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Power domination in graphs emerged from the problem of monitoring an electrical system by placing as few mea-
surement devices in the system as possible. It corresponds to a variant of domination that includes the possibility of
propagation. For measurement devices placed on a set S of vertices of a graph G, the set of monitored vertices is
initially the set S together with all its neighbors. Then iteratively, whenever some monitored vertex v has a single
neighbor u not yet monitored, u gets monitored. A set S is said to be a power dominating set of the graph G if all
vertices of G eventually are monitored. The power domination number of a graph is the minimum size of a power
dominating set. In this paper, we prove that any maximal planar graph of order n ≥ 6 admits a power dominating set
of size at most n−2

4
.
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1 Introduction
The notion of power domination arose in the context of monitoring an electrical network (Baldwin et al.
(1993); Mili et al. (1990); Phadke et al. (1986)), i.e., knowing the state of each component (e.g. the voltage
magnitude at loads) by measuring some variables such as currents and voltages. The measurements are
done by placing Phasor Measurement Units (PMUs) at selected locations. PMUs monitor the state of
the adjacent components, then with the use of electrical laws (such as Ohm’s and Kirschoff’s Laws), it
is possible to determine the state of components further away in the network. Since PMUs are costly, it
is important to monitor a graph with as few PMU as possible. In this paper, we consider the problem of
monitoring maximal planar graphs with few PMUs. Before getting further into technical details, we need
the following graph definitions.

Let G = (V (G), E(G)) be a finite, simple, and undirected graph of order n = |V (G)|. The open
neighborhood of a vertex u ∈ V (G) isNG(u) = {v ∈ V (G) | uv ∈ E(G)}, and its closed neighborhood
is NG[u] = NG(u) ∪ {u}; the open and closed neighborhood of a subset of vertices S is NG(S) =⋃

v∈S NG(v) and NG[S] = S ∪ NG(S), respectively. The subgraph of G induced by S is written G[S]
(the subscript G is dropped from the notations when no confusion may arise).

The electrical network monitoring problem was transposed into graph-theore-tical terms by Haynes
et al. (2002). Originally, the definition of power domination ensured the monitoring of the edges as well
as of the vertices, and contained many propagation rules. Here, we consider an equivalent definition
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from Brueni and Heath (2005) that only requires monitoring the vertices. Given a graph G and a set
S ⊆ V (G), we build a set MG(S) (or simply M(S) when the graph G is clear from the context) as
follows: at first, MG(S) = N [S], and then iteratively a vertex u is added to MG(S) if u has a neighbor
v in MG(S) such that u is the only neighbor of v not in MG(S) (we say that v propagates to u). At the
end of the process, we say that MG(S) is the set of vertices monitored by S; the non-monitored vertices
are those of the set V (G) \MG(S). We say that G is monitored by S when MG(S) = V (G) and, in that
case, S is said to be a power dominating set of G. The minimum cardinality of such a set is the power
domination number of G, denoted by γP(G).

The decision problem POWER DOMINATING SET naturally associated to power domination (i.e., “Given
a graph G and an integer k, does G have a power dominating set of order at most k?”) was proven
NP-complete, by a reduction from the 3-SAT problem (Haynes et al. (2002); Liao and Lee (2005)) (giv-
ing NP-completeness of the problem on bipartite graphs, chordal graphs and split graphs). A reduction
from DOMINATING SET was also given (Guo et al. (2008); Kneis et al. (2006)), that implies the NP-
completeness when restricted to planar graphs or circle graphs. However, polynomial algorithms were
proposed to compute the power domination number of trees (Haynes et al. (2002); Guo et al. (2008)),
block graphs (Xu et al. (2006)), interval graphs (Liao and Lee (2005)), and circular-arc graphs (Liao and
Lee (2005, 2013)).

Concerning the parameter γP(G), tight upper bounds are also known for particular classes: γP(G) ≤ n
3

if G is connected (Zhao et al. (2006)) or a tree (Haynes et al. (2002)), whereas cubic graphs satisfy
γP(G) ≤ n

4 (Dorbec et al. (2013)). Furthermore, the exact value of γP(G) has been determined for
regular grids and their generalizations: square grid (Dorfling and Henning (2006)) and other products of
paths (Dorbec et al. (2008)), hexagonal grids (Ferrero et al. (2011)), as well as cylinders and tori (Barrera
and Ferrero (2011)). The only known results for general planar graphs concern graphs with diameter two
or three (Zhao and Kang (2007)).

A graph G is a planar graph if it admits a crossing-free embedding in the plane. When the addition to
G of any edge would result in a non-planar graph, G is said to be a maximal planar graph. A planar graph
G together with a crossing-free embedding on the plane is called a plane graph, or a triangulation when
G is a maximal planar graph. For any subset S ⊆ V (G), the graph G[S] can be viewed as a plane graph
with the embedding inherited from the embedding of G. The only unbounded face is called the outer face
of G, and the vertices of G are called respectively exterior or interior depending on whether they belong
to the outer face or not. We say that a subgraph of a triangulation G is facial if all of its faces but the
outer face are also faces of G. In particular, we denote by [uvw] a facial triangle formed by vertices u, v
and w in G. Note that power dominating sets are independent of the embedding of the graph as they only
depend on vertex adjacencies. We only make use of the embedding of the graph in the proofs.

The main result of this paper consists in the following theorem:

Theorem 1.1 If G is a maximal planar graph of order n ≥ 6, then γP(G) ≤ n−2
4 .

The bound of Theorem 1.1 is tight for graphs on six vertices. We also know of one graph on ten vertices
for which this bound is tight, the triakis tetrahedron drawn in Figure 1. To propose a general family of
maximal planar graphs that have large power domination number, we use the configurations of Figure 2.
Observe that if one of these configurations H is a facial subgraph of G, then any power dominating set of
G contains one of the vertices ofH . Otherwise, even if all the exterior vertices are monitored, they can not
propagate to any of the interior vertices of H . Thus γP(G) is at least the number of disjoint facial special
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Fig. 1: The triakis tetrahedron, having ten vertices and power domination number two.

configurations in G. Taking many disjoint copies of the two first configurations (that have six vertices)
and then completing the graph into a triangulation by arbitrarily adding edges between external vertices
of the configurations (see Figure 3), we obtain a family of graphs that have power domination number n

6 .
Note that this construction is similar to the construction for classical domination given in Matheson and
Tarjan (1996) reaching the bound γ(G) = n

4 . As a consequence, and thanks to Theorem 1.1, we also get
the following result:

Theorem 1.2 For n ≥ 6, every maximal planar graph with n vertices has a power dominating set con-
taining at most α(n) vertices, with n

6 ≤ α(n) ≤
n−2
4 .

Determining the best possible value of α(n) remains an open problem.

