
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 21:4, 2019, #13

New Results on Classical and Quantum
Counter Automata∗

Masaki Nakanishi1 Abuzer Yakaryılmaz2 Aida Gainutdinova3

1 Faculty of Education, Art and Science, Yamagata University, Japan
2 Center for Quantum Computer Science, Faculty of Computing, University of Latvia, Latvia
3 Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Russia

received 13th July 2016, revised 29th Mar. 2018, accepted 3rd Sep. 2019.

We show that one-way quantum one-counter automaton with zero-error is more powerful than its probabilistic coun-
terpart on promise problems. Then, we obtain a similar separation result between Las Vegas one-way probabilistic
one-counter automaton and one-way deterministic one-counter automaton.

We also obtain new results on classical counter automata regarding language recognition. It was conjectured that one-
way probabilistic one blind-counter automata cannot recognize Kleene closure of equality language [A. Yakaryılmaz:
Superiority of one-way and realtime quantum machines. RAIRO - Theor. Inf. and Applic. 46(4): 615-641 (2012)].
We show that this conjecture is false, and also show several separation results for blind/non-blind counter automata.

Keywords: quantum automata, counter automata, promise problems, blind counter, zero-error, Las-Vegas algorithms

1 Introduction
Quantum computation is a generalization of probabilistic computation which is a generalization of deter-
ministic computation. It is natural to ask whether a quantum model is more powerful than its probabilistic
counterpart and similarly whether a probabilistic model is more powerful than its deterministic counter-
part. For a fair comparison between these three types of models, bounded-error models of quantum and
probabilistic should be considered (as we do in this paper).

Quantum automata models are restricted models of quantum Turing machines, i.e., the type of memory
and/or the direction of head movement can be restricted. We find it interesting to determine whether
quantum models can have advantage in such restricted case. In this paper, we specifically focus on counter
type of memory.

We have a more complete picture for constant-space models (finite state automata) when compared
to models using memories (finite state automata augmented with counter(s), stack(s), tape(s), etc.). For
example, one-way(i) deterministic finite automata (1DFAs) are equivalent to one-way probabilistic finite

∗A preliminary version appeared as “Masaki Nakanishi, Abuzer Yakaryılmaz: Classical and Quantum Counter Automata on
Promise Problems. CIAA 2015: 224-237” [NY15]. The arXiv number is 1412.6761.
(i) The input is read as a stream from left to right and a single symbol is fed to the machine in each step. We also use two end-markers

to allow the machine making some pre- and post-processing.

ISSN 1365–8050 © 2019 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:1

41
2.

67
61

v4
 [

cs
.F

L
]

 2
5

Se
p

20
19

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/1528

2 Masaki Nakanishi, Abuzer Yakaryılmaz, Aida Gainutdinova

automata (1PFAs) and one-way quantum finite automata (1QFAs): they all define the class of regular
languages [Sip06, Rab63, LQZ+12, AG00]. On the other hand, in the case of two-way models(ii) abbrevi-
ated as 2DFA, 2PFA, and 2QFA, respectively, 2DFAs are equivalent to 1DFAs, 2PFAs are more powerful
than 2DFAs, and 2QFAs are more powerful than 2PFAs. [She59, Fre81, KW97, AW02]. As a special
case, one-way with ε-moves(iii) (1ε) quantum finite automata (1εQFAs) can recognize some non-regular
languages if the head is allowed to be in a superposition [AI99]. Note that ε-moves can be easily removed
for the classical finite automata without increasing the number of states.

When considering finite automata using memory, there are more unanswered cases. The most chal-
lenging ones seem to be between quantum and probabilistic models. For example, 1PFAs with a counter
(1P1CAs) are more powerful than 1DFAs with a counter (1D1CAs) [Fre79] but we do not know whether
1QFAs with a counter (1Q1CAs) are more powerful than 1P1CAs – we have only an affirmative answer
for one-sided bounded-error [SY12]. For two-way models, abbreviated respectively 2D1CAs, 2P1CAs,
and 2Q1CAs, only 2Q1CAs were shown to be more powerful than 2D1CAs [Yak13] and the other cases
are still open. For one-way pushdown automata models, abbreviated as 1DPDAs, 1PPDAs, and 1QPDAs,
respectively, 1DPDAs were shown to be weaker than even Las Vegas restriction of 1PPDAs [HS10] and
the question is open between quantum and probabilistic models [YFSA12].

All mentioned results above are regarding language recognition. When considering solving promise
problems, the picture can dramatically change. The notion of promise problems was introduced in
[ESY84]. Informally, promise problems are a generalization of language recognition such that the aim is
to separate two disjoint languages that do not necessarily form the set of all strings. Promise problems have
deep connection with fundamental issues in complexity theory such as unique solutions, approximation
and complete problems. Readers may refer to [Gol06] for a survey on these issues. For quantum computa-
tion, the first two notable results on promise problems are the Deutsch-Jozsa algorithm [DJ92, CEMM98]
and Simon’s algorithm [Sim97]. The results give separation between quantum and classical computation
models in the exact and bounded-error settings, respectively. Also for automata models, promise prob-
lems have been investigated intensively [MNYW05, RY14, GY15a, GY15b, GQZ15, Nak15, BMY17,
ZLQG17, GY18]. The separation results can be obtained even for one-way models or the case of zero-
error – a very restricted case is that unary QFAs are more powerful than unary PFAs [GY15a]. Also
as pointed out in [GY15b], the effects of randomness and quantumness can be more easily shown with
promise problems and some open problems defined on language recognition can be answered in the case
of solving promise problems. In [MNYW05, Nak15], exact(iv) 1εQPDAs are shown to be more powerful
than exact 1εPPDAs, which are equivalent to 1εDPDAs.

In this paper, we show that quantum models can still be more powerful if we replace the stack with a
counter: we show that exact 1Q1CAs can solve a certain promise problem that cannot be solved by exact
1P1CAs, which are equivalent to 1D1CAs. As mentioned above, Las Vegas 1εPPDAs are more powerful
than 1εDPDAs on language recognition. As the second separation, we obtain the same result between
Las Vegas 1P1CAs and 1D1CAs on promise problems. In each separation, we define a new promise
problem and give an algorithm for the more powerful model, and then, we present the impossibility result
for the weaker model. As far as the authors know, separation results on neither language recognition
nor solving promise problems were known for those automata models. Thus, our separation results on

(ii) The input is written on a single-head read-only tape between two end-markers and the head can move in both directions or stay
in the same tape square in each step.

(iii) It is a restricted version of two-way head such that the head cannot move to the left.
(iv) A single answer is given with probability 1.

New Results on Classical and Quantum Counter Automata 3

promise problems can be regarded as an important first step toward understanding the complexities of
those automata models.

Additionally, we present new results on classical counter automata. We disprove the conjecture defined
by Yakaryılmaz [Yak12]: Yakaryılmaz separated 1QFAs with a blind counter from 1DFAs with a blind
counter by using the language EQ∗, the Kleene closure of EQ = {anbn | n > 0}, and then, the author
conjectured that the same language cannot be recognized by 1PFAs with a blind counter. However, we
provide an algorithm for 1PFAs with a blind counter that recognizes EQ∗. We also show several separation
results for blind/non-blind counter automata.

In the next section, we provide the required background and then we present our main results on promise
problems in Section 3 and new classical results on language recognition in Section 4.

A preliminary version of the paper was presented in CIAA 2015 [NY15]. In this version, we revise
the overall paper and added new results and proofs. We modify the definitions of promise problems
ONE-NONE and ONE-NONE(t) in Section 3.2 since we observe that the argument on the Las Vegas algorithm
for ONE-NONE(t) in [NY15] is not correct. After this modification, we obtain better success probability in
Theorem 3 and we also give correct statement on ONE-NONE(t) in Theorem 4. Since the promise problem
ONE-NONE is modified, we provide a new impossibility proof for 1D1CAs (Theorem 5). We should remark
that this new proof is more complicated (and longer) than the previous proof. Theorem 6 is a new result,
which was left open in [NY15]. Additionally, we revise the second half of Section 4 and present new
results regarding comparisons of classical models: Theorems 8, 9, and 10.

