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After fixing a canonical ordering (or labeling) of the elements of a finite poset, one can associate each linear extension
of the poset with a permutation. Some recent papers consider specific families of posets and ask how many linear
extensions give rise to permutations that avoid certain patterns. We build off of two of these papers. We first consider
pattern avoidance in k-ary heaps, where we obtain a general result that proves a conjecture of Levin, Pudwell, Riehl,
and Sandberg in a special case. We then prove some conjectures that Anderson, Egge, Riehl, Ryan, Steinke, and
Vaughan made about pattern-avoiding linear extensions of rectangular posets.

Keywords: Permutation pattern; linear extension; heap; rectangular poset.

1 Introduction
Let Sn be the set of permutations of [n] = {1, . . . , n}, which we write as words in one-line notation.
Given τ = τ1 · · · τm ∈ Sm, we say a permutation σ = σ1 · · ·σn contains the pattern τ if there exist
indices i1 < · · · < im in [n] such that for all j, k ∈ [m], we have σij < σik if and only if τj < τk. We
say σ avoids τ if it does not contain τ . Let Avn(τ

(1), τ (2), . . .) be the set of permutations avoiding the
patterns τ (1), τ (2), . . . (this list of patterns could be finite or infinite).

The study of pattern avoidance in permutations, which began with Knuth’s analysis of permutations that
are sortable via a stack [20], has grown into a large, thriving area of research in combinatorics [6, 19, 22].
Recently, there has been a great amount of interest in pattern avoidance in other combinatorial objects
such as words, inversion sequences, set partitions, and trees [1, 2, 4, 5, 7–18, 21, 23–25, 27, 29]. The
papers [3, 5, 14, 21, 29] consider the following general type of problem. Let P be an n-element poset,
and suppose we are given some canonical total ordering of the elements of P . We can view each linear
extension of P as a bijective labeling of the elements of P with the elements of [n]. If we read these labels
in the canonical order, we obtain a permutation. We can then ask how many linear extensions give rise
to permutations that avoid certain patterns. An alternative, yet essentially equivalent, formulation of this
problem is to consider a canonical labeling of P and then view each linear extension of P as an ordering.
Again, each linear extension gives rise to a permutation, so we can ask the same enumerative questions
about pattern avoidance.
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2 Colin Defant

As a first example, we consider the problems introduced in [21]. A complete k-ary tree is a rooted tree
in which each vertex that is not in the penultimate or the last level has exactly k children and all vertices in
the last level are as far left as possible. We make the convention that trees grow up from their roots (as in
real life). A k-ary heap is a complete k-ary tree whose vertices are bijectively labeled with the elements of
[n] so that each vertex is given a label that is smaller than the labels of its children. Associating complete
k-ary trees with posets in the natural way, one can view a k-ary heap as a linear extension of the underlying
complete k-ary tree. We endow each complete k-ary tree with the breadth-first ordering (traversing the
levels from bottom to top with each level traversed from left to right). Reading the labels in a k-ary heap
in this order yields a permutation in Sn, which we call the permutation associated to the k-ary heap. For
example, the left image in Figure 1 shows the unique complete binary tree with 12 vertices. The right
image shows a binary heap obtained by labeling this tree. The permutation associated to this binary heap
is 1 3 2 4 6 9 7 12 5 11 8 10. In Section 2, we prove a conjecture from [21] concerning binary heaps whose
associated permutations avoid the pattern 321. In fact, we will prove a much more general result.
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Fig. 1: The complete binary tree with 12 vertices (left) and a 12-vertex binary heap (right). Reading the
labels of this heap in the breadth-first order yields the associated permutation 1 3 2 4 6 9 7 12 5 11 8 10.

The second type of problem we consider deals with the rectangular posets ENs,t studied in [3]. The
poset ENs,t has st elements that are labeled in a canonical fashion. The easiest way to define these posets
is via examples. The Hasse diagrams of EN3,2, EN3,5, and EN4,3, along with their canonical labelings,
are shown in Figure 1. Each linear extension of ENs,t can be viewed as an ordering of the labels, which
is a permutation in Sst. For example, the linear extensions of EN3,2 correspond to the permutations
531642, 536142, 536412, 563142, and 563412. In Section 3, we prove several of the conjectures that the
authors of [3] posed about pattern-avoiding linear extensions of these posets.
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Fig. 2: The Hasse diagrams of three rectangular posets. The numbers show the canonical labelings.
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2 Pattern-Avoiding k-ary Heaps
Let Hkn(τ (1), τ (2), . . .) denote the set of n-vertex k-ary heaps whose associated permutations avoid
the patterns τ (1), τ (2), . . .. The authors of [21] found formulas for |Hkn(τ (1), . . . , τ (r))| for every set
{τ (1), . . . , τ (r)} ⊆ S3 except the singleton set {321}. In fact, they were unable to explicitly enumerate
binary heaps avoiding 321. They did, however, compute |H2

n(321)| for 1 ≤ n ≤ 31 and prove that

2n−1 < |H2
n(321)| < 4n.