Fig. 2: The good, the bad and the ugly configurations in a triangulation.

Fig. 3: A class of maximal planar graphs for which γP(G) = n
6

. The hatched area is triangulated arbitrarily.

The proof of Theorem 1.1 is done in three distinct steps, each of them described in a separate algorithm
in Section 3. The first algorithm deals with the special configurations formed by overlapping configura-
tions from Figure 2. These special configurations are characterized in Section 2. The end of the proof
relies on a final Lemma that is proved in Section 4.
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2 Identifying bad guys
Our algorithm deals first with some special configurations, that are the possible intersections of the con-
figurations from Figure 2. We here characterize these special configurations. Note that a facial octahedron
(third configuration of Figure 2) may only share vertices of its outer face with other configurations. We
thus focus on the other two configurations.

We call 3-vertex a vertex of G with degree 3, and therefore whose neighborhood induces a K4. A
b-vertex is any vertex u ∈ V (G) with exactly two 3-neighbors v and v′, and such that N [u] = N [v] ∪
N [v′]. Note that b-vertices have degree at most six and their neighborhood necessarily induces one of
the subgraphs of Figure 4. In all figures of this section, b-vertices are depicted with blue squares, and
3-vertices are drawn white.

Fig. 4: The two possible neighborhoods of a b-vertex v.

Observation 2.1 Any two b-vertices u, u′ ∈ V (G) are adjacent if and only if there exists a 3-vertex
v ∈ N(u) ∩N(u′).

Proof: By definition of b-vertices, if u′ is adjacent to u, it is also adjacent to a 3-vertex v adjacent to u,
and so u and u′ have a common neighbor of degree 3. Moreover, if v has degree 3, all its of v are pairwise
adjacent, and thus two b-vertices u and u′ that have v as a common neighbor are adjacent. 2

Lemma 2.2 If G contains two 3-vertices v1, v2 with two common b-neighbors, then G is isomorphic to
one of the graphs depicted in Figure 5.

Proof: Either v1 and v2 have three common neighbors (inducing the first subgraph), or they have distinct
third neighbors (inducing the second subgraph). In the first subgraph, all triangles are incident to a 3-
vertex, so they are facial and there is no possibility for more vertices in the graph. In the second subgraph,
the only faces not incident to a 3-vertex are incident to a b-vertex, which can not have other neighbors.
Again, all triangles must then be facial. 2

Lemma 2.3 If all the neighbors of a 3-vertex are b-vertices, then G is isomorphic to a graph depicted in
Figure 5 or these vertices belong to a facial triakis tetrahedron as depicted in Figure 6.

Proof: Let v be a 3-vertex adjacent to three b-vertices u1, u2 and u3, which necessarily form a triangle.
By definition of a b-vertex, each ui has another 3-neighbor vi. If the vertices vi are not all distinct, then
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v1

v2

v1 v2

Fig. 5: The two possibilities for G if two 3-vertices v1 and v2 have two common b-neighbors. In both cases,
γP(G) = 1.

there exist two b-vertices sharing two adjacent 3-vertices, and Lemma 2.2 concludes. So assume the vi
are distinct. Let w1 and w2 be the neighbors of v1 distinct from u1 (which are both adjacent to u1). Since
u1 may not have any other neighbor, we infer without loss of generality that w2 is adjacent to u2 (and w1

to u3), and therefore that w2 is also adjacent to v2 (and w1 to v3). Similarly, v2 and v3 must have some
vertex w3 as a common neighbor, also adjacent to u2 and u3. Now, since the neighborhoods of 3-vertices
and b-vertices are fully determined, we get a facial triakis tetrahedron, as depicted in Figure 6. 2

u1 u2

u3

v

v1
v2

v3

w2

w3

w1

Fig. 6: A facial triakis tetrahedron.

Observe in particular that if a b-vertex has three adjacent b-vertices, then by Observation 2.1, we are in
the case of Lemma 2.3 (and the graph is a triakis tetrahedron).

Lemma 2.4 If G contains three b-vertices forming a three cycle, then either Lemma 2.3 applies, or G
contains the first configuration depicted in Figure 7, or it is isomorphic to one of the last two graphs
depicted in Figure 7.

Proof: Let u1, u2, u3 be three b-vertices forming a cycle. If they have a common 3-neighbor, then
Lemma 2.3 applies, so assume they do not. By Observation 2.1, every two of these vertices have a 3-
vertex as a common neighbor, and they are distinct by hypothesis. Let v1, v2, v3 be the 3-vertices adjacent
respectively to u1 and u2, u2 and u3, and u1 and u3, and let z1, z2, z3 be the (not necessarily distinct)
third neighbors of respectively v1, v2 and v3. Suppose two zi are distinct, say z1 and z3, and observe that
the neighbors of u1 are exactly {u2, u3, v1, v3, z1, z3}. Therefore, if (u1u2u3) separates z1 from z3, then
z3 is adjacent to u2 and z1 is adjacent to u3. Now, since u2 is a b-vertex, then v2 is adjacent to z3 and z1,
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a contradiction. So [u1u2u3] does not separate any two zi and is facial. Moreover, if say z1 and z3 are
distinct, then they must be adjacent since u1 has no other neighbor. So depending on whether the zi are
distinct or not, G contains the first configuration depicted in Figure 7, or is isomorphic to one of the last
two graphs depicted in Figure 7 (note that all faces incident to a 3-vertex or a b-vertex in these drawings
are facial). 2

u1 u2

u3

v1

v2v3

z1

z2z3

z1 = z2 = z3

u1
u2

u3

v1

v2v3

u1 u2

u3

v1

v2
v3

z1

z2 = z3

Fig. 7: The possible configurations of G if there is a face composed of b-vertices. The last two graphs, that satisfy
γP(G) = 1, are contracts of the first configuration.

Property 2.5 Let (u1, u2, u3) be a path on three b-vertices. Let v1 be the 3-vertex adjacent to u1 and
u2 and let v2 be the 3-vertex adjacent to u2 and u3. If u1 is not adjacent to u3, then there exist distinct
vertices x and x′ such that {u1, u2, u3, v1} ⊆ N(x), {u1, u2, u3, v2} ⊆ N(x′), and [xu2u3] and [x′u1u2]
are facial (see Figure 8).

Proof: Since v1 and v2 are 3-vertices, then there exist two vertices x, x′ such that {u1, u2, v1} ∈ N(x)
and {u2, u3, v2} ∈ N(x′). Since u2 is a b-vertex, we have that x 6= x′ (otherwise u1 and u3 would be
adjacent as the second configuration of Figure 4 shows). Thus, u2 is a b-vertex corresponding to the first
configuration of Figure 4, and so x is adjacent to u3, x′ is adjacent to u1, and [xu2u3] and [x′u1u2] are
facial. 2

u1
u2 u3

v1
v2

x

x′

Fig. 8: There are two distinct vertices both adjacent to {u1, u2, u3}. All triangles are facial.