2 Definitions
Throughout the paper, Σ, not containing ¢ and $ (the left and the right end-markers, respectively), denotes
the input alphabet; Σ̃ = Σ ∪ {¢, $}; Q is the set of (internal) states; Qa ⊆ Q (resp., Qr ⊆ Q) is the set of
accepting (resp., rejecting) states; q0 is the initial state. For any w ∈ Σ̃∗, w(i) is the i-th symbol of w, and
|w| is the length of w. We assume the reader knows the basics of automata theory. We denote one-way
deterministic and nondeterministic finite automata as 1DFA and 1NFA, respectively.

A promise problem P = (Pyes, Pno) defined on Σ is composed by two disjoint languages Pyes ⊆ Σ∗

and Pno ⊆ Σ∗, called respectively the set of yes-instances and the set of no-instances.
A promise problem P = (Pyes, Pno) is said to be solved by a (probabilistic or quantum) machine M

with error bound ε < 1
2 if any yes-instance is accepted with probability at least 1− ε and any no-instance

is rejected with probability at least 1 − ε. It is also said that P is solved by M with bounded-error. If
yes-instances (resp., no-instances) are accepted (resp., rejected) exactly, then it is said that P is solved
by M with negative (resp., positive) one-sided error bound ε. If ε = 0, then it is said that the promise
problem is solved exactly.

A promise problem P = (Pyes, Pno) is said to be solved by a Las Vegas machine with success probability
p > 0 if

• any yes-instance is accepted with probability at least p and is rejected with probability 0, and,

• any no-instance is rejected with probability at least p and is accepted with probability 0.

Remark that all non-accepting or non-rejecting probabilities go to the decision of “don’t know”.
If Pyes is the complement of Pno, then conventionally it is said that the language Pyes is recognized by

machine M instead of saying that promise problem P is solved by machine M .

4 Masaki Nakanishi, Abuzer Yakaryılmaz, Aida Gainutdinova

For all models, the input w ∈ Σ∗ is placed on a read-only one-way infinite tape as w̃ = ¢w$ between
the cells indexed by 1 to |w̃|. At the beginning, the head is initially placed on the cell indexed by 1 and
the value of the counter is set to zero. Also, in the following definitions, m denotes the maximum value
by which the counter may be increased or decreased at each step.

A one-way probabilistic one-counter automaton (1P1CA) is a 5-tuple

M = (Q,Σ, δ, q0, Qa),

where δ : Q×Σ×{Z,NZ}×Q×{−m, ...,m} −→ [0, 1] is a transition function such that δ(q, σ, z, q′, c) =
p means that the transition from q ∈ Q to q′ ∈ Q increasing the counter value by c ∈ {−m, ...,m} occurs
with probability p ∈ [0, 1] if the scanned symbol is σ ∈ Σ̃ and the status of the counter value is z, where
Z (resp., NZ) means zero (resp., non-zero). The transition function must satisfy the following condition
since the overall probabilities must be 1 during the computation: for each triple (q ∈ Q, σ ∈ Σ̃, z ∈
{Z,NZ}), ∑

q′∈Q,c∈{−m,...,m}

δ(q, σ, z, q′, c) = 1.

The computation is terminated after reading the whole input (¢w$) and the automaton accepts (resp.,
rejects) the input if the final state is in Qa (resp., Q \Qa). Then, for each input, the accepting (resp., re-
jecting) probability can be calculated by summing up the probabilities of all the accepting (resp., rejecting)
paths.

A one-way probabilistic blind one-counter automaton (1P1BCA) is a 1P1CA such that it cannot see
the status of the counter during the computation and the input is automatically rejected if the value of the
counter is non-zero [Gre78]. A 1P1BCA is a 5-tuple

M = (Q,Σ, δ, q0, Qa),

where δ : Q×Σ×Q× {−m, ...,m} −→ [0, 1] is a transition function such that δ(q, σ, q′, c) = p means
that the transition from q ∈ Q to q′ ∈ Q increasing the counter value by c ∈ {−m, ...,m} occurs with
probability p ∈ [0, 1] if the scanned symbol is σ ∈ Σ̃. As described above, the transition function must
satisfy the following condition: for each pair (q ∈ Q, σ ∈ Σ̃),∑

q′∈Q,c∈{−m,...,m}

δ(q, σ, q′, c) = 1.

The computation is terminated after reading the whole input (¢w$) and the automaton accepts the input if
the counter value is zero and the state is in Qa, otherwise it rejects the input. The accepting and rejecting
probabilities for a given input are calculated as described above.

A configuration of a counter automaton (regardless of whether blind or not) is a pair (q, v) of the current
state and the current counter value. Here we do not consider the head position. In our proofs, this will not
lead to any confusion.

For each of the above two models, we can define its deterministic version, where the range of the
transition function is restricted to {0, 1}. We abbreviate them respectively as 1D1CA and 1D1BCA.

Moreover, a one-way nondeterministic blind one-counter automaton (1N1BCA) can be defined as a
1P1BCA with a special acceptance mode such that it accepts an input if the accepting probability is
non-zero and it rejects the input if the accepting probability is zero. Here, each probabilistic choice (the

New Results on Classical and Quantum Counter Automata 5

probabilities are insignificant and can be removed) is called as a nondeterministic choice. Then, an input
is accepted if and only if there is a path reaching an accepting condition.

Similarly, we can define a one-way universal blind one-counter automaton (1U1BCA), where the au-
tomaton accepts the input if the accepting probability is 1 and it rejects the input if the accepting proba-
bility is less than 1. In this case, each probabilistic choice (the probabilities are insignificant and can be
removed) is called as a universal choice. Then, an input is accepted if and only if every computational
path reaches an accepting condition.

A Las Vegas probabilistic machine is a probabilistic machine that (i) never gives a wrong answer but
can give a third type of decision called “don’t know” besides “accepting” and “rejection” and (ii) both
of accepting and rejecting probabilities cannot be non-zero for the same input. For one-way Las Vegas
automaton model, we split the set of states into three disjoint sets: the accepting, the rejecting, and neutral
states. The automaton says “don’t know” when it finishes its computation in a neutral state.

Since quantum computation is a generalization of probabilistic computation [Wat09], any quantum
model is expected to simulate its classical counterpart exactly. However, the earlier quantum finite au-
tomata (QFAs) models (e.g. [KW97, MC00]) were defined in a restrictive way and they do not reflect
the full power of quantum computation. Even though they were shown to be more powerful than their
classical counterparts in some special cases, these QFAs models cannot simulate classical finite automata.
The first quantum counter automata model was defined based on these restricted models [Kra99], and so,
they were also shown not to be able to simulate its classical counterparts [YKI05]. Nowadays, we know
how to define general quantum automata models that generalize probabilistic automata [Hir10, YS11].
Therefore, even a superiority result of a restricted model, as given in this paper, serves as a separation
between the quantum and probabilistic model. Due to its simplicity, we give the definition of a restricted
model that allows to represent our algorithm and we refer the reader to [SY12] for the definition of general
quantum model. We assume the reader familiar with basics of quantum computation. We refer the reader
to [NC00] for a complete reference on quantum computation, to [SY14] for a short introduction on QFAs,
and to [AYar] for a comprehensive survey on QFAs.

