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Miklós Bóna ∗ Michael Cory †

University of Florida, USA

received 5th Dec. 2018, revised 16th Oct. 2019, accepted 16th Oct. 2019.

We enumerate cyclic permutations avoiding two patterns of length three each by providing explicit formulas for all
but one of the pairs for which no such formulas were known. The pair (123, 231) proves to be the most difficult of
these pairs. We also prove a lower bound for the growth rate of the number of cyclic permutations that avoid a single
pattern q, where q is an element of a certain infinite family of patterns.
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1 Introduction
The theory of permutation patterns considers permutations as linear orders. That is, a permutation p is
simply a linear order p1p2 · · · pn of the integers [n] = {1, 2, · · · , n}. Let p = p1p2 · · · pn be a permuta-
tion, let k < n, and let q = q1q2 · · · qk be another permutation. We say that p contains q as a pattern if
there exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n so that for all indices j and r, the inequality
qj < qr holds if and only if the inequality pij < pir holds. If p does not contain q, then we say that p
avoids q. An exact formula for the number Sn(q) of q-avoiding permutations of length n is known for
all patterns q of length three, and all patterns q of length four, except 1324, and its reverse, 4231. There
are numerous other results on the growth rate of the sequences Sn(q) as well. See Vatter (2015) for an
overview of these results.

Questions about pattern avoidance become much more difficult if we also consider permutations as
elements of the symmetric group, or even just bijections over the set [n] that have a cycle decomposition.

In this paper, we study pattern avoiding permutations that consist of a single cycle, or, as we will call
them, cyclic permutations. Let Cn(q) be the number of cyclic permutations of length n that avoid the
pattern q. Similarly, let Cn(q, q

′) be the number of cyclic permutations that avoid both patterns q and q′.
The problem of determining Cn(q) for any given pattern q of length three was raised by Richard Stanley
at the Permutation Patterns conference in 2007. No such formulas have been found. The main result
of the paper will be an explicit formula for the sequence Cn(123, 231) counting cyclic permutations that
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avoid both 123 and 231. We will also prove an explicit enumeration formula for the easier pair (123, 132).
Taken together with a result of Archer and Elizalde Archer and Elizalde (2014), which was the first non-
trivial result of the field, and some straightforward pairs that we handle in Section 4, this will complete
the analysis of cyclic permutations avoiding any given pair of patterns of length three, except for the pair
(132, 213). For that pair of patterns, an exact formula is still not known, but an upper bound has recently
been proved by Brice Huang Huang (2019).

The cited results of Archer and Elizalde (2014) and Huang (2019), and the results of this paper, enable
us to make the following comparison. Let q and q′ be two distinct patterns of length three each. Let
Sn(q, q

′) be the number of all permutations of length n that avoid both patterns q and q′. See Bóna (2012)
for exact enumeration formulas for the numbers Sn(q, q

′). Using those formulas,

lim
n→∞

Cn(q, q
′)

Sn(q, q′)
= 0.

We end the paper by stating some open problems and conjectures. We solve a special case of one of the
conjectures, proving that if q is an element of a certain infinite family of patterns, then 2Cn(q) ≤ Cn+1(q)
for n ≥ 2.

2 The pair (123, 231)
In this section, we enumerate cyclic permutations that avoid both 123 and 231. This is the most difficult
of the pairs we handle in this paper. We start by proving a collection of structural properties of such
permutations. We will use some basic facts about inversions of permutations and conjugacy classes in the
symmetric group. These facts can be found in many introductory combinatorics textbooks, such as Bóna
(2016).

2.1 Preliminary lemmas
2.1.1 Bounds on layer sizes
First, we show what a typical cyclic permutation that avoids both 123 and 231 must look like. Recall that
an involution is a permutation whose square is the identity permutation. In other words, an involution is a
permutation in which each cycle is of length 1 or 2.

Lemma 2.1 Let p be a permutation of length n that avoids the patterns 123 and 231 and which is not an
involution. Then there exist three positive integers a, b, and c so that a+ b+ c = n, and

p = n n− 1 · · · (n− a+ 1) b (b− 1) · · · 1 (b+ c) (b+ c− 1) · · · (b+ 1).

In other words, the lemma states that p consists of three decreasing subsequences of consecutive in-
tegers in consecutive positions, namely, p starts with a decreasing subsequence of its a largest entries,
then continues with a decreasing subsequence of its b smallest entries, and then it ends in a decreasing
subsequence of its c remaining entries. These three decreasing subsequences will be called the layers of
p. For instance, if n = 9, and the layer lengths are a = 4, b = 2 and c = 3, then p = 987621543. See
Figure 2.1.1 for an illustration.

Proof: All entries preceding the entry n have to be smaller than all entries following n or a 231-pattern
would be formed. All entries preceding the entry n must be in decreasing order or a 123-pattern would be
formed.
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Fig. 1: The permutation p that belongs to the triple (4, 2, 3).

If n is not the leftmost entry, then this means that all entries on the right of n must be in decreasing
order, or a 123-pattern is formed. So if n is not the leftmost entry, then

p = i (i− 1) · · · 1 n (n− 1) · · · (i+ 1),

but then p is an involution.
That is, if p is not an involution, then p = p1p2 · · · pn starts with the entry p1 = n. Let a be the largest

integer so that we have p1p2 · · · pa = n(n − 1) · · · (n − a + 1). As p is not an involution, it follows
that a ≤ n − 2. Repeating the argument of the first paragraph of this proof for the remaining entries
{1, 2, · · · , n− a} of p, we see that they must form a string of the form

b (b− 1) · · · 1 (n− a) (n− a− 1) · · · (b+ 1)

for some b < n− a. 2

Note that Lemma 2.1 implies that the total number of permutations (cyclic or not) of length n that avoid
both 123 and 231 is 1 +

(
n
2

)
.