Observe that the above property together with Lemmas 2.3 and 2.4 covers all possibilities of three
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connected b-vertices. We now consider the cases when b-vertices form paths and cycles of length at least
four.

Corollary 2.6 Suppose a set of k ≥ 3 b-vertices form a path (u1, . . . , uk) (where u1 and uk may be
adjacent when k > 3). Let v1, . . . , vk−1 be 3-vertices with vi being adjacent to ui and ui+1, and let v0
be the 3-vertex adjacent to u1 but not to u2. Then there exists a vertex x adjacent to all ui, 1 ≤ i ≤ k and
to v0 and v2. (see Figure 9).

v0

x′

u1

u2

v1

v2 ukuk−1

x

Fig. 9: There are two vertices universal to the path (u1, u2, u3, . . . , uk). Vertex x′ is also adjacent to v0 and v2.

Proof: Applying Proposition 2.5 to vertices u1, u2, u3, there exist distinct vertices x, x′ such that {u1, u2,
u3, v1} ⊆ N(x), {u1, u2, u3, v2} ⊆ N(x′), and [xu2u3] and [x′u1u2] are facial. Since x is adjacent to
the b-vertex u3, x must be adjacent to v3 and thus to u4. Then u4 is also adjacent to x′ as u3 has no other
neighbor. Iterating this argument, we infer that x and x′ are adjacent to all ui. Now, since x′ is adjacent
to u1 but not to v1, by definition of a b-vertex it is adjacent to v0, and the corollary follows. 2

Lemma 2.7 If G contains a maximal component of b-vertices isomorphic to P2, then G contains a facial
subgraph isomorphic to one of the graphs of Figure 10.

Proof: Let u1, u2 be b-vertices, and let v1 be the 3-vertex adjacent to u1 and u2, and z the third neighbor
of v1. Let v0 and v2 be the second 3-neighbors of respectively u1 and u2, which can be assumed distinct
by Lemma 2.2. Since v0 is a 3-vertex and is not adjacent to u2, v0 has a neighbor t which is adjacent to u1
and u2 (we can see u1 as the central vertex of any configuration of Figure 4). By definition of b-vertices,
v2 must also be adjacent to t. Let z1 and z2 be the third neighbors of respectively v0 and v2. If z1 = z2,
then N [t] ⊆ N [v0] ∪ N [v2], and the vertex t is in fact a b-vertex, contradicting our hypothesis. Thus
z1 6= z2. Depending on whether z and z1 are distinct or not, we get one of the configurations of Figure 10
(in both cases, the outer face of the drawing may not be facial). 2

Finally, if there is an isolated b-vertex inG, then it belongs to one of the subgraphs depicted in Figure 4.
This concludes the proof of the following lemma, that gives a characterization of the possible intersections
of the configurations from Figure 2.

The special configurations of G are then all the configurations depicted in Figure 11.
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u1 u2

v1

v0
v2

z = z1

t

u1 u2
v1

v0 v2

z

t

z2 z1 z2

Fig. 10: The possible configurations ofG if there is a P2 component of b-vertices. The outer faces are not necessarily
facial. All other triangles of the drawing are facial.

Lemma 2.8 If G contains a special configuration as facial subgraph, then either G is a small graph
(characterized in Lemmas 2.2, 2.3, and 2.4) and γP (G) ≤ n−2

4 , or each maximal component of b-vertices
of G belongs to one of the induced configurations depicted in Figure 11, 1 to 7, or G contains a facial
octahedron (configuration 8 in Figure 11).

Observation 2.9 If a vertex belongs to two facial subgraphs isomorphic to configurations from Figure 11,
then it is a vertex from the outer face for both of them.

Proof: Let v be a vertex that belongs to two configurations of Figure 11. If v is a b-vertex, then none
of the two configurations is an octahedron. Then by maximality of the components of b-vertices in each
configuration, the two configurations must rely on the same set of b-vertices, so they are the same config-
uration. Now suppose v is a 3-vertex. In both configurations it must be an internal vertex, and have an
adjacent b-vertex. So the configurations also share a b-vertex and the same argument concludes. Finally,
if v is a vertex of degree 4, it is an internal vertex of an octahedron. Since two octahedra cannot intersect
on internal vertices and no internal vertex of an octahedron may be adjacent to a 3-vertex, v does not
belong to any other configuration. The observation follows. 2

3 Constructing the power dominating set
We now describe the process that defines incrementally a power dominating set S of G satisfying the
announced bound. In Section 3.1, Algorithm 1 produces a set S1 monitoring special configurations from
Figure 2 with a small number of vertices. Then, Algorithm 2 of Section 3.2 builds a set S2 by expanding
the set S1 iteratively, while keeping certain properties. If the graph G is not fully monitored after that,
we show in Section 3.3 that G has a characterized structure, which guarantees that our last Algorithm 3
maintains the wanted bound while adding some well chosen vertices to S2 to build the required set S.

During the three algorithms, we ensure the following property on the set of selected vertices, that is
necessary for the proof of Lemma 3.5:

Property (∗). We say that a subset S of vertices of a plane graph G has Property (∗) in G whenever,
for each induced triangulationG′ ⊆ G of order at least 4, ifG′ is monitored by S then one of the following
holds:

(a) one vertex of the outer face of G′ has its closed neighborhood in G monitored by S,

(b) or, we have |S ∩ V (G′)| ≤ |V (G′)|−2
4 .
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4
3 5

6 7 8

1
2

Fig. 11: The different configurations containing a b-vertex, and the octahedron. So-called “special” vertices of
configurations 1 to 5 are circled in red. For these configurations, vertices circled with a blue-dashed curve form a set
relative to the special vertex of the configuration, and they are called the circled vertices of the configuration.

3.1 Monitoring special configurations
The first step of our algorithm is described in Algorithm 1, which takes care of monitoring vertices creating
special configurations. In the following, we say a configuration is monitored by S1 when all its interior
b-vertices are in M(S1), or for an octahedron, if all its vertices are in M(S1).

Note that the output of Algorithm 1 is the empty set whenever G contains neither b-vertices nor facial
octahedra. We prove the following lemma:

Lemma 3.1 Let S1 be the set obtained by application of Algorithm 1 to G. The following statements
hold:

(i) All b-vertices and all facial octahedra are monitored by S1.

(ii) If S1 is not empty, |S1| ≤ |M(S1)|−2
4 .

(iii) S1 has Property (∗) in G.