A one-way quantum one-counter automaton (1Q1CA) is a 5-tuple

M = (Q,Σ, δ, q0, Qa),

where δ : Q × Σ × {Z,NZ} × Q × {−m, ...,m} −→ C is a transition function; δ(q, σ, z, q′, c) = p
means that the transition from q to q′ increasing the counter value by c occurs with probability amplitude
p if the scanned symbol is σ and the status of the counter value is z.
|q, v〉 (resp., 〈q, v|), called a ket (resp., bra), denotes the column (resp., row) vector where the entry

corresponding to (q, v) is one and the remaining entries are zeros. That is, {|q, v〉} is an orthonormal
basis of l2(Q× Z). For each σ ∈ Σ̃, we define a time evolution operator Uσ as follows:

Uσ |q, v〉 =
∑

(q′,c)∈Q×{−m,...,m}

δ(q, σ, z(v), q′, c) |q′, v + c〉 ,

where z(v) = Z (resp., z(v) = NZ) if v = 0 (resp., v 6= 0). In order to be a well-formed automaton, Uσ
must be unitary. The computation of a 1Q1CA is described by |Ψ〉 = Uw̃(|w̃|)Uw̃(|w̃|−1) · · ·Uw̃(1) |q0, 0〉.
The following projective measurement P is applied to |Ψ〉 at the end of the computation:

P = {Pa = Σq∈Qa,v∈Z |q, v〉 〈q, v| , Pr = Σq 6∈Qa,v∈Z |q, v〉 〈q, v|}.

6 Masaki Nakanishi, Abuzer Yakaryılmaz, Aida Gainutdinova

Then, we have “a” (resp., “r”) with probability 〈Ψ|Pa |Ψ〉 (resp., 〈Ψ|Pr |Ψ〉). The automaton accepts
(resp., rejects) the input if we have “a” (resp., “r”) as the outcome.

3 New separation results on promise problems
We start with the separation of exact quantum model from deterministic one and then we give the separa-
tion of Las Vegas probabilistic model from deterministic one.

3.1 Separation of exact 1Q1CAs and 1D1CAs
We show that there exists a promise problem that can be solved by 1Q1CAs exactly but not by any
1D1CAs. For our purpose, we evaluate XOR value of two comparisons. Let a, b, c, and d be four even
positive numbers. Our first comparison is whether a = c and the second one is whether b = d, and, our
aim is to decide whether

((a = c)XOR (b = d))

is true or false. Remark that this expression takes the value of true if and only if exactly one of the
comparisons fails.

In order to implement this decision procedure by 1Q1CAs, we give the numbers as 0a#0b#0c#0d.
However, due to some technical difficulties, we also append four more numbers as #0k1#0k2#0l1#0l2 ,
which will help the automaton to set the counter to zero at the end of the computation so that an appropriate
quantum interference can be done between the different configurations, i.e., two configurations having
different counter values do not interfere.

Formally, we define our promise problem as follows. Let XOR-EQ be the set of strings of the form
0a#0b#0c#0d#0k1#0k2#0l1#0l2 such that a, b, c, and d are even and satisfy the following:

a− c+ (−1)δa,c(k1 − k2) = b− d+ (−1)δb,d(l1 − l2),

where δu,v = 1 if u = v, and δu,v = 0 otherwise. Then, the set XOR-EQ is our promise. We define
yes-instances (XOR-EQyes) as the set of strings in XOR-EQ such that ((a = c) xor (b = d)) takes the value
of true. Then, no-instances (XOR-EQno) are the ones taking the value of false, or equivalently XOR-EQ \
XOR-EQyes.

Theorem 1. The promise problem XOR-EQ can be solved by 1Q1CAs exactly.

Proof: We can construct a one-way deterministic reversible one-counter automatonM1, which is a special
case of the 1Q1CA model,(v) that decides whether a = c as follows.

1. M1 reads the first block 0a and increases the counter by one at each transition.

2. M1 skips the second block 0b.

3. M1 reads the third block 0c and decreases the counter by one at each transition. At the end of this
block, M1 decides whether a = c or not.

4. M1 skips the fourth block 0d.

(v) A classical reversible operation defined on the set of configurations is a unitary operator containing only 0s and 1s.

New Results on Classical and Quantum Counter Automata 7

𝑞𝑞1
1

0, * / +1

#, * / 0

0, * / 0

#, * / 0

0, * / -1

#, Z / 0

#, NZ / 0

0, * / -1

#, * / 0 #, * / 0

0, * / +1 0, * / 0

#, * / 0

0, * / 0

#, * / 0 #, * / 0 #, Z / 0 #, * / 0 #, * / 0 #, * / 0

0, * / -1 0, * / 0 0, * / +1 0, * / +1 0, * / -1 0, * / 0 0, * / 0

#, NZ / 0

𝑞𝑞2
1 𝑞𝑞3

1 𝑞𝑞5
1 𝑞𝑞6

1 𝑞𝑞7
1 𝑞𝑞8

1

𝑞𝑞𝑞1
1 𝑞𝑞𝑞2

1 𝑞𝑞𝑞3
1 𝑞𝑞𝑞5

1 𝑞𝑞𝑞6
1 𝑞𝑞𝑞7

1 𝑞𝑞𝑞8
1

0, * / 0

#, * / 0
𝑞𝑞4
1

#, * / 0

0, * / 0

𝑞𝑞𝑞4
1

𝑞𝑞1
2

0, * / 0

#, * / 0

0, * / +1

#, * / 0

0, * / 0

#, Z / 0

#, NZ / 0

0, * / 0

#, * / 0 #, * / 0

0, * / 0 0, * / -1

#, * / 0

0, * / +1

#, * / 0 #, * / 0 #, Z / 0 #, * / 0 #, * / 0 #, * / 0

0, * / 0 0, * / -1 0, * / 0 0, * / 0 0, * / 0 0, * / +1 0, * / -1

#, NZ / 0

𝑞𝑞2
2 𝑞𝑞3

2 𝑞𝑞5
2 𝑞𝑞6

2 𝑞𝑞7
2 𝑞𝑞8

2

𝑞𝑞𝑞1
2 𝑞𝑞𝑞2

2 𝑞𝑞𝑞3
2 𝑞𝑞𝑞5

2 𝑞𝑞𝑞6
2 𝑞𝑞𝑞7

2 𝑞𝑞𝑞8
2

0, * / -1

#, * / 0 𝑞𝑞4
2

#, * / 0

0, * / +1

𝑞𝑞𝑞4
2

M1

M2

Fig. 1: Subautomata M1 and M2

5. M1 reads the fifth block 0k1 and increases the counter by one if a 6= c (decreases the counter by
one if a = c) at each transition.

6. M1 reads the sixth block 0k2 and decreases the counter by one if a 6= c (increases the counter by
one if a = c) at each transition.

7. M1 skips the seventh and the eighth blocks.

Similarly, we can construct a 1Q1CA M2 that decides whether b = d by comparing b with d using the
counter and then the counter is set to zero after reading 0l1 and 0l2 . We illustrate M1 and M2 in Figure 1.

In the figure, each label of the edges is of the form (σ, z/c), where σ ∈ Σ, z ∈ {Z,NZ}, and
c ∈ {−1, 0,+1}. A label (σ, z/c) means that the transition occurs when the input symbol is σ and the
status of the counter value is z (∗ denotes a wild card which matches any of Z and NZ), and the counter
value is updated by c ∈ {−1, 0,+1}. The initial state is q11 /q21 for M1/M2, respectively. The set of
accepting states is {q18}/{q28} for M1/M2, respectively. Also the set of rejecting states is {q′18 }/{q′28 } for
M1/M2, respectively. It is easy to see that if we set the initial state to q′11 for M1 (q′21 for M2), the output
is inverted.

We use the algorithm in [CEMM98] (the improved version of Deutsch-Jozsa algorithm[DJ92]) to com-
pute the exclusive-or exactly using the two sub-automata as the oracle for Deutsch’s problem[Deu85].