Another way to state the result of Lemma 2.1 is that if p is a cyclic permutation that avoids 123 and
231, then

pi =

 n+ 1− i if 1 ≤ i ≤ a,
a+ b+ 1− i if a+ 1 ≤ i ≤ a+ b, and
n+ b+ 1− i if a+ b+ 1 ≤ i ≤ n.

(1)

We will use the identities stated in (1) in the rest of this section without referencing (1) each time.
We will call the permutation p defined by the triple (a, b, c) the permutation of that triple. We will call

a triple (a, b, c) a good triple if its permutation is cyclic.
Now we are going to prove some results, mostly necessary conditions, regarding the parameters a, b,

and c of good triples.

Proposition 2.2 The triple (a, b, c) is good if and only if the triple (a, c, b) is good.

Proof: It suffices to show that the permutations of those two triples are conjugates of each other, since
that implies that they have the same cycle structure. In order to see that the permutation p of the triple
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(a, b, c) and the permutation q of the triple (a, c, b) are conjugates, let w be the decreasing permutation of
length n.

For the rest of this paper, we will multiply permutations left to right, so rs means that we first apply the
permutation r to the set [n], then we apply the permutation s to that set.

Then p = wx, where x(i) = i if i > b+c, and x(i) = i−b (modulo b+c) if i ≤ b+c. (So x cyclically
rotates the string of the last b + c entries of w forward by b positions.) On the other hand, q = wx−1,
since x−1 rotates that same string backward by b positions, which is the same as rotating it forward by c
positions.

Note that w is an involution, so q−1 = xw, and so wq−1w = w(xw)w = wx = p. Therefore, p is a
conjugate of q−1, and therefore, of q. 2

Proposition 2.3 If the triple (a, b, c) is good, then a ≤ bn/2c and, c ≤ bn/2c.

Proof: If n = 2k + 1, and a ≥ k + 1, then pk+1 = k + 1 is a fixed point. If n = 2k, and a ≥ k + 1, then
pk = k + 1 and pk+1 = k form a 2-cycle.

Similarly, assume that c > bn/2c. Then the third layer of p starts in position n − c + 1, in the entry
b + c. So at that position, the entry in the position is larger than the index of the position. Moving to the
right one position at a time, the index of the position will increase by 1 at each step, while the entry in the
position will decrease by one. At the end, we will be at position n, that will contain the entry b + 1. So
at the end, the index of the position is larger than the entry in it. As both the index and the content of our
position changed one by one, there had to be a leftmost position j where the index j was at least as large
as the entry pj . If, at that point, equality held, then j = pj is a fixed point p. If, on the other hand, at that
point j > pj held, then pj = j − 1, and therefore, pj−1 = j, and (j − 1 j) is a 2-cycle in p. 2

The following corollary is a direct consequence of Propositions 2.2 and 2.3.

Corollary 2.4 If the triple (a, b, c) is good, then b ≤ bn/2c.

Proposition 2.5 If the triple (a, b, c) is good, then a ≥ b, and a ≥ c.

Proof: It follows from Proposition 2.2 that it suffices to prove a ≥ b. Let us assume the contrary, that
is, that b ≥ a + 1. Consider the second layer of p. Its first entry is in position a + 1, and it is b. So
pa+1 = b, then pa+2 = b − 1, and this trend continues, ending in pa+b = 1. If a + 1 = b, then a + 1
is a fixed point in p. If not, then, sequence of entries b, b − 1, ..., 1 starts above the sequence of positions
a+ 1, a+ 2, ...a+ b, but ends below it, so it crosses it somewhere, and then the proof is identical to that
of the inequality c ≤ bn/2c in Proposition 2.3. 2

2.1.2 Restrictions related to common divisors of layer lengths
It turns out that b and c cannot have large common divisors.

Lemma 2.6 If (a, b, c) is a good triple, then the largest common divisor of b and c is 1 or 2. Furthermore,
if the largest common divisor of b and c is 2, then a is even.

Proof: Let us assume the contrary, that is, that b = fk and c = gk, with k > 2. The crucial observation is
that in this case, p permutes the remainder classes modulo k. In fact, we claim that for all i, the equality

pi ≡ n+ 1− i (mod k) (2)
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holds. In order to prove (2), first note that it holds for i = 1, since p1 = n. Now we show that (2) remains
true for each index i, as we grow i one by one. First, note that (2) stays true as long as i ≤ a. That is,
note that (2) stays true while we are on the first layer, since every time we make one step to the right, both
sides decrease by 1. When we pass from the first layer to the second, i grows from a to a + 1, while pi
decreases from n− a+1 = (f + g)k+1 to b = fk, so modulo k, it decreases by 1. So (2) remains true.
After this, (2) remains true at each step to right one the second layer (since again, each step decreases both
the left-hand side and the right-hand side by 1). When we pass from the second layer to third, i changes
from a + b to a + b + 1, while pi changes from 1 to b + c = (f + g)k, so modulo k, it decreases by 1.
Finally, (2) remains true on the third layer as it did on the first two layers.