Proof: (i) Every b-vertex in the graph belongs to one of the configurations of Figure 11. The selected ver-
tices in each configuration monitor all the b-vertices of the configuration, and thus the algorithm monitors
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Algorithm 1: Monitoring special configurations
Input: A triangulation G of order n ≥ 6.
Output: A set S1 ⊆ V (G) monitoring all b-vertices and all vertices of facial octahedra.
S1 := ∅
if G has a vertex u of degree at least n− 2 then

Label N [u] with u
Return {u}

if G is a triakis tetrahedron (as in Figure 6) then
u, v: two b-vertices of G at distance 2
Label u, its 3-neighbors and two of its adjacent b-vertices with u
Label all other vertices of G with v
Return {u, v}

while ∃ a non-monitored configuration H from Figure 11(1,2,3,4,5) do
u: the special vertex of H
S1 ← S1 ∪ {u}
Label u and the circled vertices of H with u

while ∃ non-monitored configurations H,H ′ from Figure 11(6,7,8) with a common vertex u do
S1 ← S1 ∪ {u}
Label u and the interior vertices of H and H ′ adjacent to u with u

while ∃ a non-monitored configuration H from Figure 11(6,7,8) do
u: any exterior vertex of H
S1 ← S1 ∪ {u}
Label all vertices of H with u

Return S1

all such vertices. Taking any vertex of a facial octahedron monitors the whole octahedron, thus all facial
octahedra are monitored as well.

(ii) If the graph is dealt with by the first if s, the statement is straightforward. Otherwise, we first ensure
that for each vertex u ∈ S1, there are indeed at least five vertices labeled with u. For configurations 1, 3,
4 and 5, this is clear by definition of the circled vertices. For configuration 2, the vertex taken plus the (at
least) three b-vertices of the path plus at least one 3-vertex make (at least) five labeled vertices. For every
vertex u added in the second while loop, there are at least two vertices labeled with u in each of the two
configurations, which together with u itself makes five vertices. For vertices added in the last while loop,
at least six vertices are labeled with u each time.

Now, we show that each vertex receives at most one label during Algorithm 1. By Observation 2.9,
only vertices on the outer face of some configuration may be labeled several times, and so in only two
cases: they may receive their own label when they are themselves added to S1, or they may receive a label
during the last while loop if they are in a non-monitored configuration 6, 7 or 8 disjoint from all remaining
non-monitored configurations. Since these last configurations are monitored by any vertex of their outer
face, all vertices are labeled at most once.

If S1 contains two or more vertices at the end of the algorithm, the statement is proved. If S1 is reduced
to a singleton, since the chosen vertex is of degree at least five, the statement holds.
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(iii) Let G′ be an induced triangulation of G monitored after Algorithm 1. If |S1 ∪ V (G′)| = 0, then
Property (∗).(b) holds. Assume then |S1 ∪ V (G′)| > 0. If there is a vertex v ∈ S1 such that some
vertices labeled with v are not in G′, then v is a vertex of the outer face of G′ and Property (∗).(a) holds.
Otherwise, for every vertex v ∈ S1∩V (G′), all vertices with label v (which are at least five as said above)
are in G′. If |S1 ∩V (G′)| ≥ 2, then this is sufficient to deduce that Property (∗).(b) holds. Otherwise, we
observe that the set of vertices bearing a same label u either does not form an induced triangulation or is
of size at least six, so G′ contains at least six vertices and the statement also holds. 2

In the following, S1 denotes the output of Algorithm 1 applied to the graph G. Note that we can now
forget the labels put on vertices during Algorithm 1.

3.2 Expansion of S1

The next step consists in selecting greedily any vertex that increases the set of monitored vertices by at
least four. We first make a small observation.

In the following, the graphs of the form P2+Pk (i.e., formed by two vertices both adjacent to all vertices
of a path Pk) for some k ≥ 1 are called tower graphs. We remark that the only maximal planar graphs of
order n ≤ 6 are the complete graphs K3 and K4, the graphs P2 + P3 and P2 + P4, the octahedron, and
the flip-octahedron (see Figure 12).

Fig. 12: The maximal planar graphs of order n ≤ 6.

Observation 3.2 Let G be a triangulation. Unless G is an octahedron or a tower graph P2 + Pk (for
some k ≥ 1), one interior vertex of G has degree at least 5.

Proof: Suppose G is not an octahedron or a tower graph. If G is a flip-octahedron (last configuration
of Figure 12), then one of its interior vertices has degree five. Otherwise, by the preceding observation,
G contains at least seven vertices. Suppose by way of contradiction that all interior vertices of G have
degree at most 4. Denote by u the exterior vertex of G with maximum degree, v, w the other two exterior
vertices of G, and u1, . . . , uk the interior neighbors of u (k ≥ 2 or G is K4), so that (vu1 . . . ukw) form a
cycle. Without loss of generality, we assume that v is adjacent to no less vertices among u1, . . . , uk than
w is.

Let ` be the maximum integer such that for all i ≤ `, ui is adjacent to v. Since G is not a tower graph,
` < k. Observe that since v is not adjacent to u`+1, u` and v have a common neighbor t (that is neither
u`−1 nor u) to make another face on the edge vu`. If ` > 1, then v, t, u, u`−1 and u`+1 make five
neighbors to u`, a contradiction.

So ` = 1 and since u2 is not adjacent to v, t 6= u2. (Note that t 6= w or v would have only one neighbor
among u1, . . . , uk while w has at least two, contradicting our assumption.) Thus u1 has at least four
neighbors: u, v, u2 and t. By our initial assumption, [u1u2t] is a facial triangle. Now if k ≥ 3, u2 also
already has four neighbors so [u2u3t] form a facial triangle. But then t and u3 are already of degree four,
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so it is not possible to form another facial triangle containing the edge tu3, a contradiction. So k = 2,
and [u2wt] is facial. But then we get an induced octahedron where the only non facial triangle is [vtw],
in which adding a vertex would raise the degree of t to more than 4, a contradiction. This concludes the
proof. 2

Let us now proceed with the second part of the algorithm defining a power dominating set. Assume that
after Algorithm 1, M(S1) 6= V (G). We now apply Algorithm 2 that builds a set of vertices S2 ⊂ V (G)
by iteratively expanding S1 in such a way that each addition of a vertex increases by at least four the
number of monitored vertices. Moreover, at each round, the vertex added to S2 has maximal degree in G
among all candidate vertices.

Algorithm 2: Greedy selection of vertices to expand S1

Input: A triangulation G of order n ≥ 6

Output: A set S2 ⊆ V (G) with |S2| ≤ |M(S2)|−2
4

S2 := Algorithm 1(G)
M :=M(S2)
while ∃ u in V (G) \ S2 such that |M(S2 ∪ {u})| ≥ |M |+ 4 do

Select such a vertex u of maximum degree in G.
S2 ← S2 ∪ {u}
M ←M(S2)

Return S2

We now prove the following lemma:

Lemma 3.3 Let S2 be the output of Algorithm 2 applied to G. The following statements hold:

(i) |S2| ≤ |M(S2)|−2
4 .