8 Masaki Nakanishi, Abuzer Yakaryılmaz, Aida Gainutdinova

𝑞𝑞1
1

rej

𝑞𝑞’1
1

𝑞𝑞1
2

𝑞𝑞’1
2

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

M1

M2

𝑞𝑞8
1

𝑞𝑞’8
1

𝑞𝑞8
2

𝑞𝑞’8
2

rej

acc

acc

�1
2

�1
2

− �1
2

− �1
2

�1
2

�1
2

�1
2

�1
2

�1
2

�1
2

− �1
2

− �1
2

$¢

Fig. 2: Simulation of the Deutsch-Jozsa algorithm

Note that the counter values are the same between M1 and M2 at the moment of reading the last input
symbol. Thus, we can construct a 1Q1CA that solves XOR-EQ by simulating the improved Deutsch-Jozsa
algorithm [CEMM98] on it by running M1 and M2 in a superposition, which is illustrated in Figure 2. In
the figure, the value on each edge represents the amplitude associated with the transition. The first and the
last transitions occur when it reads the left and the right end-markers, respectively. It is straightforward to
see that the time evolution operators can be extended to unitary operators by adding dummy states and/or
transitions.

Theorem 2. No 1D1CA can solve XOR-EQ.

Proof: We assume that there exists a 1D1CA M that solves XOR-EQ. Note that M can have at most O(n)
possible configurations for a string whose length is less than n, i.e., a constant number of possible states
with O(n) possible counter values. Also note that there are Θ(n2) possible partial inputs of the form
0a#0b# whose length is less than n. Thus, there exist two distinct partial inputs

0a#0b# and 0a
′
#0b

′
#

such that the configurations after reading them are the same. We will show that there exists a suffix string,

0c#0d#0k1#0k2#0l1#0l2 ,

such that either
u1 = 0a#0b#0c#0d#0k1#0k2#0l1#0l2

is a yes-instance and
u2 = 0a

′
#0b

′
#0c#0d#0k1#0k2#0l1#0l2

is a no-instance, or, vice versa. However, M cannot distinguish u1 and u2 since the two configurations
after reading 0a#0b# and 0a

′
#0b

′
#, respectively, are the same. This is a contradiction.

New Results on Classical and Quantum Counter Automata 9

Now, we show how to obtain u1 and u2 as desired.
We start with the case of a 6= a′. We set l1 and l2 to some values providing that

d =
b+ b′ + a− a′

2
+ (l1 − l2)

is even (this is possible since a, b, a′, and b′ are even) and b 6= d and b′ 6= d. Then, we set k1 and k2 to
such values providing that

−(k1 − k2) = b− d+ (l1 − l2).

Thus, both u1 and u2, i.e.

u1 = 0a#0b#0a#0d#0k1#0k2#0l1#0l2

and

u2 = 0a
′
#0b

′
#0a#0d#0k1#0k2#0l1#0l2 ,

become promised input strings since

−(k1 − k2) = b− d+ (l1 − l2) and a′ − a+ (k1 − k2) = b′ − d+ (l1 − l2).

In this setting, the former one is a yes-instance and the latter one is a no-instance.
In the following, we show how to obtain the desired u1 and u2 when a = a′. Note that, in this case,

b 6= b′.
We set k1 and k2 to some values providing that

c =
a+ a′ + b− b′

2
+ (k1 − k2)

is even (this is possible since a, b, a′, and b′ are even) and a 6= c and a′ 6= c. Then, we set l1 and l2
providing that

a− c+ (k1 − k2) = −(l1 − l2).

Thus, both u1 and u2, i.e.,

u1 = 0a#0b#0c#0b#0k1#0k2#0l1#0l2

and

u2 = 0a
′
#0b

′
#0c#0b#0k1#0k2#0l1#0l2 ,

become promised input strings since

a− c+ (k1 − k2) = −(l1 − l2) and a′ − c+ (k1 − k2) = b′ − b+ (l1 − l2).

In this setting, again the former one is a yes-instance and the latter one is a no-instance.

10 Masaki Nakanishi, Abuzer Yakaryılmaz, Aida Gainutdinova

3.2 Separation of Las Vegas 1P1CAs and 1D1CAs

We show that there exists a promise problem that Las Vegas 1P1CAs can solve but 1D1CAs cannot. Our
idea is inspired from [RY14].

Let |w|a be the number of occurrences of the symbol a in the string w. We define the sets ONE and
NONE as follows. All strings from ONE ∪ NONE have the form uy, where u ∈ {a, b, c}∗, y ∈ {d}∗, and
|y| ≥ |u|. Moreover, for any string uy ∈ ONE, the number of symbols is equal for exactly one pair of
(a, b), (b, c), or (c, a), i.e., |u|α = |u|β for exactly one pair (α, β) ∈ {(a, b), (b, c), (c, a)}. Also, for
any string uy ∈ NONE, the number of symbols is equal for none of the pair of (a, b), (b, c), or (c, a), i.e.,
|u|α 6= |u|β for any pair (α, β) ∈ {(a, b), (b, c), (c, a)}.

We define a promise problem ONE-NONE, where ONE-NONEyes (composed by yes instances) is formed by
the concatenation ONE ·NONE and ONE-NONEno (composed by no instances) is formed by the concatenation
NONE · ONE.

Theorem 3. The promise problem ONE-NONE can be solved by a Las Vegas 1P1CA P with success prob-
ability p = 1

3 .

Proof: Let u1y1u2y2 be a promised input, where u1 ⊆ {a, b, c}∗, y1 ⊆ {d}∗, u2 ⊆ {a, b, c}∗, and
y2 ⊆ {d}∗. The details of P are as follows. At the beginning, the computation splits into 3 different paths
with equal probabilities and each path compares a pair ((a, b), (b, c), or (c, a)) in u1. If one of them is
succeeded, the input is accepted in that path. All non-accepting paths set their counter to zero by reading
y1, and then immediately each of them splits into three new different paths with equal probability. Each
subpath compares a pair ((a, b), (b, c), or (c, a)) in u2. If one of them is succeeded, the input is rejected.
Otherwise, P says “don’t know”.

If the input is a yes instance, then the numbers of symbols are equal only for a single pair of u1. Then
the input is accepted with probability 1

3 in one of the first three paths, and the computation ends in a neutral
state in all the other cases. Similarly, if the input is a no instance, then it is rejected with probability 1

3 and
the automaton says “don’t know” with probability 2

3 .

To get a better error bound, we can use the promise problem ONE-NONE(t), where yes-instances (ONE-
NONEyes(t)) are formed by (ONE-NONEyes)t and no-instances (ONE-NONEno(t)) are formed by (ONE-NONEno)t.
That is, the error bound can be reduced to (2

3)t for 1P1CAs, where t > 1.

Theorem 4. The promise problem ONE-NONE(t) can be solved by a Las Vegas 1P1CA P with success
probability p = 1− (2

3)t.

Proof: The details of P are the following. Let w = w1 · · ·w2t be a promised input, where for all
i = 1, . . . , t, either w2i−1 ∈ ONE and w2i ∈ NONE or w2i−1 ∈ NONE and w2i ∈ ONE. For each part
w2i−1w2i = u2i−1y2i−1u2iy2i (i = 1, . . . , t) of the input, the automaton applies the same strategy as in
the previous theorem, where u2i−1 ⊆ {a, b, c}∗, y2i−1 ⊆ {d}∗, u2i ⊆ {a, b, c}∗, and y2i ⊆ {d}∗. If the
automaton comes to decision “don’t know”, it continues with the next pair until the end.

Now, we show that neither ONE-NONE nor ONE-NONE(t) can be solved by 1D1CAs. We start with the
proof for ONE-NONE, which forms the base for the proof of ONE-NONE(t).

Theorem 5. There is no 1D1CA that can solve promise problem ONE-NONE.

New Results on Classical and Quantum Counter Automata 11

Proof: Let us prove by contradiction and assume that there exists a 1D1CA M that solves ONE-NONE. We
call two promised inputs w and w′ non-equivalent with respect to ONE-NONE if either w ∈ ONE-NONEyes
and w′ ∈ ONE-NONEno or w ∈ ONE-NONEno and w′ ∈ ONE-NONEyes.