Equality (2) shows that p acts as an involution on the remainder classes modulo k. In particular, if the
equation j ≡ n+ 1− j (modulo k), or, equivalently, j ≡ a+ 1− j (modulo k), has a solution j, then the
remainder class of j is mapped onto itself by p. In other words, that remainder class is a union of cycles,
so p cannot be cyclic.

If the equation j = a+1− j does not have a solution modulo k, then select any remainder class i, and
the remainder class a + 1 − i. These two classes are mapped onto each other, so they form a union of
cycles in p. This union does not contain all of p, since p has k > 2 remainder classes. So again, p cannot
be cyclic.

Finally, if k = 2, and a is odd, then the remainder class 1 maps onto itself. In other words, odd entries
map into odd entries, and even entries map into even entries, so p is not cyclic. 2

Lemma 2.6 stops short of claiming that b and c must always be relatively prime to each other. The next
proposition shows that in some cases, they have to be. In the next section, we will see that those cases are
not as rare as it might now seem.

Proposition 2.7 If (a, b, c) is a good triple and a = b+ c, then b and c are relatively prime to each other.

Proof: Let us assume the contrary, that is, that b and c are both even numbers. Then so is b + c = a.
Furthermore, n = 2a is even, so p can only be cyclic if it is an odd permutation, that is, if it has an odd
number of inversions. On the other hand, the number of inversions of p is

Ia,b,c =

(
a

2

)
+

(
b

2

)
+

(
c

2

)
+ a(b+ c). (3)

Note that if x is an even number, then
(
x
2

)
is odd if and only if x = 4k+2 for some integer k. As a = b+c,

this must hold for an even number of summands out of the first three summands of Ia,b,c. As a(b + c) is
always even, it follows that Ia,b,c is always even. 2

2.2 The size of the first layer
The following lemma is probably the most suprising result of this paper. We have already seen in Propo-
sition 2.3 that if (a, b, c) is a good triple, then a ≤ n/2. Interestingly, a cannot be much smaller either.

Lemma 2.8 Let (a, b, c) be a good triple, and let us assume that b ≤ c. Recall that n = a+ b+ c. Then

1. if n is even, then a = n/2 or a = (n/2)− 1, and

2. if n is odd, then a = (n− 1)/2.
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In other words, we never have more than two choices for a. This immediately proves the crude upper
bound Cn(123, 231) ≤ n, since we never have more than n/2 choices for b.

In the rest of this paper, we will often consider p to be a directed path. For instance, if p = 2413, then
p1 = 2, p2 = 4, p3 = 1 and p4 = 3, and so p is a directed path that goes from 1 to 2 to 4 to 3 and then
back to 1. We also say that p maps 1 to 2, 2 to 4, 4 to 3, and 3 to 1.

Proof: Let us assume the contrary, that is, that a ≤ b+ c− 3. Note that as a ≥ c, this implies that b ≥ 3.
Let a = kb+ r, with 0 ≤ r ≤ b− 1.

We will show that the entry r+1 of p is part of a cycle that is shorter than n. In fact, we will show that
it is part of a cycle that does not even contain all entries of the second layer.

Note that because r + 1 ≤ b ≤ c ≤ a, the equality a = r + 1 could only hold if a = b = c held, but
that would imply that r = 0, and a = b = c = 1, contradicting the assumption that a ≤ b + c − 3. As
r+1 ≤ b, the entry r+1 is on the second layer of p, and pmaps it to the first layer, to pr+1 = n−r. From
there, p continues to pn−r = n+ b+1− (n− r) = b+ r+1 on the last layer, then to pb+r−1 = n− b− r
on the first layer, then again to pn−b−r = 2b + r + 1 on the last layer, and so on. The important point is
that 0 ≤ a− c < b− 2 < b, so p will visit the last layer as many times (k times) as the first layer before
running out of space and returning to the second layer. The last visit to the last layer before the first return
to the second layer will be at pn−r−(k−1)b = kb + r + 1 = a + 1. From there, p goes to pa+1 = b. If b
happens to equal r + 1, then we can stop, as we have just found a cycle that contains only one entry form
the second layer.

Otherwise, we follow p a bit further. Next, p goes to pb = n + 1 − b on the first layer, then to
pn+1−b = 2b on the last layer, and so on, making k visits on each of the first and last layers. The last visit
on the last layer will be at pn+1−kb = (k+ 1)b = kb+ r+ (b− r) = a+ (b− r). Finally, from here, we
move on to the second layer, to pa+b−r = r + 1, where we started our walk. So we have found a cycle in
p that contains only two entries, r + 1 and b, from the second layer, completing our proof. 2

Example 2.9 Let a = 7, let b = 3, and let c = 7. Then n = 17, and

p = 17 16 15 14 13 12 11 3 2 1 10 9 8 7 6 5 4.

We have a = 2b+ 1, so r = 1. Starting at r + 1 = 2, the path of p goes from 2 to 16 to 5 to 13 to 8 to
3 to 15 to 6 to 12 to 9 to 2, completing a cycle that contains only two entries from the second layer.

2.3 Positive results
In this section, we will assume without loss of generality that b ≤ c, unless stated otherwise. Our results
will be positive, that is, they will show that if a, b, and c satisfy certain necessary conditions, then the
triple (a, b, c) is good.

Theorem 2.10 Let (a, b, c) be a triple of positive integers that satisfies a = b + c = n/2, with b and c
relatively prime to each other. Then (a, b, c) is a good triple.