Their data led them to conjecture that(i)

lim
n→∞

|H2
n(321)|1/n exists and is in the interval (3.66, 4]. (1)

We will see that this conjecture follows as a special consequence of the main theorem of this section. To
state this theorem, we need one additional piece of terminology.

Given λ = λ1 · · ·λ` ∈ S` and µ = µ1 · · ·µm ∈ Sm, the direct sum of λ and µ, denoted λ ⊕ µ, is the
permutation in S`+m obtained by “placing µ above and to the right of λ.” More formally, the ith entry of
λ⊕ µ is

(λ⊕ µ)i =

{
λi if 1 ≤ i ≤ `;
µi−` + ` if `+ 1 ≤ i ≤ `+m.

A permutation is called sum indecomposable if it cannot be written as the direct sum of two shorter
permutations.

Theorem 2.1. Fix an integer k ≥ 2 and a nonempty sequence of permutation patterns τ (1), τ (2), . . .. If
the permutations τ (1), τ (2), . . . are all sum indecomposable, then

lim
n→∞

|Avn(τ
(1), τ (2), . . .)|1/n = lim

n→∞
|Hkn(τ (1), τ (2), . . .)|1/n.

Remark 2.1. How do we know that the limits in Theorem 2.1 actually exist? Because the permuta-
tions τ (1), τ (2), . . . are sum indecomposable, we have an injective map S` × Sm ↪→ S`+m given by
(λ, µ) 7→ λ ⊕ µ for all `,m ≥ 1. This shows that the sequence (|Avn(τ

(1), τ (2), . . .)|)n≥1 is supermul-
tiplicative, so the limit on the left-hand side exists by Fekete’s lemma. We also have an injective map
Hkn(τ (1), τ (2), . . .) ↪→ Avn(τ

(1), τ (2), . . .) sending each k-ary heap to its associated permutation. This
shows that lim sup

n→∞
|Hkn(τ (1), τ (2), . . .)|1/n ≤ lim

n→∞
|Avn(τ

(1), τ (2), . . .)|1/n. We will see in the proof

of Theorem 2.1 that lim
n→∞

|Avn(τ
(1), τ (2), . . .)|1/n ≤ lim inf

n→∞
|Hkn(τ (1), τ (2), . . .)|1/n, so the limit on the

right-hand side exists as well. It is interesting to note that this right-hand limit does not depend on k. ♦

Let Cn = 1
n+1

(
2n
n

)
denote the nth Catalan number. It is well known that |Avn(321)| = Cn. This im-

plies that lim
n→∞

|Avn(321)|1/n = 4. Consequently, we can specialize Theorem 2.1 to obtain the following
result. In the special case in which k = 2, this settles the conjecture from [21] that is stated in (1).

Corollary 2.1. If k ≥ 2, then lim
n→∞

|Hkn(321)|1/n = 4.

(i) The actual conjecture was written as “|H2
n(321)| ∼ cn for some c ∈ (3.66, 4),” but it is clear from context that the authors

really meant what is written in (1).
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Proof of Theorem 2.1: Fix an integer k ≥ 2 and a sequence of sum indecomposable permutation patterns
τ (1), τ (2), . . .. As mentioned in Remark 2.1, we must prove that

lim
n→∞

|Avn(τ
(1), τ (2), . . .)|1/n ≤ lim inf

n→∞
|Hkn(τ (1), τ (2), . . .)|1/n.

To ease notation, let

a(n) = |Avn(τ
(1), τ (2), . . .)|1/n, b(n) = |Hkn(τ (1), τ (2), . . .)|1/n,

La = lim
n→∞

a(n), Lb = lim inf
n→∞

b(n).