We will have a contradiction with our assumption if we show that there exist two strings w and w′ that
are non-equivalent with respect to ONE-NONE such that M finishes reading w and w′ with the same state
and with the same status of counter.

In the proof, we use the following notation. We denote by c(w), q(w), and v(w) the configuration,
the state, and the value of the counter of M after reading the partial input w, respectively, and by σ an
arbitrary symbol of input alphabet. If the automaton reaches the configuration c′ from the configuration c
when reading w, we denote it c w−→ c′. Let m be the maximum value by which M may change the value
of counter in one step.

Lemma 1. Let c(w) = (q, v) be the configuration after reading a string w. If M starts from c(w) and,
for n ≥ |Q|, all v(w), v(wσ), v(wσ2), . . . , v(wσn) are non-zero, then the following is true:

1. there exist n1 and n2 (0 ≤ n1 < n2 ≤ n and n1 < |Q|) such that q(wσn1) = q(wσn2);

2. there exist numbers t and r (0 < t ≤ |Q| and 0 ≤ |r| ≤ m · |Q|) such that M moves cyclically
through some states qi1 , . . . , qit returning to the same state after every t steps, and the value of the
counter is changed by the same number r after every t steps as long as the value of the counter is
not zero.

Proof: Both statements follow from the Pigeon-hole principle. If the status of counter is the same, then
M , reading only σ’s, is simply a unary automaton and so it always enters a cycle of states after reading
more than |Q| symbols. Thus the first statement is immediate.

We pick the smallest n1 and n2 (0 ≤ n1 < n2 ≤ n) such that all q(w), q(wσ), . . . , q(wσn1), . . . ,
q(wσn2−1) are different and q(wσn1) = q(wσn2). Then the number t = n2 − n1 is the period of cycle
(M moves cyclically from one state to the next reading σ and returns to the same state after every t steps
as long as the value of the counter is non-zero). Since after each t stepsM is in the same state, the counter
is changed by the same value after every t steps as long as the value of the counter is not zero.

Let c = (q, v) be the configuration as given in the lemma. Now we focus on a computation on M
reading only σ’s before the counter hits zero. We call t and r the period and the difference of the cycle,
respectively. Without loss of generality, we assume that v > 0. The set Q of states can be divided into
disjoint subsetsQσ1 , . . . , Q

σ
k (Qσ1 ∪· · ·∪Qσk = Q), where two states q and q′ belong to the same subsetQσj

iff M moves from q and q′ to the same cycle reading σ’s. We call such partition Qσ = {Qσ1 , . . . , Qσk} of
the setQ as σ-partition. From Lemma 1, we have that each cycle (and hence each subset from σ-partition)
has two characteristics: its period t and its difference r.

Let c1 = (q1, v1) and c2 = (q2, v2) be two different configurations. We will say that c1 and c2 are

σ-synchronized if there exists some configuration c and the numbers n1 and n2 ≥ 0 such that c1
σn1

−−→ c

and c2
σn2

−−→ c.

Lemma 2. Let c = (q, v) and c′ = (q, v′) be two different configurations with the same state such that
v and v′ have the same sign, |v|, |v′| > m · |Q| (m is the maximum value by which the counter can be
increased during one step), and |v − v′| is a multiple of rσ , where rσ is the difference of the subset from
σ-partition Qσ that contains q. Then c and c′ are σ-synchronized.

12 Masaki Nakanishi, Abuzer Yakaryılmaz, Aida Gainutdinova

Proof: Let Qσj be the subset from σ-partition Qσ that contains q. From the definition of σ-partition, it
follows that ifM starts its computation in q and reads only σ’s, then it enters its cycle in k (k ≤ |Q|) steps
and stays there until the counter hits zero. Let tσ and rσ be the period and the difference of this cycle
respectively, q′ be the first visited state in the cycle after the first k steps, and r′ be the value added to the

counter in these k steps. Then we have c σk−−→ (q′, v + r′), c′
σk−−→ (q′, v′ + r′), and |v − v′| is a multiple

of rσ .
After reading σk, M will return to the state q′ and will increase the counter by the same value rσ after

every tσ steps as long as the value of the counter is not zero. It is clear that there exists some non-negative

integer l such that either c σk+tσ·l−−−−−→ (q′, v+ r′+ l · rσ) = (q′, v′+ r′) or c′ σ
k+tσ·l

−−−−−→ (q′, v′+ r′+ l · rσ) =
(q′, v + r′). Thus, c and c′ are σ-synchronized.

Lemma 3. There exists at least one pair of strings (u1, u2) such that u1 ∈ ONE, u2 ∈ NONE, and

(A) c(u1) = c(u2) or

(B) c(u1) = (q(u1), v(u1)) 6= c(u2) = (q(u2), v(u2)) but q(u1) = q(u2), |v(u1)|, |v(u2)| ∈ ω(n),
where n is a sufficiently long length.

Proof: We have two cases.

Case 1: There exists a symbol σ ∈ {a, b, c} such that |v(σn)| ∈ O(1) holds. Without loss of generality,
we pick σ = a. Then, for all inputs an, we have a constant number of all possible configurations, since
the number of states is constant and the possible different values of counter is bounded by O(1). So there
exist n1 and n2 (n1 < n2) such that c(an1) = c(an2).

We take u = bn1dn1+n2 . It is clear that c(an1u) = c(an2u) therefore q(an1u) = q(an2u) and
v(an1u) = v(an2u). But an1u ∈ ONE and an2u ∈ NONE.

Case 2: For every symbol σ ∈ {a, b, c}, |v(σn)| ∈ ω(1) holds. We will construct u1 and u2 in four steps
and in each step we define a part of them, i.e.,

u1 = x1x2x3x4 and u2 = y1y2y3y4,

where x1, y1 ∈ {a}∗, x2, y2 ∈ {b}∗, x3, y3 ∈ {c}∗, and x4, y4 ∈ {d}∗.
Step 1. We pick r = r(n) such that |v(ar)| ∈ ω(n) and we set x1 = y1 = ar. Since |v(an)| ∈ ω(1),
we can always find such an r depending on n. Moreover, at each step of a computation, M can increase
or decrease the value of the counter by constant amount, and so, for any string z (|z| ∈ O(n)), we always
have |v(arz)| ∈ ω(n).
Step 2. For k > |Q|, we consider the following sequence of states q(ar b), q(ar b2), . . . , q(ar bk). Then,
there must exist two distinct non-negative integers k1 and k2 (k1 < k2 < k and k1 ≤ |Q|) such that all
q(ar b), . . . , q(ar bk1), . . . , q(ar bk2−1) are different and q(ar bk2) = q(ar bk1). By Lemma 1, the number
tb = k2 − k1 is the period of cycle and rb is the difference of cycle.

We set x2 = bk1 and y2 = bk2 . Let Na = v(ar), Nb1 = v(ar bk1) − v(ar), and Nb2 = v(ar bk2) −
v(ar). Then we have

q(ar bk1) = q(ar bk2),
v(ar bk1) = Na +Nb1 ,
v(ar bk2) = Na +Nb2 , and
Nb2 −Nb1 = rb.

New Results on Classical and Quantum Counter Automata 13

Step 3. We set x3 = y3 = ck1 . Let Nc = v(ar bk1 ck1)− v(ar bk1). Then, we have the followings:

q(ar bk1 ck1) = q(ar bk2 ck1),
v(ar bk1 ck1) = Na +Nb1 +Nc,
v(ar bk2 ck1) = Na +Nb2 +Nc, and
v(ar bk2 ck1)− v(ar bk1 ck1) = rb.

(1)

Step 4. Let Qdj be the subset from d-partition Qd that contains q(x1x2x3) = q(y1y2y3) and then td and
rd be the period and the difference of the cycle, respectively. Depending on the values rb (from the step
2) and rd, we can have different cases. We denote x1x2x3 by x123 and y1y2y3 by y123.