Proof: Let a = kb + r, with 1 ≤ r ≤ b, then c = (k − 1)b + r, and n = a + b + c = 2a = 2kb + 2r.
Note that this implies that b and r are relatively prime to each other. Indeed, if b = xd and r = yd held
for some d > 1, then c = (k − 1)b+ r would also be divisible by d, which is a contradiction.

Let us start following p, beginning at any entry i on the second layer. So 1 ≤ i ≤ b. From that entry,
p goes to pi = n + 1 − i, then to pn+1−i = b + i, then to pb+i = n + 1 − b − i, and so on. In the first
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layer, p will visit positions i, b+ i, 2b+ i, and so on, while on the last layer, p will visit positions n, n− b,
n − 2b, and so on. Continuing in this way, p will visit all entries of the first layer whose position index
is congruent to i modulo b, and all entries on the last layer whose position index (when counted from the
right) is congruent to i modulo b before returning to the second layer. Therefore, in order to prove that p
is cyclic, it suffices to prove that p contains all b entries of its second layer in one cycle. Indeed, we have
just seen that between two visits to the second layer, p covers an entire remainder class of positions on
the first and third layers. So if a cycle contains all entries of the second layer, then that cycle contains all
entries of p.

Crucially, as the first layer is b units longer than the last layer, p will run out of space on the last layer
first. In other words, p will always arrive at the second layer from the first layer.

That is, if i ≤ r, then as p arrives at position kb + i on the first layer, it finds the entry pkb+i =
n+1−kb−i = a+r+1−i there, and then it goes to the second layer, to the entry pa+r+1−i = b+i−r. If
i > r, then as p arrives at position (k−1)b+i on the first layer, it finds the entry p(k−1)b+i = a+b+r+1−i
there, and then it goes to the second layer, to the entry pa+b+r+1−i = i− r.

So in all cases, the first entry that p visits on the second layer after visiting i is the entry that is congruent
to i− r modulo b. In other words, each visit of the second layer occurs r spots to the right of the last one,
modulo b.

However, that implies that p will visit all its entries on the second layer before returning to its starting
point i, since r is relatively prime to b, the length of the second layer. 2

Example 2.11 Let a = 7, let b = 3, and let c = 4. Then n = 14, and

p = 14 13 12 11 10 9 8 3 2 1 7 6 5 4.

Let us start at i = 1. Then p goes from 1 to 14 to 4 to 11 to 7 to 8 to 3 to 12 to 6 to 9 to 2 to 13 to 5 to
10 to 1. See Figure 2.11 for an illustration. Note that for each pair of layers (L,M), we represented all
movements from L to M using the same kind of arrows, and still we only needed four arrow types instead
of the potential maximum, nine. This shows the relative simplicity of the action of p.

9

8
7
6

2
1

5
4

3

10
11

12
13

14

Fig. 2: The action of p = 14 13 12 11 10 9 8 3 2 1 7 6 5 4.

Note that between the first and second visit to the second layer, p visits all entries pj on the first layer
where j = 3`+ 1, and all entries on the last layer that are in position 3`+ 1 when counted from the end.
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Between the second and third visits of p to the second layer, the same goes for entries in positions 3`, and
between the third and fourth visits of p to the second layer, the same goes for entries in positions 3`+ 2.

Theorem 2.12 Let (a, b, c) be a triple of positive integers that satisfies a = b + c − 1, with a ≥ c ≥ b,
and with b and c relatively prime to each other. Then (a, b, c) is a good triple.

Proof: Let a = kb+ r, with 0 ≤ r ≤ b− 1, then c = (k − 1)b+ r + 1, and n = a+ b+ c = 2a+ 1 =
2kb+ 2r + 1.

The proof is similar to that of Theorem 2.10, with one significant difference. This time, c = a− b+ 1,
so there is exactly one entry on the second layer of p, namely the entry r + 1, so that if we start walking
the along the path of p at r + 1, then we will visit the last layer as many times as the first layer before
returning to the second layer. (In the situation of Theorem 2.10, there was no such entry.) Otherwise, just
as in the proof of Theorem 2.10, it suffices to show that p contains a cycle that contains all entries of the
second layer.

So let us start walking at this exceptional entry r+1. Our walk takes us to position r+1 that contains the
entry pr+1 = n−r, then position n−r, that contains entry pn−r = b+1−r, and so on, through positions
r+1, b+r+1, 2b+r+1, and so on on the first layer, and positions n−r, n−r−b, and so on on the last
layer, eventually reaching the leftmost position of the last layer, position n − r − (k − 1)b = a + b + 1,
containing the entry pa+b+1 = n− a = a+ 1. We will then reach the second layer in the next step, at its
leftmost position, at pa+1 = b.

Other than the exceptional entry r + 1, all entries of the second layer (including b) will behave iden-
tically. That is, from i, the walk of p goes to pi = n + 1 − i, then to pn+1−i = b + i, then to
pb+i = n + 1 − b − i, and so on. In the first layer, p will visit positions i, b + i, 2b + i, and so on,
while on the last layer, p will visit positions n, n − b, n − 2b, and so on. If i ≤ r, then as p arrives at
position kb+ i on the first layer, it finds the entry pkb+i = n+1− kb− i = a+ r+2− i there, and then
it goes to the second layer, to the entry pa+r+2−i = b + i − r − 1. If i > r, then as p arrives at position
(k− 1)b+ i on the first layer, it finds the entry p(k−1)b+i = a+ b+ r+2− i there, and then it goes to the
second layer, to the entry pa+b+r+2−i = i − r − 1. So in all cases when i 6= r + 1, the next visit on the
second layer after visiting entry i is at the unique entry that is congruent to i − r − 1 modulo b. In other
words, each visit of the second layer occurs r + 1 spots to the right of the last one, modulo b.

