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On neighbour-distinguishing colourings from lists
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An edge colouring of a graph is said to be neighbour-distinguishing if any two adjacent vertices have distinct sets of
colours of their incident edges. In this paper the list version of the problem of determining the minimum number of
colours in a neighbour-distinguishing colouring of a given graph is considered.
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1 Introduction
Let G be a finite simple graph, let C be a set of colours (in this paper we shall always suppose C ⊆ N)
and let f : E(G) → C be an edge colouring of G. The colour set of a vertex v ∈ V (G) with respect
to f is the set Sf (v) of colours of edges incident to v. The colouring f is neighbour-distinguishing if it
distinguishes any two adjacent vertices by their colour sets, i.e., Sf (u) 6= Sf (v) whenever u, v ∈ V (G)
and uv ∈ E(G).

As usual, we are interested in the smallest number of colours in a neighbour-distinguishing colouring of
G. If the optimisation runs over all proper colourings, that number is called the neighbour-distinguishing
index of G, in symbols ndi(G). In the general case (when colourings are not required to be proper) the
corresponding invariant is known as the general neighbour-distinguishing index of G and denoted by
gndi(G).

The main goal of this paper is to analyse the list versions of the above problems. Denote by Pk(X) the
set of all k-subsets of a set X and by Lk(G) the set of all mappings L : E(G) → Pk(N). The set L(e),
L ∈ Lk(G), e ∈ E(G), is the list of available colours for the edge e. Given L ∈ Lk(G), the graphG is L-
neighbour-distinguishable provided there is a proper neighbour-distinguishing colouring f : E(G) → N
satisfying f(e) ∈ L(e) for every e ∈ E(G). The list neighbour-distinguishing index of G, in symbols
lndi(G), is the minimum k such that for every L ∈ Lk(G) the graph G is L-neighbour-distinguishable.
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This invariant is a generalisation of the “classical” edge-choosability ch′(G) of G; for the definition of
the edge-choosability as well as that of (vertex-) choosability ch(G) of G see the survey paper [8] by
Tuza. Clearly, we have lndi(G) ≥ max(ndi(G), ch′(G)). Recall that according to the List Colouring
Conjecture ch′(G) should be equal to χ′(G), the chromatic index of G.

Remark. In the study of the neighbour-distinguishing index and the list neighbour-distinguishing index it
is useful to realise that adjacent vertices of distinct degrees are trivially distinguished by their colour sets.

A graphG is said to be neighbour-irregular if any two of its vertices of the same degree are nonadjacent.
The above remark immediately yields

Proposition 1 If G is a neighbour-irregular graph, then ndi(G) = χ′(G) and lndi(G) = ch′(G). 2

Omitting the requirement that f should be proper we obtain the notions of a generally L-neighbour-
distinguishable graph and the general list neighbour-distinguishing index glndi(G) of the graph G.

If G is a disconnected graph with components G1, . . . , Gq , then evidently lndi(G) = max(lndi(Gi) :
i = 1, . . . , q) and glndi(G) = max(glndi(Gi) : i = 1, . . . , q). Therefore, when searching for the
neighbour-distinguishing index or general neighbour-distinguishing index, it is sufficient to restrict our
attention to connected graphs.

Observe that lndi(K1) = glndi(K1) = 0 and that the graph K2 does not have any neighbour-
distinguishing colouring (either proper or not). So, we shall consider only connected graphs with at
least three vertices.

In Section 2 we show that the list neighbour-distinguishing index is equal to the neighbour-distinguishing
index for graphs in several classes, namely cycles, trees and unbalanced complete bipartite graphs. This
leads us to

Conjecture 2 If G is a connected graph with |V (G)| ≥ 3, then lndi(G) = ndi(G).

Remark. From Proposition 1 it follows that for neighbour-irregular graphs Conjecture 2 and the List
Colouring Conjecture are equivalent.

In Section 3 we prove that the general list neighbour-distinguishing index of a tree is at most 3 and we
exhibit a tree T with glndi(G) > gndi(G).

Given p, q ∈ Z, let [p, q] :=
⋃q

i=p{i} be the integer interval bounded by p and q. The concatenation of
finite sequencesA = (a1, . . . , am) andB = (b1, . . . , bn) is the sequenceAB := (a1, . . . , am, b1, . . . , bn).
Concatenating finite sequences is clearly associative and we shall use

∏k
i=1A

(i) for the result of (succes-
sive) concatenation of finite sequences A(1), . . . , A(k). So, if A(i) = (a

(i)
1 , . . . , a

(i)

m(i)), then
∏k

i=1A
(i) =

(a
(1)
1 , . . . , a

(1)

m(1) , . . . , a
(k)
1 , . . . , a

(k)

m(k)). For k ∈ Z we denote by (k)2 the (unique) l ∈ [2, 3] satisfying
k ≡ l (mod 2).