The case of rb = 0: v(x123) = v(y123) and so c(x123) = c(y123). We set x4 = y4 = dl such that
|x4| ≥ |y123| > |x123|. Then c(x123x4) = c(y123y4) but x1x2x3x4 ∈ ONE and y1y2y3y4 ∈ NONE.

The case of rb 6= 0 and rd 6= 0: If |v(x123)− v(y123)| = rb is a multiple of rd, then due to Lemma 2,
we can conclude that c(x123) and c(y123) are d-synchronized. We set x4 = dl1+l and y4 = dl2+l, where
l1 and l2 are the numbers of steps that are needed to synchronize the configurations c(x123) and c(y123)
respectively, and l is the value providing that |x4| ≥ |x123| and |y4| ≥ |y123|. Thus, we can follow that
c(x123x4) = c(y123y4) but x1x2x3x4 ∈ ONE and y1y2y3y4 ∈ NONE.

If rb is not multiple of rd, then we can re-define y2 as bk1+tb·rd by setting k2 = k1 + tb · rd. Then,
Equations 1 can be rewritten as

v(ar bk1 ck1) = Na +Nb1 +Nc,
v(ar bk2 ck1) = Na +Nb1 + rb · rd +Nc,
v(ar bk2 ck1)− v(ar bk1 ck1) = rb · rd.

This update on y2 concludes that c(x123) and c(y123) are d-synchronized as described above, and so
c(x123x4) = c(y123y4) but x1x2x3x4 ∈ ONE and y1y2y3y4 ∈ NONE.

The case of rb 6= 0 and rd = 0: We set x4 = y4 = dl1+l such that l1 is the minimum numbers of
steps that is sufficient to enter the cycle and l is the minimum value providing that |y4| ≥ |y123| > |x123|.
Thus, we can follow that q(x123x4) = q(y123y4) and |v(x123x4)| ∈ ω(n) and |v(y123y4)| ∈ ω(n), but
x1x2x3x4 ∈ ONE and y1y2y3y4 ∈ NONE.

Now, we construct the pair of strings w and w′ that are non-equivalent with respect to ONE-NONE. Due
to Lemma 3, there exist two strings u1 and u2 such that u1 ∈ ONE and u2 ∈ NONE, and

(A) c(u1) = c(u2) or

(B) c(u1) 6= c(u2) but q(u1) = q(u2) and |v(u1)|, |v(u2)| ∈ ω(n).

For simplicity, we call the pair u1, u2 as A-type if it satisfies Condition A and we call it as B-type if the
Condition B is satisfied.

If the pair u1 and u2 is A-type, then, by assuming c(u1) is the initial configuration, we can construct
two new strings u′1 and u′2 as described above such that u′1 ∈ NONE and u′2 ∈ ONE, and then, the pair
w = u1u

′
1 and w′ = u2u

′
2 is either A-type or B-type. Thus, M gives the same decisions for w and w′ but

w ∈ ONE-NONEyes and w′ ∈ ONE-NONEno.
If the pair u1 and u2 is B-type, then we can define u′1 and u′2 as follows. Since the value of counter is

superlinear in n, there exist two minimal non-negative integers k1 and k2 such that k1 < k2, k1 ≤ |Q| and

14 Masaki Nakanishi, Abuzer Yakaryılmaz, Aida Gainutdinova

q(u1a
k1) = q(u2a

k2). We set u′1 = ak2bk1dk1+k2 and u′2 = ak1bk1dk1+k2 . It is clear that (1) u′1 ∈ NONE

and u′2 ∈ ONE, and (2) q(u1u′1) = q(u2u
′
2) and the values of counter are superlinear in n (∈ w(n)) for

w = u1u
′
1 and w′ = u2u

′
2. Thus, M gives the same decisions for w and w′ but w ∈ ONE-NONEyes and

w′ ∈ ONE-NONEno.
With the contradiction in each possible case, we can conclude that there is no 1D1CA solving ONE-NONE.

We can easily extend the above impossibility proof for the promise problem ONE-NONE(t) (t > 1).

Theorem 6. There is no 1D1CA that can solve promise problem ONE-NONE(t) for any t ∈ Z+.

Proof: Let M be a 1D1CA solving ONE-NONE(t). In the previous proof, when starting in some config-
uration, say c(u) for some strings u, we show how two construct two different strings, say u1 and u2,
such that u1 ∈ ONE, u2 ∈ NONE, and M , after reading u1 and u2, ends with either the same configuration
(c(uu1) = c(uu2)) or with the same state (q(uu1) = q(uu2)) and with some values of counter that are
superlinear for some sufficiently big n (i.e., |v(uu1)|, |v(uu2)| ∈ ω(n)). We call the former pair as A-type
and the latter pair as B-type. For B-type pairs, we assume here that the values of counter are not allowed
to be less than a value quadratic in n and t, i.e., |v(uu1)|, |v(uu2)| ∈ Ω(t2n2).

Based on these facts, we can construct the following two strings

w = w1w2 · · ·wt and w′ = w′1w
′
2 · · ·w′t

such that each wj ∈ ONE-NONEyes, each w′j ∈ ONE-NONEno (1 ≤ j ≤ t), but M , after reading w and
w′, finishes its computation in the same state and in the same status of counter. Thus, M gives the
same decision for a yes-instance and for a no-instance, which leads us to conclude that M cannot solve
ONE-NONE(t).

We start from the initial configuration. Each wj (w′j) is composed by two strings ujyj (u′jy
′
j) such that

uj , y
′
j ∈ ONE and yj , u′j ∈ NONE. For j = 1, . . . , t, we first construct uj and u′j , and then yj and y′j . If all

pairs are A-type and then the construction is straightforward since M ends in the same configurations after
reading A-type pairs and from the same configuration we can always construct two new pairs as desired.

If we obtain a B-type pairs at some point of the construction, we can define the remaining parts ofw and
w′ as we do at the end of the previous proof. First, we can be sure that the values of counter are quadratic
in t and n (|v(uu1)|, |v(uu2)| ∈ Ω(t2n2)). Then, the length each new obtained pair can be easily bounded
by O(n). That means the status of the counter will be the same for the remaining of the computation and
so M behaves like a deterministic finite automaton. Thus, it is very easy to fool M when constructing the
remaining pairs that requires equality checks.

4 New results on classical counter automata
In this section, we show the results that separate the expressive power of several models of blind/non-blind
counter automata. For this purpose, we denote the class of languages recognized by a Model as L(Model).

First of all, we present a 1P1BCA algorithm for the Kleene closure of equality language:

EQ∗ = {ε} ∪ {an1bn1 · · · ankbnk |ni > 0(1 ≤ i ≤ k), k ≥ 1},

which was shown not to be recognized by any one-way deterministic finite automaton with multi blind
counters [Gre78]. Recently, Yakaryılmaz presented a negative one-sided error 1Q1BCA algorithm for this

New Results on Classical and Quantum Counter Automata 15

language and he conjectured that it cannot be recognized by 1P1BCAs [Yak12]. Now, we show that this
conjecture is false. It is also surprising that our new algorithm is kind of a probabilistic adaptation of the
quantum algorithm given by Yakaryılmaz.

Theorem 7. The language EQ∗ can be recognized by a 1P1BCA M with negative one-sided error bound
1
3 .

Proof: We assume that the input is of the form an1bm1 · · · ankbmk . Otherwise, M rejects the input
deterministically (exactly). At the beginning of each block anlbml (1 ≤ l ≤ k), M selects one of the
following three paths (Pathi’s) with equal probability:

Pathi(1 ≤ i ≤ 3) : M increases (resp., decreases) the counter by i
each time reading an a (resp., a b) of the block.