(ii) S2 has Property (∗) in G.

Proof:
(i) Let ` denote the number of rounds of Algorithm 2 (i.e., the number of vertices added during the

“while” loop). For 0 ≤ i ≤ `, we denote by S(i)
2 the set of selected vertices after the i-th round of

Algorithm 2 (where S(0)
2 denotes the result of Algorithm 1 applied to G), and by M (i) the set M(S

(i)
2 ) of

vertices monitored by S(i)
2 . The algorithm ensures that for all 0 ≤ i ≤ `−1, we have that if S(i)

2 is not the
empty set, then |S(i+1)

2 | = |S(i)
2 | + 1 and |M (i+1)| ≥ |M (i)| + 4. So, provided we can establish a base

case (either for i = 0 or i = 1), Statement (i) holds by induction on `. If S(0)
2 is not the empty set, then

1 ≤ |S(0)
2 | ≤

|M(0)|
6 , and thus |S(0)

2 | ≤
|M(0)|−2

4 . Otherwise, by Observation 3.2, the first vertex added

to S2 is of degree at least 5 so |M (1)| ≥ 6. Thus this time |M
(1)|−2
4 ≥ 1 = |S(1)

2 |, and the desired result
follows by induction.

(ii) Let G′ ⊆ G be an induced triangulation monitored by S2 after Algorithm 2. First assume G′ is
isomorphic to a tower graph. Note that no vertex selected during Algorithm 1 is an interior vertex of a
tower graph. Observe that for each interior vertex v of a tower graph, there exists an exterior vertex v′
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such that N [v] ⊆ N [v′] and d(v′) > d(v). Then at any given round i, Algorithm 2 would rather select
v′ instead of any interior vertex v, and thus no interior vertex of G′ is in S2. Since G′ is monitored,
then at least one of the exterior vertices of G′ (say u) is in S2 or has propagated to an interior vertex
of G′, so N [u] ⊆ M and Statement (a) of Property (∗) holds for S2 in G. If G′ is isomorphic to the
octahedron or to the flip-octahedron, then one of the exterior vertices ofG′ is in S1 thanks to Algorithm 1,
and Property (∗).(a) also holds.

Assume now that |V (G′)| ≥ 6, and suppose that Property (∗).(a) does not hold for G′. Then some
vertices of G′ belong to S2, and vertices of V (G′) ∩ S2 only monitor vertices of G′ (no propagation may
occur from a vertex of the outer face of G′). Then the same proof as for (i) above restricted to G′ shows
that Property (∗).(b) holds. This proves that Property (∗) holds for S2 in G. 2

In the following, S2 denotes the output of Algorithm 2 on the graph G.

3.3 Monitoring the remaining components
After Algorithm 2, some vertices of the graph may still remain non-monitored. Algorithm 3 thus com-
pletes the set S2 into a power dominating set of G, while keeping the wanted bound. In order to succeed,
we need to have a better understanding of the structure of the graph around these non-monitored vertices.
More precisely, we show that the graph can be described in terms of splitting structures, (see Figure 13):
they are structures composed of a set C = {u1, u2, u3} of three non-monitored vertices and of two asso-
ciated triangulations G1 and G2 whose exterior vertices are monitored.

We make use of the following lemma, that is proved in Section 4. We denote by MG(S) the set of
vertices not monitored by S in G (i.e., V (G) \MG(S)).

Lemma 3.4 Let G be a triangulation, S a subset of vertices of G monitoring all b-vertices and facial
octahedra. Let G′ an induced triangulation of G. If MG(S) ∩ V (G′) 6= ∅, and for any v ∈ V (G),
|MG(S ∪ {v})| ≤ |MG(S)|+ 3 (i.e., Algorithm 2 stopped), then G′ corresponds to one of the configura-
tions depicted in Figure 13.

Observe that the triangulations associated to a splitting structure may contain non-monitored vertices,
in which case we can again apply the above lemma and deduce that they are in turn isomorphic to a
splitting structure.

If M(S2) = V (G), then by Lemma 3.3, S2 is a power dominating set of G with at most n−2
4 vertices.

Otherwise, Algorithm 3 recursively goes down to splitting structures whose associated triangulations are
completely monitored, in which case it adds a vertex to S to monitor the remaining vertices.

We now prove that after the addition of vertices during Algorithm 3, the wanted bound still holds.

Lemma 3.5 Let G′ be an induced triangulation of G, and S a subset of vertices of G monitoring all
b-vertices and facial octahedra. Let C be a splitting structure in G′ with G1 and G2 its associated
triangulations. Let u be a vertex of C, and let S′ denote the set S ∩ V (G1) and S′′ the set S ∩ V (G2).
If G1 and G2 are monitored by S and S′ and S′′ have Property (∗) respectively in G1 and G2, then
S′ ∪ S′′ ∪ {u} has Property (∗) in G′, and G′ is monitored.

Proof: First recall that after application of Algorithm 2, any vertex in MG(S) has at most three non-
monitored neighbors. Therefore, in the induced triangulation G′, a vertex adjacent to a vertex in C may
not be adjacent to vertices from another configuration C ′ in G, or it would have two non-monitored
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G1

G2u1

u2 u3

G1

G2

u1
u2 u3

G1

G2

u1
u2

u3

(a) (b) (c)

G1

G2

u3

u1 u2

G1

G2

u1 u2 u3

(d) (e)

G1

u2

G2u1

u3

G1

G2

u1

u2 u3

(f) (g)

Fig. 13: The seven different splitting structures and their associated triangulationsG1 andG2. White vertices are non
monitored. All triangles are facial except for G1 and G2.
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Algorithm 3: Monitoring the last vertices
Input: A triangulation G of order n ≥ 6 and an induced triangulation G′ ⊆ G
Output: A set S ⊆ V (G′) monitoring G′ and such that |S| ≤ |V (G′)|−2

4
S ← V (G′)∩Algorithm 2(G)
if ∃ u 6∈MG(S) then

G1, G2 ← triangulations associated to the splitting structure of G′ containing u
S′ ← Algorithm 3(G, G1)
S′′← Algorithm 3(G, G2)
S ← S′ ∪ S′′ ∪ {u}

Return S

neighbors in C and two in C ′, a contradiction. Thus if a vertex can propagate in G′, then it can also
propagate in G.

We know that S′ and S′′ have Property (∗) in repectively G1 and G2, and so G1 and G2 both satisfy
either Property (∗).(a) or (b). Since all exterior vertices ofG1 andG2 have non-monitored neighbors, then
in fact, G1 andG2 satisfy Property (∗).(b). Thus |S′| ≤ |V (G1)|−2

4 and |S′′| ≤ |V (G2)|−2
4 . We remark that

|V (G′)| ≥ |V (G1)|+ |V (G2)|+ 2 in every splitting structure. After adding a vertex u ∈ C, we have:

|S′ ∪ S′′ ∪ {u}| ≤ |V (G1)| − 2

4
+
|V (G2)| − 2

4
+ 1 =

|V (G1|+ |V (G2)|
4

≤ |V (G′)| − 2

4
.