Recall that a cycle C of length l ≥ 3 in a graph G can be coded using a sequence
∏l+1

i=1(vi) of its
consecutive vertices so that V (C) = {vi : i ∈ [1, l]} and E(C) = {vivi+1 : i ∈ [1, l]} (with vl+1 = v1).

2 Proper colourings
The neighbour-distinguishing index of a graph was introduced by Zhang et al. in [9], where the authors
found (among other things) the value of this invariant for cycles (Cn denotes an n-vertex cycle) and trees:

Proposition 3 Let n be an integer, n ≥ 3.
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(1) If n = 5, then ndi(Cn) = 5.

(2) If n 6≡ 0 (mod 3), n 6= 5, then ndi(Cn) = 4.

(3) If n ≡ 0 (mod 3), then ndi(Cn) = 3. 2

Proposition 4 If T is a tree with |V (T )| ≥ 3, then ∆(T ) ≤ ndi(T ) ≤ ∆(T ) + 1. Moreover, ndi(T ) =
∆(T ) + 1 if and only if T has a pair of adjacent vertices of degree ∆(T ). 2

In the above introductory paper it is conjectured that ndi(G) ≤ ∆(G) + 2 for any connected graph
G /∈ {K2, C5}. The conjecture was confirmed by Balister et al. in [1] for bipartite graphs and for graphs
G with ∆(G) = 3. Edwards et al. in [2] showed even that ndi(G) ≤ ∆(G) + 1 if G is bipartite, planar,
and of maximum degree ∆(G) ≥ 12.

In this section we determine the list neighbour-distinguishing index for graphs in some classes with a
simple structure.

2.1 Cycles
We suppose that E(Cn) = {ei : i ∈ [1, n]} and that ei is adjacent to ei+1 for every i ∈ [1, n] with
indices taken modulo n (this usual convention will be used throughout the whole paper without explicitly
mentioning it in what follows).

Proposition 5 Let n be an integer, n ≥ 3.

(1) If n = 5, then lndi(Cn) = ndi(Cn) = 5.

(2) If n 6≡ 0 (mod 3), n 6= 5, then lndi(Cn) = ndi(Cn) = 4.

(3) If n ≡ 0 (mod 3), then lndi(Cn) = ndi(Cn) = 3.

Proof: Because of Proposition 3 we shall be done by proving the inequality lndi(Cn) ≤ ndi(Cn) (the
reverse inequality being obvious).

(1) The statement is trivial.

(2) It suffices to show that for any L ∈ L4(Cn) there is a proper neighbour-distinguishing colouring
f : E(Cn)→ N satisfying f(ei) ∈ L(ei) for every i ∈ [1, n].

If all lists are the same, the existence of f follows from the fact that ndi(Cn) = 4. Otherwise
there are two adjacent edges of Cn with distinct lists. Without loss of generality we may suppose
that L(e1) 6= L(en), which implies L(e1) \ L(en) 6= ∅. Now determine f(ei) in the following
way: Choose f(e1) ∈ L(e1) \ L(en) and f(e2) ∈ L(e2) \ {f(e1)}. If j ∈ [3, n − 2] and f(ei)
is known for all i ∈ [1, j − 1], take f(ej) ∈ L(ej) \ {f(ej−2), f(ej−1)}. To finish, let f(en−1) ∈
L(en−1)\{f(en−3), f(en−2), f(e1)} and f(en) ∈ L(en)\{f(en−2), f(en−1), f(e1), f(e2)} (which
is possible because f(e1) /∈ L(en)).

(3) An edge colouring f : E(Cn) → N is proper and neighbour-distinguishing if and only if f(ei+1) 6=
f(ei) 6= f(ei+2) for every i ∈ [1, n]. Let Fn be the graph with V (Fn) = E(Cn) and E(Fn) =
{eiei+1 : i ∈ [1, n]} ∪ {eiei+2 : i ∈ [1, n]}. Thus Fn is the square of the line graph of Cn and, as the
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line graph of Cn is Cn itself, Fn
∼= C2

n (Fn is isomorphic to C2
n). Therefore, lndi(Cn) = ch(Fn) =

ch(C2
n).