The proof is trivial if one of the patterns τ (i) is the permutation 1 ∈ S1, so we may assume other-
wise. Because the patterns τ (1), τ (2), . . . are sum indecomposable, the identity permutation 123 · · ·n
is in Avn(τ

(1), τ (2), . . .) and is the permutation associated to an element of Hkn(τ (1), τ (2), . . .). Thus,
La, Lb ≥ 1. Fix ε ∈ (0, 1), and letN ≥ 1 be such that a(n−b(n− 1)/kc) > La−ε and b(b(n− 1)/kc)>
Lb − ε for every n ≥ N . Now choose n ≥ N such that b(n) < Lb + ε, and put m = b(n− 1)/kc.
Claim: If λ ∈ Sm is a permutation associated to a k-ary heap in Hkm(τ (1), τ (2), . . .) and
µ ∈ Avn−m(τ (1), τ (2), . . .), then λ⊕µ is a permutation associated to a k-ary heap inHkn(τ (1), τ (2), . . .).

Let us see how this claim implies Theorem 2.1. Suppose by way of contradiction that Lb < La.
Assuming the claim, we have

(Lb + ε)n > b(n)n = |Hkn(τ (1), τ (2), . . .)| ≥ |Hkm(τ (1), τ (2), . . .)| · |Avn−m(τ (1), τ (2), . . .)|

= b(m)ma(n−m)n−m > (Lb − ε)m(La − ε)n−m.
Since m < n/2 and Lb < La, we have (Lb − ε)m(La − ε)n−m > (Lb − ε)n/2(La − ε)n/2. Hence,
(Lb+ ε)

2 > (Lb− ε)(La− ε). Letting ε tend to 0 shows that Lb ≥ La, contradicting our assumption that
Lb < La. This completes the proof of Theorem 2.1 assuming the claim.

Now, let λ and µ be as in the claim. Let T be the complete k-ary tree with n vertices, and let vi
be the vertex of T that appears ith in the breadth-first ordering. It is straightforward to check that the
vertices vm+1, . . . , vn are incomparable (meaning none is a descendant of another). It follows that λ⊕ µ
is the permutation associated to some k-ary heap inHkn. Because λ and µ avoid the sum indecomposable
permutations τ (1), τ (2), . . ., their direct sum λ ⊕ µ must also avoid these permutations. This completes
the proof of the claim.

3 Rectangular Posets
An inversion of a permutation π = π1 · · ·πn ∈ Sn is a pair (i, j) such that i < j and πi > πj . Let
inv(π) denote the number of inversions of π. Following [3], we let ENs,t(τ)(q) =

∑
π∈ENs,t(τ)

qinv(π),
where ENs,t(τ) is the set of linear extensions of ENs,t (viewed as permutations of the labels of ENs,t)
that avoid the pattern τ . The following three theorems were stated as conjectures in [3](ii).

Theorem 3.1. For all t ≥ 1, we have

EN3,t(1243)(q) =
q3(t

2−t+1)(1− q2t−1 − 2q2t + q3t−1 + q3t)

(1− q)(1− q2)
.

(ii) Technically speaking, Theorem 3.1 was stated incorrectly in that article.
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Theorem 3.2. For all s ≥ 1, we have

ENs,2(2143)(q) = q(2s−1)(s−1)(1 + q)s−1.

Theorem 3.3. For all s ≥ 1, we have

ENs,3(2143)(q) = q9(
s
2)Fs(1/q),

where Fs(r) is defined by F0(r) = F1(r) = 1 and Fs(r) = (1+ r+2r2)Fs−1(r)+ r
3Fs−2(r) for s ≥ 2.

Proof of Theorem 3.1: It is easy to verify this theorem when t ∈ {1, 2}, so assume t ≥ 3. Let π =
π1 · · ·πn be a linear extension of EN3,t(1243) (viewed as a permutation of the labels). Note that 2t
appears before 2 in π because, otherwise, the entries 1, 2, 2t, t would form a 1243 pattern. Similarly, 3t
must appear before t + 2, lest the entries t + 1, t + 2, 3t, 2t form a 1243 pattern. It follows that if we
remove the entries 1 and t+ 1 from π, then we will be left with the permutation

(2t+ 1)(2t+ 2) · · · (3t)(t+ 2)(t+ 3) · · · (2t)23 · · · t.

Let i, j be such that πi+1 = t+ 1 and πj+1 = 1. We can easily check that the possibilities for i and j are
given by i ∈ {1, . . . , t} and j ∈ {i+ 1, . . . , 2t}. We find that

EN3,t(1243)(q) =

t∑
i=1

2t∑
j=i+1

q3t
2−3t+i+j .

This can easily be rewritten as
q3(t

2−t+1)(1− q2t−1 − 2q2t + q3t−1 + q3t)

(1− q)(1− q2)
.