Our proof is now complete noting that b is relatively prime to r + 1. Indeed, if d > 1 divides both b
and r+ 1, then it also divides c = (k− 1)b+ r+ 1, contradicting the assumption that b and c are relative
primes. 2

Example 2.13 Let a = 6, let b = 3, and let c = 4. Then n = 13, and

p = 13 12 11 10 9 8 3 2 1 7 6 5 4.

As a = 2b, we have r = 0, and so we start at r+ 1 = 1. Then p goes from 1 to 13 to 4 to 10 to 7 to b = 3
to 11 to 6 to 8 to b− (r + 1) = 2 to 12 to 5 to 9 to b− 2(r + 1) = 1.

The case when a = b + c − 2 is a little bit more cumbersome. Therefore, we need two more negative
results before announcing our enumeration formulas. For these two propositions, we drop the assumption
that b ≤ c.

Proposition 2.14 Let n = 4k. If (a, b, c) is a good triple, then a = 2k = n/2.
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Proof: All we need to show is that it is not possible to have a = 2k − 1, and b + c = 2k + 1. Let us
assume that that is the case; in particular, that both a and b+ c are odd, and therefore, exactly one of b and
c is even. As we no longer assume that b ≤ c, we can assume without loss of generality that b is even and
c is odd. The number Ia,b,c of inversions of p is given in (3). It follows from our assumption that a(b+ c)
is odd. As p is a permutation of even length, if it is cyclic, then it has to have an odd number of inversions.
Therefore, the sum ia,b,c =

(
a
2

)
+
(
b
2

)
+
(
c
2

)
has to be even. Recall that we can assume that b is even and

c is odd. There are the following two cases.

1. If b = 4`, then a ≡ c − 2 modulo 4, so
(
a
2

)
+
(
c
2

)
is odd, while

(
b
2

)
is even. So ia,b,c is odd, and

therefore, Ia,b,c is even.

2. If b = 4`+ 2, then a ≡ c modulo 4, so
(
a
2

)
+
(
c
2

)
is even, while

(
b
2

)
is odd. So again, ia,b,c is odd,

and therefore, Ia,b,c is even.

So p cannot be cyclic if a = 2k − 1 and b = 2k + 1, proving our claim. 2

Proposition 2.15 Let n = 4k + 2 > 2, and let a = 2k. Then b and c must both be even.

Proof: Let us assume the contrary, that is, that b and c are both odd (they must be of the same parity, since
b+ c = n− a = 2k + 2).

If p is cyclic, then it has an odd number of inversions. As a(b + c) is even, that means that ia,b,c =(
a
2

)
+
(
b
2

)
+
(
c
2

)
must be odd. There are again two cases.

1. If a is divisible by 4, then b + c is not, so, given that b and c are both odd, b ≡ c modulo 4, so(
b
2

)
+
(
c
2

)
is even, and so is

(
a
2

)
, implying that ia,b,c is even.

2. If a = 4`+ 2, then b+ c is divisible by four, so b ≡ c− 2 modulo 4, so
(
b
2

)
+
(
c
2

)
is odd, and so is(

a
2

)
, implying again that ia,b,c is even.

So if b and c are odd, then Ia,b,c is even, and p cannot be cyclic. 2

Theorem 2.16 Let (a, b, c) be a triple of positive integers satisfying a = 2K, with a ≥ b, and a ≥ c, so
that b+ c = 2K+2, and b and c are both even, and have no common divisor larger than 2. Then (a, b, c)
is a good triple.

Proof: Let a = kb+ r, with 0 ≤ r ≤ b− 1, then c = (k − 1)b+ r + 2, and n = a+ b+ c = 2a+ 2 =
2kb+ 2r + 2. Note in particular that the conditions imply that r is an even number, and that b and r + 2
have largest common divisor 2.

The proof is similar to that of Theorem 2.12, with one significant difference. This time, c = a− b+ 2,
so there are exactly two entries on the second layer of p, namely the entries r + 1 and r + 2, so that if we
start walking the along the path of p at r + 1, or at r + 2, then we will visit the last layer as many times
as the first layer before returning to the second layer. (In the situation of Theorem 2.10, there was no such
entry, and in the situation of Theorem 2.12, there was one such entry.)

So let us start walking at the exceptional entry r + 1. Our walk takes us to position r + 1 that contains
the entry pr+1 = n − r, then to position n − r, that contains the entry pn−r = b + 1 − r, and so on,
through positions r+1, b+ r+1, 2b+ r+1, and so on on the first layer, and positions n− r, n− r− b,
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and so on on the last layer, eventually reaching the second-from-the-left position of the last layer, position
n− r− (k− 1)b = a+ b+ 2, containing the entry pa+b+2 = n− a− 1 = a+ 1. We will then reach the
second layer in the next step, at its leftmost position, at pa+1 = b.