The computation always ends in an accepting state (except the deterministic check mentioned at the
beginning). Thus, the input is accepted if and only if the value of counter is zero. It is obvious that M
accepts any member of EQ∗ with certainty. We consider the case that the input w 6∈ EQ∗. Let imax be the
greatest index satisfying nimax 6= mimax , i.e., animax bmimax is the last block satisfying nimax 6= mimax .
Let path′ be a probabilistic path before reading the imax-th block having the counter value c. This path
will split into three sub-paths subpath′1, subpath′2, and subpath′3 and each subpath reads the block as
described above. Let c1, c2, and c3 be the counter values of these sub-paths, respectively, after reading
the block. Any computation starts from subpath′i will have the same counter value of ci at the end of the
computation since the remaining blocks have the same numbers of a’s and b’s, where 1 ≤ i ≤ 3. Assume
that subpath′i leads to a decision of acceptance. This is possible only if ci = 0. Let d = nimax−mimax 6=
0. Then the values of c1, c2, and c3 are c + d, c + 2d, and c + 3d, respectively. Therefore, only one of
them can be zero. That is, the maximum accepting probability that path′ can contribute is 1

3 . This is the
case also for all other probabilistic paths that exist just before reading the imax-th block. Therefore the
overall accepting path can be bounded by 1

3 .

It is clear from the analysis given in the proof that the error bound can be reduced to 1
k for any k by

spiting into k probabilistic paths on each block instead of 3.

Corollary 1. The language EQ∗ can be recognized by a 1P1BCA M with any negative one-sided error
bound ε ≤ 1

2 .

Remark that since any language recognized be a 1P1BCA with negative one-sided error is recognized
by 1U1BCA, we can also conclude that EQ∗ can be recognized by 1U1BCAs.

Even though any number of blind counters is useless for a 1DFA (or a 1NFA) [Gre78], a single non-
blind counter is enough in order to recognize EQ∗, i.e., 1D1CAs can recognize EQ∗. These facts together
with Theorem 7 imply that L(1D1BCA) (L(1P1BCA) ∩ L(1D1CA). Another related result is that
Freivalds [Fre79] proved that EQ3 = {cndnen | n ≥ 0} can be recognized by 1P1BCAs with arbitrary
small negative one-sided error bound and this non-context free language, of course, cannot be recognized
by a 1D1CA. We represent our result with the known facts in Figure 3. We still do not know whether
bounded-error 1Q1BCAs are more powerful than bounded-error 1P1BCAs.

Our next result is on incomparability of 1U1BCAs and 1D1CAs. In order to show it, we consider the
complement of EQ∗:

EQ∗ = {an1bn1 . . . anmbnm |m ≥ 0}.

16 Masaki Nakanishi, Abuzer Yakaryılmaz, Aida Gainutdinova

1P1BCA 1D1CA

1D1BCA

𝐸𝑄∗𝐸𝑄3

Freivalds’ result

1P1BCA in the figure is a negative one-sided error model.

Fig. 3: Separation between L(1D1BCA) and L(1P1BCA) ∩ L(1D1CA)

Theorem 8. 1U1BCAs cannot recognize EQ∗.

Proof: We assume that there exists a 1U1BCA M that recognizes EQ∗. Let Q be the set of states of M .
Let w = an1bn1 · · · anmbnm be a string not in EQ∗ where n1 > |Q| (w ∈ EQ∗). Then, there exists a
rejecting path for w, say p. We consider the computation along the path p.

Since n1 > |Q|, there exists a state s ∈ Q such that M enters s at least twice when reading an1 .
We assume that M enters the state s just after reading at and at

′
(0 < t < t′ < n1) in the first block.

In other words, M enters the state s after the t-th step and the t′-th step. We divide the path p into
three subpaths p = p1 · p2 · p3 where p2 starts from (t + 1)-th step and finishes at the t′-th step. Then
both of p′ = p1 · p2 · p2 · p3 and p′′ = p1 · p2 · p2 · p2 · p3 are valid computation paths for input
strings w1 = an1+(t′−t)bn1 . . . anmbnm and w2 = an1+2(t′−t)bn1 . . . anmbnm , respectively. Note that
w1, w2 ∈ EQ∗. Also, note that both of p′ and p′′ lead to the same final state as p. Then, at least one
of {p′, p′′} has non-zero counter value or both of them has the same counter value as p at the end of
the computation. This is because if the counter value increases by d(6= 0) along with p2, then the final
counter values are different for p′ and p′′. If d = 0, then the counter values are the same for p, p′, and p′′.
Therefore, at least one of {p′, p′′} is a rejecting path. (Remember that, by the definition of blind counter
automata, computation that ends with a non-zero counter value is always rejected.) However, both of w1

and w2 are in EQ∗. This is a contradiction.

Figure 4 summarizes the incomparability of 1U1BCAs and 1D1CAs. Note that 1D1CA can recognize
EQ∗ and a negative one-sided bounded-error 1P1BCA algorithm is also a 1U1BCA algorithm since all
members accepted with probability 1.

Our last result is the separation between L(1P1CA) and L(1U1BCA)∪L(1D1CA). In order to show
it, we define language L as follows:

L = EQ∗ ∪ EQ3 where EQ3 = {cndnen|n ≥ 0}.

Then, we have the following theorems.

Theorem 9. L can be recognized by a 1P1CA with negative one-sided bounded error.

Proof: Let MEQ∗ be a 1D1CA that recognizes EQ∗. Also, let MEQ3 be a 1P1CA that recognizes EQ3 with
negative one-sided bounded error. In order to recognize L, we use MEQ∗ and MEQ3 as subautomata. Note
that EQ∗ ⊂ {a, b}∗ and EQ3 ⊂ {c, d, e}∗. Thus, the following 1P1CA M recognizes L:

New Results on Classical and Quantum Counter Automata 17

1U1BCA 1D1CA

𝐸𝑄∗𝐸𝑄3

𝐸𝑄∗

Fig. 4: Incomparability of 1U1BCAs and 1D1CAs

1P1CA

1D1CA

𝐸𝐸𝑄𝑄3 ∪ 𝐸𝐸𝑄𝑄∗

1U1BCA

1P1CA in the figure is a negative one-sided error model.

Fig. 5: Separation between L(1P1CA) and L(1U1BCA) ∪ L(1D1CA)

• if the input is an empty string, M accepts it.

• if the first symbol is a or b, M executes MEQ∗ .

• otherwise, M executes MEQ3 .

Theorem 10. Neither 1D1CAs nor 1U1BCAs can recognize L.

Proof: If there exists a 1D1CA that recognizes L, then it can be regarded as a 1D1CA that recognizes EQ3

by ignoring transitions for the symbols a and b. This is a contradiction.
Similarly, if there exists a 1U1BCA that recognizes L, then it can be regarded as a 1U1BCA that

recognizes EQ∗ by ignoring transitions for the symbols c, d, and e. This is a contradiction.

By Theorems 9 and 10, we can separate L(1P1CA) and L(1U1BCA) ∪ L(1D1CA) as illustrated in
Figure 5.

As pointed before languages recognized by 1P1BCAs are also recognizable by 1U1BCAs. Thus, com-
bining all the above results, we have the hierarchy of the models as illustrated in Figure 6.

18 Masaki Nakanishi, Abuzer Yakaryılmaz, Aida Gainutdinova

1P1CA

1P1BCA
1D1CA

1D1BCA

𝐸𝐸𝑄𝑄∗

Freivalds’ result

Both of 1P1CA and 1P1BCA in the figure are negative one-sided error models.

𝐸𝐸𝑄𝑄∗

𝐸𝐸𝑄𝑄3 ∪ 𝐸𝐸𝑄𝑄∗
1U1BCA

𝐸𝐸𝑄𝑄3

Fig. 6: Hierarchy of various models of counter automata

As a future work, we find interesting to identify whether there is an alternation hierarchy for one-way
blind-counter automata with and without ε-moves.

Acknowledgements
We thank Klaus Reinhardt for answering our question regarding the subject matter of this paper and
anonymous reviewers for their helpful comments.

Some parts of this work was done while Gainutdinova was visiting National Laboratory for Sci-
entific Computing, Petrópolis, RJ, 25651-075, Brazil in June 2015, supported by CAPES with grant
88881.030338/2013-01.