Moreover, the exterior vertices of induced triangulations of G′ all have only monitored neighbors (the
exterior vertices of G′ excepted) and thus S′ ∪ S′′ ∪ {u} has Property (∗) in G′.

To prove that the addition of one vertex of C is sufficient to monitor G′, we consider different cases
depending on the splitting structure.

• For splitting structures (a), (b) and (c), adding u2, then u1 and u3 are monitored by adjacency.

• For splitting structures (d) and (e), adding u1, then u2 is monitored by adjacency, and then any
vertex of the outer face of G1 or G2 propagates to u3.

• For splitting structures (f) and (g), adding u1, then two exterior vertices of G1 propagate indepen-
dently to the other two vertices of C.

Thus G′ is monitored, which concludes the proof. 2

We can now use Lemma 3.5 to prove by direct induction on the splitting structures that at the end of
Algorithm 3, Property (∗) holds for S in G. Moreover, the proof of Lemma 3.5 shows that for the set S,
G satisfies Property (∗).(b). Thus the output S of Algorithm 3 satisfies the wanted bound and the graph is
completely monitored. We thus get the following corollary that concludes the proof of Theorem 1.1.

Corollary 3.6 At the end of Algorithm 3, M(S) = V (G) and |S| ≤ |V (G)|−2
4 .

In the following section, we finally prove Lemma 3.4.
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4 Defining splitting structures
This section is dedicated to the proof of Lemma 3.4. In the following, we work under the assumption of
the lemma, i.e., we assume that the set S monitors all octahedra and b-vertices, and that the addition of any
vertex v to S would extend the set of vertices monitored by S by at most three. Any vertex contradicting
the second part of the assumption is called a contradicting vertex. For simplicity, when G and S are clear
from context, we denote M =MG(S) and M = V (G) \MG(S).

As a direct consequence of the definition of power domination, we get the following observation:

Observation 4.1 Let S be a set of vertices of G such that for every vertex v ∈ V (G), |MG(S ∪ {v})| ≤
|MG(S)|+ 3. The following properties hold:

(i) Each vertex of M has either zero, two or three non-monitored neighbors.

(ii) Each vertex of M has at most 2 neighbors in M .

(iii) For every vertex u ∈ M \ S, there exists v ∈ M ∩N(u) such that N [v] ⊂ M (that propagated to
u).

We now make the following statement.

Lemma 4.2 If v is of degree at least five, then for every two neighbors u1 and u2 of v, there exists a
neighbor w of v adjacent to u1 or u2, but not both, and the corresponding triangle [vuiw] is facial.

Proof: We partition the set of neighbors of v into two paths from u1 to u2: a path (w′1, . . . , w
′
k) of

length at least three (i.e., k ≥ 2) and another path (w1, . . . , w`), possibly empty. We have w′1 6= w′k.
By way of contradiction, assume both w′1 and w′k are adjacent to both u1 and u2. Contracting the path
(w′1, . . . , w

′
k−1) into w′1 and the path (u1, w1, . . . , w`) into u1, we get that u1, u2, v, w′1, w

′
k induce a K5

in the resulting graph, contradicting planarity of G. Thus w′1 is not adjacent to u2 (and [w′1u1v] is facial)
or w′k is not adjacent to u1 (and [w′ku2v] is facial). 2

We remark that Lemma 4.2 also holds when v is in M with at least two neighbors in M . Indeed, by
Observation 4.1, v has a neighbor v′ that propagated to it. Then v′ only has monitored neighbors, and two
of them are also adjacent to v. Thus v has degree at least five, which is the hypothesis of Lemma 4.2.

Lemma 4.3 Components of G[M ] are of order at most three.

Proof:
Let C be a component of G[M ]. By Observation 4.1, each vertex of M has degree at most two in M ,

so C is a path or a cycle. Then adding any vertex of C to S would monitor all of C. Since we work under
the assumption of Lemma 3.4, C is of order at most three. 2

Thus each component of G[M ] is isomorphic to either K3, P3, P2, or K1. Lemmas 4.4, 4.5 and 4.6
deal successively with the first three cases, whereas Lemma 4.7 goes through the case where M is an
independent set in the induced triangulation considered.

Lemma 4.4 Let G and M satisfy the assumption of Lemma 3.4. If an induced triangulation G′ contains
a component ofG[M ] isomorphic toK3, thenG′ is isomorphic to the configuration depicted in Figure 14.
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G1

G2x1

x2 x3

u v

w

Fig. 14: The configuration for G′ containing a non-monitored component isomorphic to K3. G1 and G2 are triangu-
lations. All other triangles of the drawing are facial.

Proof: Let C be a component of G[M ] isomorphic to K3 with V (C) = {x1, x2, x3}. Let u be a vertex
of M , adjacent to at least one of the vertices of C.

We first consider the case when u has neighbors in M \C. If u is adjacent to two vertices in C, then by
Observation 4.1, u has exactly one neighbor inM \C, say v. ThenM(S∪{u}) ⊇M(S)∪{x1, x2, x3, v},
and u is a contradicting vertex. So u has only one neighbor in C, say x1. Within the neighborhood of x1,
the path from x2 to x3 going through u must contain at least three interior vertices since u is not adjacent
to x2 or x3, so x1 is of degree at least five. Applying Lemma 4.2 on x1, we get that a neighbor w of x1
is adjacent to x2 or x3 but not both. Since w is adjacent to two vertices in C, it has no other neighbors in
M or the above case would apply. Hence, adding u to S, all neighbors of u in M get monitored, then w
propagates to x2 or x3 which can in turn propagate to the last vertex of C. So u is a contradicting vertex.

We assume now that any vertex of M adjacent to C has only vertices of C as neighbors in M . Note
that such a vertex must be adjacent to at least two vertices in C. Let u be a common neighbor of x1 and
x2 such that [ux1x2] is facial (u exists since the edge x1x2 is contained in exactly two facial triangles).
By Lemma 4.2, there is a neighbor v of u that is adjacent to only one of {x1, x2} (say x1) and [uvx1]
is facial. The vertex v must have a second non-monitored neighbor, that must be in C, so v is adjacent
to x3. Observe that the triangle [vx1x3] must be facial. Otherwise, there is a vertex t 6= v such that
[tx1x3] is facial and t is separated from x2 by (vx1x3). Then by Lemma 4.2, t has a neighbor t′ with
only one neighbor among {x1, x3} also separated from x2 by (vx1x3), and thus with only one non-
monitored neighbor, a contradiction. Now, v and x3 have a common neighbor w outside the triangle
[vx1x3], such that [vwx3] is facial. By definition of v, we have w 6= x2. We also have w 6= u or v
would be of degree three contradicting Observation 4.1. The cycle (uvx3x2) separates w from x1, so the
second non-monitored neighbor of w (different from x3) must be x2. Unless an additional edge uw form
a facial triangle [uwx2], there is another neighbor of x2 that is separated from both x1 and x3 by the cycle
(uvwx2), a contradiction. So u is adjacent to w in a facial triangle [uwx2].