Since n ≡ 0 (mod 3), say n = 3k, it is clear that the graph Fn is an edge-disjoint union of the cycle
(e2)

∏k
j=1(e3j−2, e3j , e3j+2) of length 3k and k vertex-disjoint cycles (e3j−1, e3j , e3j+1, e3j−1) of

length 3 with j ∈ [1, k]. Graphs with such a structure were studied by Fleischner and Stiebitz in [3],
where it is proved that ch(Fn) = 3. So, by Proposition 3.(3), we have lndi(Cn) = ch(Fn) =
ndi(Cn) = 3. 2

2.2 Trees
By Proposition 4, there are two categories of trees: Category k consists of trees T with ndi(T ) = ∆(T )−
1 + k, k = 1, 2. Thus, a tree T is of Category 2 if and only if it has a pair of adjacent vertices of degree
∆(T ).

Theorem 6 If T is a tree with |V (T )| ≥ 3, then lndi(T ) = ndi(T ).
Proof: Consider the following algorithm that enables us to find a neighbour-distinguishing colouring of a
given tree T of a given category with colours belonging to lists of an appropriate cardinality.

Algorithm 1: ListNeighbourDistinguishing(T, k, L)

Input: A tree T = (V,E) with |V | ≥ 3 of Category k and a mapping L : E → N that satisfies
|L(e)| = ∆(T )− 1 + k for every e ∈ E.

Output: A proper neighbour-distinguishing colouring f : E → N with f(e) ∈ L(e) for every e ∈ E.
do

S(v)← ∅ for every v ∈ V
Pick z, t ∈ V so that zt ∈ E and degT (z) = 1, then choose f(zt) ∈ L(zt).
S(z)← {f(zt)}
S(t)← {f(zt)}
X ← {z}
while V \X 6= ∅ do

Choose y ∈ V \X so that there is (a unique) x ∈ X with xy ∈ E.
if d = degT (y), NT (y) = {xi : i ∈ [1, d]} and NT (y) ∩X = {x1} then

// Denote neighbours of y by x1, . . . , xd so that x1 = x. //
for i = 2 to d do

// Find colours successively for yxi, i = 2, . . . , d. //
L(yxi)← L(yxi) \ {f(yxj) : j ∈ [1, i− 1]}
// Reduce the list for yxi because f should be proper. //
if i = d and S(x1) \ S(y) = {c} then L(yxd)← L(yxd) \ {c}
// Reduce the list for yxd since f should distinguish y from x1. //
Choose f(yxi) ∈ L(yxi).
S(y)← S(y) ∪ {f(yxi)}
S(xi)← S(xi) ∪ {f(yxi)}
if degT (xi) = 1 then X ← X ∪ {xi}

X ← X ∪ {y}
return f(e) for every e ∈ E
// Exhibit a required colouring. //
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The algorithm builds step by step colour sets S(v) of vertices v ∈ V by assigning colours to all
uncoloured edges incident to v. It starts with colouring an arbitrary pendant edge of T so that the (unique)
pendant vertex of this edge is the first vertex of the set X of all vertices of T with currently finished
colour sets. If X 6= V , the subgraph of T induced by all currently coloured edges has a leaf out of X (an
extension vertex). A successive colouring of all edges (not coloured yet) incident to the extension vertex
extends X by all pendant neighbours (out of X) of the extension vertex and, finally, by the extension
vertex itself.

To see that the algorithm is correct it is sufficient to use the following two facts:

a) No list is reduced to the empty set. With k = 1 the worst case (the reduction to a singleton) can apply
if either degT (y) = ∆(T ) or degT (x) = ∆(T )− 1 = degT (y). If k = 2, such a situation can appear
provided that degT (x) = ∆(T ) = degT (y).

b) If a vertex y is added toX andX∪{y} 6= V , then the subgraph of T induced by all currently coloured
edges is a subtree of T , all its non-leaves are in X and at least one of its leaves is not a leaf of the
whole T (so that it can be chosen as a new y and guarantees that d ≥ 2 in the corresponding for loop).

2

2.3 Unbalanced complete bipartite graphs
Unbalanced complete bipartite graphs also are in favour of Conjecture 2.

Theorem 7 If m,n are positive integers with m < n, then lndi(Km,n) = ndi(Km,n) = n.

Proof: It is well known that χ′(Km,n) = n. SinceKm,n is neighbour-irregular, by Proposition 1 we have
ndi(Km,n) = χ′(Km,n) = n.