Masaki was partially supported by JSPS KAKENHI Grant Numbers 16K00007, 24500003 and 24106009,
and also by the Asahi Glass Foundation. Yakaryılmaz was partially supported by CAPES with grant
88881.030338/2013-01 and ERC Advanced Grant MQC.

References
[AG00] Farid M. Ablayev and Aida Gainutdinova. On the lower bounds for one-way quantum

automata. In Mathematical Foundations of Computer Science 2000, volume 1893 of Lecture
Notes in Computer Science, pages 132–140. Springer Berlin / Heidelberg, 2000.

[AI99] Masami Amano and Kazuo Iwama. Undecidability on quantum finite automata. In
STOC’99: Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 368–375, 1999.

[AW02] Andris Ambainis and John Watrous. Two–way finite automata with quantum and classical
states. Theoretical Computer Science, 287(1):299–311, 2002.

[AYar] Andris Ambainis and Abuzer Yakaryılmaz. Automata: From Mathematics to Applications,
chapter Automata and quantum computing. (To appear). (arXiv:1507.01988).

New Results on Classical and Quantum Counter Automata 19

[BMY17] Aleksandrs Belovs, J. Andres Montoya, and Abuzer Yakaryılmaz. On a conjecture by Chris-
tian Choffrut. Int. J. Found. Comput. Sci., 28(5):483–502, 2017.

[CEMM98] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms
revisited. Proceedings of the Royal Society A, 454:339–354, 1998.

[Deu85] David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum
computer. Proceedings of the Royal Society of London A, 400:97–117, 1985.

[DJ92] David Deutsch and Richard Jozsa. Rapid solution of problem by quantum computation.
Proceedings of the Royal Society A, 439:553–558, 1992.

[ESY84] Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems
with applications to public-key cryptography. Information and Control, 61(2):159 – 173,
1984.

[Fre79] Rūsiņš Freivalds. Fast probabilistic algorithms. In Mathematical Foundations of Computer
Science 1979, volume 74 of LNCS, pages 57–69, 1979.

[Fre81] Rūsiņš Freivalds. Probabilistic two-way machines. In Proceedings of the International
Symposium on Mathematical Foundations of Computer Science, pages 33–45, 1981.

[Gol06] Oded Goldreich. On Promise Problems: A Survey, pages 254–290. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2006.

[GQZ15] Jozef Gruska, Daowen Qiu, and Shenggen Zheng. Potential of quantum finite automata with
exact acceptance. Int. J. Found. Comput. Sci., 26(3):381–398, 2015.

[Gre78] S. A. Greibach. Remarks on blind and partially blind one-way multicounter machines. The-
oretical Computer Science, 7:311–324, 1978.

[GY15a] Aida Gainutdinova and Abuzer Yakaryılmaz. Unary probabilistic and quantum automata on
promise problems. In Developments in Language Theory, volume 9168 of Lecture Notes in
Computer Science, pages 252–263. Springer International Publishing, 2015.

[GY15b] Viliam Geffert and Abuzer Yakaryılmaz. Classical automata on promise problems. Discrete
Mathematics & Theoretical Computer Science, 17(2):157–180, 2015.

[GY18] Aida Gainutdinova and Abuzer Yakaryılmaz. Unary probabilistic and quantum automata on
promise problems. Quantum Information Processing, 17(2):28, 2018.

[Hir10] Mika Hirvensalo. Quantum automata with open time evolution. International Journal of
Natural Computing, 1(1):70–85, 2010.

[HS10] Juraj Hromkovič and Georg Schnitger. On probabilistic pushdown automata. Information
and Computation, 208(8):982–995, 2010.

[Kra99] Maksim Kravtsev. Quantum finite one-counter automata. In SOFSEM’99: Theory and
Practice of Computer Science, volume 1725 of Lecture Notes in Computer Science, pages
431–440, 1999.

20 Masaki Nakanishi, Abuzer Yakaryılmaz, Aida Gainutdinova

[KW97] Attila Kondacs and John Watrous. On the power of quantum finite state automata. In
FOCS’97, pages 66–75, 1997.

[LQZ+12] Lvzhou Li, Daowen Qiu, Xiangfu Zou, Lvjun Li, Lihua Wu, and Paulo Mateus. Char-
acterizations of one-way general quantum finite automata. Theoretical Computer Science,
419:73–91, 2012.

[MC00] Cristopher Moore and James P. Crutchfield. Quantum automata and quantum grammars.
Theoretical Computer Science, 237(1-2):275–306, 2000.

[MNYW05] Yumiko Murakami, Masaki Nakanishi, Shigeru Yamashita, and Katsumasa Watanabe.
Quantum versus classical pushdown automata in exact computation. IPSJ Digital Courier,
1:426–435, 2005.

[Nak15] Masaki Nakanishi. Quantum pushdown automata with a garbage tape. In SOFSEM2015:
Proceedings of the Forty-First International Conference on Current Trends in Theory and
Practice of Computer Science, LNCS, pages 352–363. springer, 2015. (arXiv:1402.3449).

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

[NY15] Masaki Nakanishi and Abuzer Yakaryılmaz. Classical and quantum counter automata on
promise problems. In Implementation and Application of Automata, volume 9223 of LNCS,
pages 224–237. Springer, 2015. (arXiv:1412.6761).

[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control, 6:230–243, 1963.

[RY14] Jibran Rashid and Abuzer Yakaryılmaz. Implications of quantum automata for contextuality.
In Implementation and Application of Automata, volume 8587 of LNCS, pages 318–331.
Springer-Verlag, 2014. (arXiv:1404.2761).

[She59] John C. Shepherdson. The reduction of two–way automata to one-way automata. IBM
Journal of Research and Development, 3:198–200, 1959.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997.

[Sip06] Michael Sipser. Introduction to the Theory of Computation, 2nd edition. Thomson Course
Technology, United States of America, 2006.

[SY12] A. C. Cem Say and Abuzer Yakaryılmaz. Quantum counter automata. International Journal
of Foundations of Computer Science, 23(5):1099–1116, 2012.

[SY14] A. C. Cem Say and Abuzer Yakaryılmaz. Quantum finite automata: A modern introduction.
In Computing new resources, volume 8808 of LNCS, pages 208–222. Springer International
Publishing, 2014.

[Wat09] John Watrous. Encyclopedia of Complexity and System Science, chapter Quantum compu-
tational complexity. Springer, 2009. Also available at arXiv:0804.3401.

New Results on Classical and Quantum Counter Automata 21

[Yak12] Abuzer Yakaryılmaz. Superiority of one-way and realtime quantum machines. RAIRO -
Theoretical Informatics and Applications, 46(4):615–641, 2012.

[Yak13] Abuzer Yakaryılmaz. One-counter verifiers for decidable languages. In CSR, volume 7913
of LNCS, pages 366–377. Springer, 2013.

[YFSA12] Abuzer Yakaryılmaz, Rūsiņš Freivalds, A. C. Cem Say, and Ruben Agadzanyan. Quantum
computation with write-only memory. Natural Computing, 11(1):81–94, 2012.

[YKI05] Tomohiro Yamasaki, Hirotada Kobayashi, and Hiroshi Imai. Quantum versus deterministic
counter automata. Theoretical Computer Science, 334(1-3):275–297, 2005.

[YS11] Abuzer Yakaryılmaz and A. C. Cem Say. Unbounded-error quantum computation with small
space bounds. Information and Computation, 279(6):873–892, 2011.

[ZLQG17] Shenggen Zheng, Lvzhou Li, Daowen Qiu, and Jozef Gruska. Promise problems solved by
quantum and classical finite automata. Theor. Comput. Sci., 666:48–64, 2017.

	1 Introduction
	2 Definitions
	3 New separation results on promise problems
	3.1 Separation of exact 1Q1CAs and 1D1CAs
	3.2 Separation of Las Vegas 1P1CAs and 1D1CAs

	4 New results on classical counter automata