After r + 1, all entries of the second layer, except for r + 2, will behave identically. That is, from i,
the walk of p goes to pi = n + 1 − i, then to pn+1−i = b + i, then to pb+i = n + 1 − b − i, and so
on. In the first layer, p will visit positions i, b + i, 2b + i, and so on, while on the last layer, p will visit
positions n, n − b, n − 2b, and so on. If i ≤ r, then as p arrives at position kb + i on the first layer, it
finds the entry pkb+i = n+ 1− kb− i = a+ r + 3− i there, and then it goes to the second layer, to the
entry pa+r+3−i = b+ i− r − 2. If i > r + 2, then as p arrives at position (k − 1)b+ i on the first layer,
it finds the entry p(k−1)b+i = a + b + r + 3 − i there, and then it goes to the second layer, to the entry
pa+b+r+3−i = i− r − 2. So in all cases when i /∈ {r + 1, r + 2}, the next visit on the second layer after
visiting entry i is at the unique entry that is congruent to i− r− 2 modulo b. In other words, each visit of
the second layer occurs r + 2 spots to the right of the last one, modulo b.

Therefore, the visits of p at the second layer will occur in the following order: r+1, b, b− (r+2), b−
2(r + 2), · · · , understood modulo b. As b and r + 2 have largest common divisor 2, the first b/2 visits
starting with b will all be at distinct even entries of the second layer, the last one arriving at r + 2.

The entry r+2 is exceptional in the same way as r+1 is – the walk starting there will reach the second
layer from the third layer, not the first. Indeed, our walk takes us to the position r + 2 that contains the
entry pr+2 = n− r − 1, then to position n− r − 1, that contains the entry pn−r−1 = b+ 2− r, and so
on, through positions r + 2, b + r + 2, 2b + r + 2, and so on on the first layer, and positions n − r − 1,
n−r−b−1, and so on on the last layer, eventually reaching the leftmost position of the last layer, position
n− r − 1− (k − 1)b = a+ b+ 1, containing the entry pa+b+1 = n− a. We will then reach the second
layer in the next step, at the entry pn−a = a+ b+1− (n−a) = a+ b+1− (b+ c) = a− c+1 = b− 1.

After this, the remaining entries of the second layer again behave identically, just as we have seen two
paragraphs above. So the next visits on the second layer are at r+1, b−1, b−1−(r+2), b−1−2(r+2), . . ..
As b and r+2 have largest common divisor 2, the smallest solution of the equation b− 1− j(r+2) ≡ 1,
or, equivalently, −j(r + 2) ≡ 0 modulo b is j = b/2. So the first b/2 visits will be at distinct odd entries
of the second layer, and the next one will be at the entry 1, closing the cycle of p. 2

Example 2.17 Let a = 8, b = 4, and c = 6. Then n = 18, r = 0, and

p = 18 17 16 15 14 13 12 11 4 3 2 1 10 9 8 7 6 5.

Starting at r+1 = 1, the permutation p maps 1 to 18 to 5 to 14 to 9 to b = 4 to 15 to 8 to 11 to r+2 = 2
to 17 to 6 to 13 to 10 to b− 1 = 3 to 16 to 7 to 12 to 1.

Now that we have completely characterized good triples, and therefore, cyclic permutations that avoid
both 123 and 231, we are ready to announce our enumeration formulas.

Theorem 2.18 Let φ be the Euler totient function. That is, for a positive integer z, let φ(z) be the number
of positive integers less than z that are relatively prime to z. Then, for n > 2, the following enumeration
formulas hold.

Cn(123, 231) =

 φ(2k) = φ(n/2) if n = 4k,
φ(k + 1) + φ(2k + 1) = φ

(
n+2
4

)
+ φ

(
n
2

)
if n = 4k + 2,

φ(m) = φ((n+ 1)/2) if n = 2m− 1.
(4)
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Note that the formula of Theorem 2.18 does not hold for n = 2, because in that case, k = 0, so
k + 1 = 2k + 1, resulting in an overcount and leading to the incorrect value of 2, instead of the correct
value of C2(123, 231) = 1. The sequence Cn(123, 231) is listed in OEIS Sloane as sequence A309563.

Proof: If n = 4k, and (a, b, c) is a good triple, then Proposition 2.14 shows that a = 2k. Let b < a be
relatively prime to a. Then, and only then, b is also relatively prime to c = a − b. Theorem 2.10 then
shows that (a, b, c) is a good triple. Therefore, there are φ(2k) choices for b, and hence, for a good triple
(a, b, c).

If n = 4k + 2, then Lemma 2.8 shows that either a = 2k + 1 or a = 2k − 1 holds for all good triples
(a, b, c). In the first case, b + c = 2k + 1. Let b < a be relatively prime to a. Then, and only then, b
is also relatively prime to c = a − b. By Theorem 2.10, all such choices of b will lead to a valid triple.
So this case contributes φ(2k + 1) permutations to the total count. In the second case, b + c = 2k + 2.
Proposition 2.15 shows that b and c must both be even, implying that b/2 ∈ [k], since c 6= 0. Lemma 2.6
shows that b/2 and c/2 must be relatively prime to each other, and that is equivalent to saying that b/2 is
relatively prime to (b + c)/2 = k + 1. On the other hand, Theorem 2.16 shows that if b/2 and c/2 are
relatively prime to each other, then the triple (a, b, c) is good. So this second case contributes φ(k + 1)
permutations to the total count.

Finally, if n = 2m − 1, then by Lemma 2.8 we must have a = m − 1, b + c = m, and b must be any
positive integer less than m that is relatively prime to b+ c = m. By Theorem 2.12, each such choice of
b will lead to a valid triple. This completes the proof. 2

Recall that after the proof of Lemma 2.8, we pointed out that the crude upper bound Cn(123, 231) ≤ n
holds. Now, using Theorem 2.18 and the trivial inequality φ(z) ≤ z − 1, we can sharpen that bound to
Cn(123, 231) ≤ 3n−6

4 , for n ≥ 4. This upper bound is attained for integers n = 4k + 2 if and only if
both k + 1 and 2k + 1 are primes. For instance, k = 6, yielding n = 26, satisfies this requirement.