On the other hand, Janssen in [7] proved that ch′(Km,n) = n; so, again by Proposition 1, lndi(Km,n) =
ch′(Km,n) = n and we are done. 2

3 General colourings
The general neighbour-distinguishing index was introduced by Győri et al. in [4], where the authors
proved that gndi(G) ≤ 2dlog2 χ(G)e + 1 for any graph G having no isolated edges. The result was
improved by Győri and Palmer who proved in [5] that χ(G) ≥ 3 implies gndi(G) = dlog2 χ(G)e+ 1 (in
the case log2 χ(G) /∈ Z the same expression was obtained independently by Horňák and Soták in [6]).

The analysis of the general list neighbour-distinguishing index seems to be a bit more complicated than
that of the list neighbour-distinguishing index. Indeed, we know the exact values just for paths and cycles,
for trees we only have an upper bound equal to 3. Also, an analogue of Conjecture 2 fails.

3.1 Paths and cycles
We shall see that, as in the case of proper colourings, when passing to the list version the value of the
parameter does not change in the classes of paths and cycles.
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Proposition 8 Let n be an integer, n ≥ 3.

(1) If n ≡ 1 (mod 2), then glndi(Pn) = gndi(Pn) = 2.

(2) If n ≡ 0 (mod 2), then glndi(Pn) = gndi(Pn) = 3.

Proof: The values of gndi(Pn) come from [4] so that we only need to show that glndi(Pn) = gndi(Pn).
An edge colouring f : E(Pn) → N is neighbour-distinguishing if and only if f(e1) 6= f(e2), f(ei) 6=

f(ei+2) for every i ∈ [1, n−3] and f(en−2) 6= f(en−1). Let Gn be the graph with V (Gn) = E(Pn) and
E(Gn) = {e1e2}∪{eiei+2 : i ∈ [1, n− 3]}∪{en−2en−1}. If n ≥ 4 (n = 2k or n = 2k+ 1 with k ∈ Z,
k ≥ 2), then Gn

∼= Cn−1. Indeed, the following are cycles in Gn: (e1)
∏k−1

i=1 (e2i)[
∏k

i=1(e2k+1−2i)] (if
n = 2k) and (e1)

∏k
i=1(e2i)[

∏k
i=1(e2k+1−2i)] (if n = 2k + 1). Therefore, glndi(Pn) = ch(Cn−1) and

we are done by using the well-known fact that ch(Cl) = (l)2. Finally, G3
∼= P2, hence glndi(P3) =

ch(P2) = 2 = gndi(P3). 2

Proposition 9 Let n be an integer, n ≥ 3.

(1) If n ≡ 0 (mod 4), then glndi(Cn) = gndi(Cn) = 2.

(2) If n 6≡ 0 (mod 4), then glndi(Cn) = gndi(Cn) = 3.

Proof: Similarly as in the preceding proposition, we only have to prove that glndi(Cn) = gndi(Cn)
(since gndi(Cn) is known from [4]).

An edge colouring f : E(Cn) → N is neighbour-distinguishing if and only if f(ei) 6= f(ei+2) for
every i ∈ [1, n]. Let Hn be the graph with V (Hn) = E(Cn) and E(Hn) = {eiei+2 : i ∈ [1, n]}; then
glndi(Cn) = ch(Hn).

If n is odd, n = 2k + 1, then (e2k)
∏k

i=0(e2i+1)[
∏k

i=1(e2i)] is a cycle in Hn, Hn
∼= Cn and

glndi(Cn) = ch(Cn) = 3. If n is even, n = 2k, k ≥ 3, then (e2k−2+j)
∏k−1

i=0 (ej+2i), j = 1, 2, is
a cycle in Hn, hence Hn

∼= 2Ck and glndi(Cn) = ch(2Ck) = ch(Ck) = (k)2. Finally, H4
∼= 2P2, and

glndi(H4) = ch(2P2) = ch(P2) = 2. 2

3.2 Trees
The following two results are taken from [4].

Theorem 10 If G is a connected bipartite graph with |V (G)| ≥ 3, then 2 ≤ gndi(G) ≤ 3. 2

Proposition 11 For any graph G the following statements are equivalent:

(1) gndi(G) = 2.

(2) G is bipartite and there is a bipartition {X1∪X2, Y } of V (G) such thatX1∩X2 = ∅ and any vertex
of Y has at least one neighbour in both X1 and X2. 2

Proposition 12 If T is a tree with |V (T )| ≥ 3, then gndi(T ) = 2 if and only if the distance between any
two leaves of T is even.
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Proof: If gndi(T ) = 2, by Proposition 11 we know that there is a bipartition {X1∪X2, Y } of V (T ) such
that X1 ∩X2 = ∅ and any vertex of Y has at least one neighbour in both X1 and X2. Thus degT (y) ≥ 2
for every y ∈ Y , all leaves of T are in X1 ∪X2 and the distance between any two of them is even.