Proof of Theorem 3.2: Let S be the collection of subsets of {1, 3, 5, . . . , 2s−3}, and define η : ENs,2(2143)→
S by

η(π) = {i ∈ {1, 3, 5, . . . , 2s− 3} : i+ 3 appears before i in π}.

The map η is a bijection. It is now easy to check that

ENs,2(2143)(q) =
∑

X⊆{1,3,5,...,2s−3}

q(2s−1)(s−1)+|X| = q(2s−1)(s−1)(1 + q)s−1.

Proof of Theorem 3.3: Let H` be the set of π = π1 · · ·π3` ∈ EN`,3(2143) such that π2 = 3` − 1. Let
H`(q) =

∑
π∈H`

qinv(π). Fix s ≥ 2, and let J(r1, . . . , rk) be the set of permutations π = π1 · · ·π3s ∈
ENs,3(2143) such that πi = ri for all i ∈ {1, . . . , k}. One can check that the sets

J(3s− 2, 3s− 1, 3s), J(3s− 2, 3s− 1, 3s− 5, 3s), J(3s− 2, 3s− 5, 3s− 1, 3s),

J(3s− 2, 3s− 5, 3s− 1, 3s− 4, 3s), and J(3s− 2, 3s− 1, 3s− 5, 3s− 4, 3s)

partition ENs,3(2143). Call these sets J1, J2, J3, J4, and J5, respectively.
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The operation that consists of removing the entries 3s−2, 3s−1, and 3s from a permutation establishes
bijections J1 → ENs−1,3(2143), J2 → ENs−1,3(2143), J3 → ENs−1,3(2143), J4 → Hs−1, and
J5 → Hs−1. After taking into account the number of inversions that are removed by each of these
bijections, we obtain the identities∑

π∈J1

qinv(π) = q9(s−1) ENs−1,3(2143)(q),
∑
π∈J2

qinv(π) = q9(s−1)−1 ENs−1,3(2143)(q),

∑
π∈J3

qinv(π) = q9(s−1)−2 ENs−1,3(2143)(q),
∑
π∈J4

qinv(π) = q9(s−1)−3Hs−1(q),

and ∑
π∈J5

qinv(π) = q9(s−1)−2Hs−1(q).

This yields

ENs,3(2143)(q) = q9(s−1)−2(1 + q + q2) ENs−1,3(2143)(q) + q9(s−1)−3(1 + q)Hs−1(q). (2)

The sets J1, J2, J5 partition Hs, so

Hs(q) = q9(s−1)−1(1 + q) ENs−1,3(2143)(q) + q9(s−1)−2Hs−1(q). (3)

Solving the recurrence relations (2) and (3) subject to the initial conditions EN1,3(2143)(q) = H1(q) = 1,
we obtain the desired identity ENs,3(2143)(q) = q9(

s
2)Fs(1/q).

The article [3] also poses several conjectures concerning the polynomials Fs(q) and various OEIS
sequences [26]. We settle many of these conjectures(iii) in the following theorem. Since our focus is on
the combinatorics of pattern-avoiding linear extensions and not these specific polynomials, we omit some
details from the proof. In what follows, let [qr]G(q) denote the coefficient of qr in the Laurent series
G(q).

Theorem 3.4. Define the polynomials Fs(r) by F0(r) = F1(r) = 1 and Fs(r) = (1+r+2r2)Fs−1(r)+
r3Fs−2(r) for s ≥ 2. For s ≥ 2,

• the values of [q3]Fs(q) are given by OEIS sequence A134465;

• the values of [q2s−2]Fs(q) are given by OEIS sequence A098156;

• the values of [qs−1]Fs(q) are given by OEIS sequence A116914;

• the values of [qs]Fs(q) are given by OEIS sequence A072547;

• the values of [qs+1]Fs(q) are given by OEIS sequence A002054;

• the values of [qs+2]Fs(q) are given by OEIS sequence A127531.
(iii) We also correct some typos made in the original statements of these conjectures.
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Proof: Let A(x, q) =
∑
s≥0 Fs(q)x

s. The recurrence for Fs(q) translates into the identity

A(x, q) =
1− (q + 2q2)x

1− (1 + q + 2q2)x− q3x2
. (4)

Computing
1

6

∂3

∂q3
A(x, q) proves the first bullet point. The remainder of the proof makes use of the method

of diagonals, which is discussed in Section 6.3 of [28].
If we view qA(x/q2, q) as a function of the complex variable q, then∑

s≥0

([q2s−2]Fs(q))x
s = [q−1](qA(x/q2, q)) =

1

2πi

∫
|q|=ρ

qA(x/q2, q) dq,

where ρ > 0 is sufficiently small and the integral is taken over the circle of radius ρ centered at the origin.
By the Residue Theorem, this is

r∑
j=1

Resq=uj(x)(qA(x/q
2, q)),

where u1(x), . . . , ur(x) are the singularities of qA(x/q2, q) (viewed as functions of x) that tend to 0 as
x→ 0. We can explicitly compute that r = 2 and that

u1(x) =
x(1 + x) + (1− x)

√
x(4 + x)

2(1− 2x)
and u2(x) =

x(1 + x)− (1− x)
√
x(4 + x)

2(1− 2x)
.

