v2, v5} but does not contain the edge {v3, v6}. In this
case v6 has a new neighbor y3 with f(y3) = v4. If G contains the edge {v3, v5}, then vertex v2 has a new
neighbor y3 with f(y3) = v4. The same argument is valid for vertex v6. Either those two new vertices
coincide or they are different. Since in both cases the edge {v3, v5} would be redundant we can assume
in the following part, concerning case [1.1], that G does not contain additional edges with both endpoints
in {v2, . . . , v6}. Thus vertex v2 has a new neighbor y3 with f(y3) = v4 and the same argument is valid
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Fig. 20: Fixing v5 for a maximum backbone tree of type 1 in case [2.1].

for vertex v6. If those new vertices coincide then we obtain the third graph of Figure 21. Otherwise they
are different and we obtain the graph the right hand side of Figure 21. Suitable orientations for these four
bridgeless connected minimal subgraphs can be found in Figure 5.
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Fig. 21: Fixing v4 for a maximum backbone tree of type 1 in case [1.1].

In the remaining cases we assume that the maximum backbone tree T3 is isomorphic to the tree on
the right hand side of Figure 11, i. e. G does not contain the tree on the left hand side of Figure 11 as
a subgraph. First we remark that the only possible edge with both endpoints in {v1, . . . , v6} is given by
e := {v3, v4}. If we delete the edge {v3, v5} we obtain two connected components and there exists a
path P connecting v5 with a vertex in {v1, . . . , v4, v6}. Let us denote new vertices by y1 and y2. Since
G does not contain a backbone tree of type 1 as a subgraph we cannot have P = (v5, y1, y2, v1) or
P = (v5, y1, y2, v6). Thus P has length 2. Using the same argument as before we conclude that also P =
(v5, y1, v4) is not possible and the only remaining possibilities are P = (v5, y1, v3) or P = (v5, y1, v2).
In both cases y1 cannot have an additional neighbor in {v1, . . . , v6} due to the minimality of G. Due
to symmetry the same argumentation applies for vertex v6 via deleting the edge {v4, v6}. Thus, up to
symmetry, we obtain the three cases of Figure 22.

In all three cases [A], [B], and [C] deleting the edge {v1, v2} results in two connected components and
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Fig. 22: Extensions of a maximum backbone tree of type 2.

there exists a path P connecting vertex v1 with the other component. SinceG does not contain a backbone
tree of type 1 as a subgraph P has length 2 and cannot end in vertex v3 or v4. Due to the minimality of G
the path P cannot end in vertex y1 or y2. Thus we have P = (v1, y3, v2), where y3 denotes a new vertex.

For case [C], we obtain a bridgeless connected graph, see the graph on the right hand side of Figure 23.
For case [B] we obtain the second graph of Figure 23. By deleting the edge {v2, v3} we obtain two con-
nected components. We can check that appending a connecting P results in a subgraph being isomorphic
to a backbone tree of type 1. Thus it remains to consider case [A]. Here we consider the two connected
components arising after the deletion of the edge {v2, v3}. The only possibility to append a connecting
path without creating a subgraph being isomorphic to a backbone tree of type 1 is the path (v3, v4), i. e.
we add the edge {v2, v4}, see the graph on the left hand side of Figure 23. Suitable orientations for the
two surviving bridgeless connected minimal subgraphs can be found in Figure 5.
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Fig. 23: Extensions of the cases [A], [B], and [C] for a maximum backbone tree of type 2.

Finally we have determined the exhaustive list of minimal subgraphs for γ = 3, see Figure 5.

In principle one can implement a computer program which, for a given value of γ, recursively con-
structs the exhaustive list of possible backbone trees Tγ . As a next step one can recursively construct all
possibilities for the graphs Gk by fixing node by node, i. e. deleting the first bridge of the current graph
and appending a connecting path of length at most three in all possible ways. The intermediate graphs
can be checked whether they violate the minimality condition (which has to be slightly reformulated in
order to be applicable for partial minimal subgraphs). If all graphs are extended until they are bridgeless
connected then isomorphic copies and non-minimal graphs have to be removed. The final step is to deter-
mine a minimal orientation for each graph. So what we did by hand for γ = 3 can in principle be done by
a computer program for all finite values of γ.
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