Now suppose that the distance between any two leaves of T is even. Let {X,Y } be the bipartition
{X,Y } of V (T ) with X containing all leaves of T . Pick x0 ∈ X and let {X1, X2} be the decomposition
of X determined as follows: x ∈ Xi

df.⇔ dT (x0, x) ≡ 2i (mod 4), i = 1, 2. Consider a vertex y ∈ Y
and its neighbour x′ lying on the (unique) path joining y to x0. Since y is not a leaf, it has a neighbour
x′′ 6= x′. Clearly, dT (x0, x

′′) = dT (x0, x
′) + 2, which means that one of x′, x′′ is in X1 and the other in

X2. By Proposition 11 then gndi(T ) = 2. 2

Theorem 13 If T is a tree with |V (T )| ≥ 3, then glndi(T ) ≤ 3.

Proof: We proceed by induction on the lexicographical ordering of pairs (diam(T ), |V (T )|), where
diam(T ) is the diameter of T . From |V (T )| ≥ 3 we know that diam(T ) ≥ 2. If diam(T ) = 2,
then T is a star and glndi(T ) = 2 (it is sufficient to colour the second coloured edge with a colour that is
different from the first used colour).

So, suppose that diam(T ) ≥ 3 and glndi(T ′) ≤ 3 for every tree T ′ with the pair (diam(T ′), |V (T ′)|)
lexicographically smaller than the pair (diam(T ), |V (T )|). Let x be an endvertex (a leaf) of a longest
path in T and let y be the unique neighbour of x. Further, let z be the unique non-leaf neighbour of y.

Consider a mapping L ∈ L3(T ), the tree T ′ := T − x and the mapping L′ := L \ {(xy, L(xy))} ∈
L3(T ′). By the induction hypothesis there is a neighbour-distinguishing colouring f ′ : E(T ′) → N with
f ′(e) ∈ L′(e) = L(e) for every e ∈ E(T ′). Let f : E(T )→ N be an extension of f ′ with f(xy) ∈ L(xy)
that has the following two properties: if Sf ′(z) \ Sf ′(y) = {c1}, then f(xy) 6= c1; if Sf ′(y) = {c2}
(which means that degT ′(y) = 1), then f(xy) 6= c2. Since |L(xy)| = 3, f does exist. Clearly, f is
neighbour-distinguishing, the tree T is L-neighbour-distinguishable and glndi(T ) ≤ 3. 2

The rest of this subsection is devoted to showing that an analogue of Conjecture 2, in which the list
neighbour-distinguishing index is replaced by the general list neighbour-distinguishing index, fails.

Let T and L be the tree and the mapping from L2(T ), respectively, that are presented in Figure 1. The
distance between any two leaves in T is even, hence, by Proposition 12, gndi(T ) = 2. Let us prove that
T is not L-neighbour-distinguishable (so that, by Theorem 13, glndi(T ) = 3). Suppose, on the contrary,
that f is a neighbour-distinguishing colouring of T with f(e) ∈ L(e) for every e ∈ E(T ).

v1 v2 v3 v4 v5 v6 v7 v8 v9

u1

u2

η ξ xyξ b η b y axaa b a b
a b

a b

Fig. 1: A tree T with 2 = gndi(T ) < glndi(T ) = 3.
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Case 1: |Sf (v5)| = 1

Suppose first that Sf (v5) = {a}. Then Sf (v6) 6= Sf (v7) implies f(v7v8) = y and, consequently,
f(v8v9) = x. Now, however, with f(v6v7) = x we obtain Sf (v7) = {x, y} = Sf (v8), while
f(v6v7) = a yields Sf (v5) = {a} = Sf (v6), a contradiction in both cases. If Sf (v5) = {b}, we
get a contradiction by a “symmetrical” reasoning on the “left-hand side” of T .

Case 2: Sf (v5) = {a, b}
Now it follows from Sf (v5) 6= Sf (u1) and L(v5u1) = L(u1u2) = {a, b} = Sf (v5) that
|Sf (u1)| = 1. As a consequence of dT (u2) = 1 we have also |Sf (u2)| = 1. Then, however,
from f(u1u2) ∈ Sf (u1) ∩ Sf (u2) we obtain Sf (u1) = Sf (u2), a contradiction.
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