Let U(x, q) = q2(x − q(1 − 2x)) and V (x, q) = x + qx(1 + x) − q2(1 − 2x) so that qA(x/q2, q) =

U(x, q)/V (x, q). Let Vq(x, q) =
∂

∂q
V (x, q). Since u1(x) and u2(x) are simple poles of qA(x/q2, q), we

find that

Resq=uj(x)(qA(x/q
2, q)) =

U(x, uj(x))

Vq(x, uj(x))
for j ∈ {1, 2}.

We have
2∑
j=1

Resq=uj(x)(qA(x/q
2, q)) =

2∑
j=1

U(x, uj(x))

Vq(x, uj(x))
=
x(1− 2x+ x2 + x3)

(1− 2x)2
,

and this proves the second bullet point.
To prove the third, fourth, fifth, and sixth bullet points, we choose an integer ` ≤ 2 and view

q−`−1A(x/q, q) as a complex function of the variable q. As above, we have

∑
s≥0

([qs+`]Fs(q))x
s = [q−1](q−`−1A(x/q, q)) =

t∑
j=1

Resq=vj(x)(q
−`−1A(x/q, q)),

where v1(x), . . . , vt(x) are the singularities of q−`−1A(x/q, q) that tend to 0 as x → 0. Let Y (x, q) =
−1+ x+2qx and Z(x, q) = x− (1− x)q+ x(2+ x)q2 so that q−`−1A(x/q, q) = q−`Y (x, q)/Z(x, q).
If ` ≤ 0, then the only singularity of q−`−1A(x/q, q) that tends to 0 as x→ 0 is

v1(x) =
1− x−

√
1− 2x− 7x2 − 4x3

2x(2 + x)
.
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If ` ∈ {1, 2}, then there is one other singularity, which is v2(x) = 0. One can check that

Resq=0(q
−2A(x/q, q)) = 1− x−1 , Resq=0(q

−3A(x/q, q)) = 1 + 2x−1 − x−2.

Note that in each of these expressions, the coefficient of xs is 0 for every s ≥ 2. It follows that for all
integers ` ≤ 2 and s ≥ 2, the coefficient of xs in

∑
s≥0([q

s+`]Fs(q))x
s agrees with the coefficient of xs

in Resq=v1(x)(q
−`−1A(x/q, q)). We have

Resq=v1(x)(q
−`−1A(x/q, q)) =

v1(x)
−`Y (x, v1(x))

Zq(x, v1(x))
,

where Zq(x, q) =
∂

∂q
Z(x, q). When ` ∈ {−1, 0, 1, 2}, we can explicitly compute and simplify these

expressions in order to obtain proofs of the last four bullet points.
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[22] S. Linton, N. Ruškuc, V. Vatter, Permutation Patterns, London Mathematical Society Lecture Note
Series, Vol. 376. Cambridge University Press, 2010.

[23] T. Mansour and M. Shattuck, Pattern avoidance in inversion sequences. Pure Math. Appl., 25 (2015),
112–129.

[24] T. Mansour and M. Shattuck, Pattern-avoiding set partitions and Catalan numbers. Electron. J. Com-
bin., 18 (2011–2012), #P34.

[25] M. A. Martinez and C. D. Savage, Patterns in inversion sequences II: inversion sequences avoiding
triples of relations. J. Integer Seq., 21 (2018), Article 18.2.2.

[26] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2019.

[27] E. Rowland, Pattern avoidance in binary trees. J. Combin. Theory Ser. A, 117 (2010), 741–758.

[28] R. P. Stanley, Enumerative combinatorics: volume 2. Cambridge University Press, Cambridge, 1999.

[29] S. Yakoubov, Pattern avoidance in extensions of comb-like posets. J. Comb., 6 (2015), 249–272.


	1 Introduction
	2 Pattern-Avoiding k-ary Heaps
	3 Rectangular Posets
	4 Acknowledgments