3 The pair (123, 132)
It turns out that the enumeration formula for the pair (123, 132) is significantly simpler.

Theorem 3.1 For all n ≥ 3, the equality

Cn(123, 132) = 2b(n−1)/2c

holds.

Proof: First note that in any permutation that avoids both 123 and 132, (so not only in the cyclic permu-
tations avoiding those patterns), the entry 1 must be in the last or next-to-last position. Once the place of
the entry 1 is chosen, the entry 2 has to be in the last or next-to-last available position, and so on.

Let p = p1p2 · · · pn be a cyclic permutation that avoids both 132 and 123. Then p1 = n or p1 = n− 1,
otherwise p1 is eventually followed by two larger entries, forcing p1 to be the first entry of a 123-pattern
or a 132-pattern. If p1 = n, then pn 6= 1, since that would mean that (1n) is a 2-cycle of p, and if
p1 = n− 1, then pn−1 6= 1, since then (1(n− 1)) would be a 2-cycle in p. So, in both cases, exactly one
of the two positions that were originally eligible to contain the entry 1 is available. Once we selected the
position of 1, we return to the front of the permutation, and select the value of p2. We have two choices
for p2, namely the two largest remaining entries. The choice that we make for p2 will eliminate one of
these two positions for the entry 2.
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We must show that this process keeps going on like this, that is, if i ≤ b(n−1)/2c, then we will always
have two choices for the entry pi, while if i < b(n − 1)/2c, we will have exactly one choice. This will
prove the statement of the theorem.

As we fill the positions of p, we form two sets. Let Si = {p1, p2, · · · , pi}, and let Ti be set of positions
that the entries 1, 2, · · · , i occupy. Note that if 1 ≤ i ≤ b(n−1)/2c, then Si 6= Ti. Indeed, Si = Ti would
imply that the restriction of p to Si is a bijection from Si onto itself, that is, it is a permutation of the set
Si, and therefore, a union of its cycles. That would contradict the condition that the longer permutation p
itself is a cycle.

It is easy to see that both Si and Ti are i-element subsets of the set {n − i, n − i + 1, · · · , n}. (In the
first two paragraphs of this proof, we show this for S1 and T1, and the cases of general i are very similar
to these.) In other words, they both contain at most one gap, either inside, or at the end.

We will now count the ways in which the sets S1, S2, · · · and T1, T2, · · · can be built up from S0 =
T0 = ∅.

When we extend Si−1 to Si, we do one of two things. Either we fill the gap in Si−1, turning it into the
interval [n− i+ 1, · · · , n], or we add a new, minimal element n− i to Si−1 to form Si.

When we extend Ti−1 to Ti, we could think that we have these same two choices. However, we
cannot make the same choice as we made for Si. Indeed, if Si and Ti are both equal to the interval
[n − i + 1, · · · , n], then Si = Ti, which we have already excluded. If Si and Ti were both obtained by
adding the new element n− i, that means that pi = n− i and pn−i = i, so (i (n− i)) is a 2-cycle, which
is a contradiction. Therefore, we have only one choice when we extend Ti−1 to Ti.

If n is odd, then we make 2(n−1)/2 choices in this way, building the sequence S1, S2, · · · , S(n−1)/2,
and so selecting the leftmost (n− 1)/2 entries of p, and the positions of the smallest (n− 1)/2 entries of
p. Then we put the last remaining entry in the last remaining position.

If n = 2k, then we make 2k−1 choices in this way, selecting the sequence S1, S2, · · · , Sn/2, and so
selecting the first k − 1 entries of p, and the positions of the smallest k − 1 entries of p. This leaves two
empty positions, one of them is the kth position, and the other one is somewhere in the second half of
p. This also leaves two unused entries, one of them is the entry k, and the other one is an entry from the
larger half of p. As p(k) 6= k, our hands are tied, and the proof is complete. 2

4 The remaining pairs
A result of Archer and Elizalde Archer and Elizalde (2014) shows that

Cn(132, 231) =
1

2n

∑
d|n

d=2k+1

µ(d)2n/d,

where µ is the number theoretical Möbius function.
Most of the remaining pairs are straightforward to enumerate. This is the content of the next theorem.

Theorem 4.1 The following equalities hold.

1. For n ≥ 5, Cn(123, 321) = 0.

2. For n ≥ 3, Cn(231, 312) = 0.
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3. For all positive integers n, Cn(231, 321) = 1.

4. For all positive integers n, Cn(132, 321) = φ(n).

Proof:

1. The famous Erdős-Szekeres theorem shows Sn(123, 321) = 0 if n ≥ 5. So there are no permuta-
tions (cyclic or not) of length five or more avoiding both of those patterns.

2. Permutations that avoid 231 and 312 must start with a decreasing sequence of their k1 smallest
entries for some k1, then continue with a decreasing sequence of their next k2 smallest entries, and
so on, like the permutation 321 54 6 987. (Such permutations are called layered permutations.) This
structure implies that all such permutations are involutions, so they cannot be cyclic if n > 2.

3. In permutations avoiding 231 and 321, the sequence of entries on the right of n must be increasing,
and must consist of entries that are larger than the entries on the left of n. However, such permuta-
tions entries on the left of n are mapped into entries on the left of n, which makes it impossible for
such a permutation to be cyclic unless there is nothing on the left of n. Therefore, the only cyclic
permutation avoiding those patterns is n12 · · · (n− 1).