In a similar way that we proved that [vx1x3] is facial, we infer that [wx2x3] is facial. By construction,
[ux1x2], [uvx1], [vwx3] are facial, and we proved [vx1x3], [uwx2] and [wx2x3] also are. If the triangle
[x1x2x3] is facial, then the graph induced by the vertices u, v, w, x1, x2, x3 is a facial octahedron, contra-
dicting the assumption of Lemma 3.4. Thus [x1x2x3] is not facial, and applying the same line of reasoning
as above inside [x1x2x3] shows that G′ is isomorphic to the configuration depicted in Figure 14. 2
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G1

G2

x1
x2 x3
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w z

w′ z′

G1

G2

x1
x2

x3

zw

w′ z′

y

y′

Fig. 15: The two possible configurations for G′ containing a non-monitored component isomorphic to P3. G1 and
G2 are triangulations. All other triangles of the drawing are facial.

Lemma 4.5 Let G and M satisfy the assumption of Lemma 3.4. If an induced triangulation G′ contains
a component of G[M ] isomorphic to P3, then G′ is isomorphic to one of the splitting structures depicted
in Figure 15.

Proof: Let C be a component of G[M ] isomorphic to P3 with V (C) = {x1, x2, x3}.

Let u be a vertex adjacent to C. We first prove that all neighbors of u in M are vertices of C. By
Observation 4.1, u has at most two neighbors inM \V (C). If u has exactly one neighbor u1 inM \V (C),
then x2 is a contradicting vertex, since u propagates to u1 once x2 is added to S. Assume then that u has
two neighbors in M \ V (C) and thus only one neighbor in C. If u is adjacent to x1 or x3, then u is a
contradicting vertex. Suppose that u is adjacent to x2 only, which must then be of degree at least five. We
apply Lemma 4.2 on x2 and get a neighbor v of x2 adjacent to x1 or x3 but not both. Taking u in S, v
then propagates (and then x2 propagates to x3) so u is a contradicting vertex. Thus neighbors of C may
not be adjacent to vertices in M that are not in C.

We now prove that there is no vertex ofM adjacent to all vertices ofC. Suppose by way of contradiction
that u is a vertex in M adjacent to x1, x2 and x3. By Lemma 4.2, u has a neighbor z ∈ M with exactly
one neighbor in {x1, x3} (say x1) and [uzx1] is facial. Note that by the above statement, z is also adjacent
to x2.

Again, we can apply Lemma 4.2 to find a neighbor z′ of z adjacent to x1 or x2 but not both. Vertex z′

must have a second non-monitored neighbor, namely x3. So z′ cannot be adjacent to x1 which is separated
from x3 by (ux2z), so z′ is adjacent to x2 and x3 and [x2zz

′] is facial. Now u is necessarily adjacent to
z′ forming a facial triangle [ux3z

′] (otherwise some vertex would have a single neighbor in C).
Observe that the triangle [zx1x2] must be facial. Otherwise, there is a vertex t 6= z such that [tx1x2]

is facial and t is separated from x3 by (zx1x2). Then by Lemma 4.2, t has a neighbor t′ with only one
neighbor among {x1, x2} also separated from x3 by (zx1x2), and thus with only one non-monitored
neighbor, a contradiction. With a similar argument, we get that [z′x2x3], [ux1x2] and [ux2x3] are facial.
But then x2 is a b-vertex (as in the bad configuration of Figure 2), a contradiction.

Let w,w′, z, z′ ∈M such that [x1x2w], [x1x2w′], [x2x3z], [x2x3z′] are faces. By the above statement,
all these vertices are distinct. Suppose that there is a neighbor u of x2 different from the above vertices.
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G2

x1 x2

w′
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x3
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Fig. 16: The two possible configurations of an induced triangulation G′ if G[M ] has a component isomorphic to P2.
G1 and G2 are triangulations. All other triangles of the graph are facial.

Vertex u has a second neighbor in C, say x1. The cycle (ux1x2) separates w or w′ from x3, say w. By
Lemma 4.2, w has a neighbor with exactly one neighbor in {x1, x2}, and that cannot be adjacent to x3,
a contradiction. Thus x2 has no other neighbor. Renaming vertices if necessary, we suppose [x2wz] and
[x2w

′z′] are facial triangles.
Note that x1 or x3 must have another neighbor. Otherwise, w is adjacent to w′ andz is adjacent to z′,

which implies that x2 is a b-vertex (as in the ugly configuration of Figure 2), a contradiction. Let y ∈ M
be a neighbor of x1 such that [x1wy] is facial. The second neighbor of y in C is necessarily x3. Similarly,
z has a neighbor z1 such that [x3z1z] is facial and adjacent to x1 and x3. Note that z1 6= w or w would be
adjacent to three vertices in C. Then y = z1 or the cycle (x3ywz) would separate z1 from x1. We prove
with similar arguments that there is a vertex y′ such that [x1w′y′] and [x3z

′y′] are facial.
If y = y′, then G′ is isomorphic to the first splitting structure of Figure 15. Otherwise, suppose first

that x1 has another neighbor t. It also has to be adjacent to x3. Then applying Lemma 4.2 to t, we find a
vertex adjacent to only one vertex in C, a contradiction. So y and y′ are adjacent, and [x1yy

′] and [x3yy
′]

are facial. Thus G′ is isomorphic to the second configuration of Figure 15. 2

Lemma 4.6 Let G and M satisfy the assumption of Lemma 3.4. If an induced triangulation G′ contains
a non-monitored component isomorphic to P2, thenG′ is isomorphic to one of the configurations depicted
in Figure 16.

Proof:
Let C = {x1, x2} with x1x2 ∈ E(G), and let w and w′ be the vertices such that [x1x2w] and [x1x2w

′]
are facial.

Claim 1. There is exactly one vertex of M at distance 2 of C.