4. If a permutation p of length n avoids both 132 and 321, and does not end in n (which cyclic
permutations cannot do), then it is of the form (i+1) (i+2) · · ·n 1 2 · · · i for some i ≥ 1. In other
words, p = qi, where q = 23 · · ·n1. Such a permutation is cyclic if and only if i < n is relatively
prime to n.

2

All other pairs of patterns of length three are equivalent to one of those that we have considered, by
the trivial symmetries (taking inverses, or taking reverse complements), except for the pair (132, 213).
Therefore, the enumeration of cyclic permutations avoiding pairs of patterns of length three is almost
complete.

5 Further Directions
The enumeration of cyclic permutations avoiding a single pattern of length three has proved more difficult
than that of pairs of patterns of length three, and no results are yet known.

Numerical evidence shown in Table 1 enabled us to formulate the following conjectures.

Conjecture 5.1 For all positive integers n, the chain of inequalities

Cn(123) ≥ Cn(132) = Cn(213) ≥ Cn(321) ≥ Cn(231) = Cn(312)

holds.

The four distinct sequences in Table 1 are listed in OEIS as sequences A309504, A309505, A309506,
and A309508 Sloane.

Note that the equality Cn(132) = Cn(213) is obvious, since the reverse complement of a cyclic permu-
tation is a cyclic permutation, and the reverse complement of a q-avoiding permutation avoids the reverse
complement of q. Also note that the equality Cn(231) = Cn(312) is obvious, since the inverse of a cyclic
permutation is cyclic, and the inverse of a q-avoiding permutation avoids q−1.



14 Miklós Bóna , Michael Cory

Tab. 1: Number of cyclic permutations avoiding a single pattern of length 3
Avoiding: 123 132 213 231 312 321
n=3 2 2 2 1 1 2
4 4 4 4 2 2 4
5 10 10 10 5 5 10
6 24 24 24 12 12 24
7 68 68 68 30 30 66
8 188 182 182 86 86 178
9 586 544 544 253 253 512
10 1722 1574 1574 748 748 1486
11 5492 4888 4888 2274 2274 4446
12 16924 14864 14864 7152 7152 13468

Conjecture 5.2 For each pattern q of length 3 and n ≥ 3, the chain of inequalities

2Cn(q) ≤ Cn+1(q) ≤ 4Cn(q)

holds.

In the following theorem, we prove the lower bound of Conjecture 5.2 for the pattern 321 (and an
infinite collection of longer patterns).

Theorem 5.3 Let q = q1q2 · · · qk be any involution of length k > 2 such that if qi = k, then i ≤ k − 2.
Then for all n ≥ 2, the inequality

2Cn(q) ≤ Cn+1(q)

holds.

Note that 321 is the only pattern of length three that satisfies the requirements of the theorem. There
are four such patterns of length four, namely 4321, 4231, 3412, and 1432. Proof: Let p = p1p2 · · · pn be

any cyclic permutation of length n that avoids q. Now insert the entry n+1 to the next-to-last position of
p. Then p is still q-avoiding, since n+1 is too far back in p to be part of any copies of q. Furthemore, the
obtained permutation p′ is still cyclic, since pi = p′i for all i ≤ n − 1, and p maps n to x, while p′ maps
n to n + 1, and then n + 1 to x. So, we get the cyclic diagram of p′ by simply inserting the entry n + 1
between n and x in the cyclic diagram of p.

Doing this for all Cn(q) cyclic, q-avoiding permutations of length n yields a set S of cyclic q-avoiding
permutations of length n + 1, each of which contains the entry n + 1 in the nth position. As q is an
involution, the inverse r−1 of any q-avoiding permutation r is also q-avoiding. So taking the inverse of
each permutation in S yields a set T of Cn(q) cyclic q-avoiding permutations of length n + 1, each of
which contains the entry n in the (n + 1)st position. Finally, S and T are disjoint sets, since a cyclic
permutation that is longer than 2 cannot contain the 2-cycle (n n+ 1). 2

Some additional numerical evidence raises the following question.

Question 5.4 Let q be any pattern of length k ≥ 3. Is it true that

(k − 1)Cn(q) ≤ Cn+1(q)

if n ≥ k?
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Note that for general (non-cyclic) permutations, the answer to the analogous question is a straightfor-
ward ”yes”. Indeed, let the maximal entry k of q be in the (i+ 1)st position of q. Then there are i entries
on the left of k, and k − 1 − i entries on the right of k in q. Therefore, if p is a q-avoiding permutation
of length n, then the new maximal entry n+ 1 can be inserted in p in k − 1 ways, so that it is one of the
leftmost i entries, or one of the rightmost k − 1− i entries. In all those cases, n+ 1 will be either too far
left or too far right to be in a q-pattern. (See also Exercise 4.33 in Bóna (2012).)
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V. Vatter. Permutation classes. In M. Bóna, editor, Handbook of Enumerative Combinatorics, chapter 12,
pages 753–835. CRC Press, Boca Raton, FL, 2015.

www.oeis.org

	1 Introduction
	2 The pair (123,231)
	2.1 Preliminary lemmas
	2.1.1 Bounds on layer sizes
	2.1.2 Restrictions related to common divisors of layer lengths

	2.2 The size of the first layer
	2.3 Positive results

	3 The pair (123,132)
	4 The remaining pairs
	5 Further Directions