Proof. Suppose there is no vertex of M at distance 2 from C. By Lemma 4.2, w has a neighbor t ∈M
adjacent to only one vertex among {x1, x2}. Then t has only one neighbor in M , which contradicts
Observation 4.1. Thus there is a vertex of M at distance 2 from C. Suppose that there is u′ ∈M \ V (C)
neighbor of a vertex u ∈ N(C) and v′ ∈ M \ V (C) neighbor of another vertex v ∈ N(C). Then u is a
contradicting vertex (whether it is distinct from v or not). (�)

Let x3 be the only vertex of M at distance 2 of C.
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Claim 2. The vertices adjacent to x3 are exactly the vertices of (N(x1) ∪N(x2)) \ {w,w′}.

Proof. Suppose there is a vertex w′′ ∈ M,w′′ 6= {w,w′} adjacent to x1 and x2. The cycle(x1x2w′′)
separates x3 from either w or w′, say w. By Lemma 4.2, there exists a vertex v adjacent to w and to only
one vertex among {x1, x2}. By Observation 4.1, v has a second non-monitored neighbor, that cannot be
x3, which contradicts Claim 1. Thus w and w′ are the only common neighbors of x1 and x2. Therefore,
all vertices adjacent to only one of x1 and x2 (i.e., in N(x1) ∪N(x2) \ {w,w′}) are adjacent to x3 (and
there is at least one such vertex).

Suppose there exists some vertex v adjacent to x3 but not in N(x1) ∪ N(x2). Then v is in M or
it has another neighbor x4 ∈ M \ {x1, x2, x3}, and v is a contradicting vertex. Thus no vertex v ∈
V (G) \ (N(x1) ∪N(x2)) is adjacent to x3.

We now prove that w and w′ are not adjacent to x3. Suppose w is adjacent to x3. By Lemma 4.2, w
has a neighbor u1 adjacent to only one of {x1, x2} (say x1) such that [u1x1w] is facial. (Thus u1 is also
adjacent to x3 and [wu1x3] is facial, since it separates x3 from x1 and x2.) Again by Lemma 4.2, u1 has
a neighbor v1 in M adjacent to only one of {x1, x3}. Suppose first v1 is adjacent to x3 (and not to x1).
Then v1 is also adjacent to x2. Following Observation 4.1, w has other neighbors in M different from
u1. So there is a vertex t such that [x2tw] is facial, and since t is separated from x1 by (x2v1x3w), t is
adjacent to x3. Applying Lemma 4.2 on t, we get a contradiction. So v1 is adjacent to x1 but not to x3,
and thus v1 = w′ (and w′ is not adjacent to x3). But x3 has degree at least three, so there is a vertex v2
adjacent to x2 and x3. Again, [u1x3w], [v2x2w] and [v2x3w] must be facial. But then there is no vertex
that may have propagated to w. Thus w and w′ are not adjacent to x3. (�)

Let us now consider the neighbors of x1 and x2 in M \ {w,w′}. Let (u1, . . . , uk) and (v1, . . . , v`) be
the paths from w to w′ among respectively N(x1) ∩M and N(x2) ∩M . Since x3 has degree at least 3,
then by Claim 2, k + ` ≥ 3. First observe that k and ` both are at most 2. Otherwise, say k ≥ 3, then
by Claim 2, each ui is adjacent to x3, and the triangles [uiui+1x3] are facial, in particular [u1u2x3] and
[u2u3x3]. But then u2 contradicts Observation 4.1.

We thus have two cases:

• k + ` = 3, say u1 is the only neighbor of x1 and v1, v2 are the only two neighbors of x2 in
M \ {w,w′}. By Claim 2, u1, v1 and v2 are neighbors of x3. Moreover, since none of {w,w′}
is adjacent to x3, u1 is adjacent to v1 and v2. Also by Claim 2, triangles [u1v1x3], [v1v2x3] and
[u1v2x3] are facial, and G is isomorphic to the first graph depicted in Figure 16.

• x1 and x2 both have exactly two neighbors in M \ {w,w′}. By Claim 2, u1, u2, v1 and v2 are
neighbors of x3. Again, u1 is adjacent to v1 and u2 is adjacent to v2 since neither w nor w′ is
adjacent to x3. Also by Claim 2, triangles [u1v1x3], [v1v2x3], [u1u2x3] and [u2v2x3] are facial and
G is isomorphic to the second graph depicted in Figure 16.

This concludes the proof. 2

Lemma 4.7 Let G and M satisfy the assumptions of Lemma 3.4. If an induced triangulation G′ is such
that M ∩ V (G′) is an independent set, then G′ is isomorphic to one of the splitting structures depicted in
Figure 17.
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Fig. 17: The two possible configurations of an induced triangulation G′ if M ∩ V (G′) is an independent set. G1 and
G2 are triangulations. All other triangles of the drawings are facial.

Proof: Let G satisfy the assumptions of the lemma. In this proof, we denote M ′ the set M ∩ V (G′), and
M
′

the set M ∩ V (G′).

Claim 1. There exists a vertex u ∈M ′ with only two neighbors in M
′
.

Proof. Suppose by way of contradiction that every vertex in M ′ with non-monitored neighbors has
exactly three neighbors in M

′
. Note first that no two vertices in M ′ have exactly two common neighbors

in M
′
, or they would be contradicting vertices. Hence, they share either one or three such neighbors.

Suppose first that all vertices in M ′ with a common neighbor in M
′

have exactly one such common
neighbor. We define an auxiliary graph H as follows: the vertices of H are the vertices in M

′
, and two

vertices in H are adjacent if they have a common neighbor in G′. Observe that from a planar drawing of
G′, we can easily build a planar drawing of H: we keep the position of the vertices, and for each edge
(uv) in H , u and v have a common neighbor x in G′ and we can have the edge (uv) follow closely the
edges (ux) and (xv) (that would not create crossings sinceNG′(x)∩M ′ = 3). By our assumption that no
two vertices in M ′ have more than one common neighbor in M

′
, the degree of a vertex in H is precisely

twice its degree in G′. Since every vertex in M
′

has degree at least 3 and every vertex in M ′ has three
neighbors in M

′
, that implies that H has minimum degree at least 6. But this contradicts Euler’s formula

for planar graphs.
So there are at least two vertices u and v inM ′ with three common neighbors inM

′
, say x1, x2 and x3,

forming a subgraph isomorphic to a K2,3. Consider such five vertices, such that the subgraph G′′ induced
by the vertices within the outer face of the K2,3 does not contain the same structure. Denote x1 and x3
the exterior vertices (i.e., x2 is inside the cycle (x1ux3v)). Since x1, x2 and x3 are pairwise non adjacent,
there is another neighbor w of x2 in M ′, which has at least two other neighbors in M

′
. By minimality of

the selected K2,3, now all vertices in G′′ that belong to M ′ and share a neighbor in M
′

do share exactly
one. Building the graphH onG′′ the same way as above, we get a planar graphH where every vertex has
degree at least six except for x1, x2 and x3 that have respectively degree at least 2, 4 and 2. Therefore, we
get that the sum of the degrees of the vertices in H is at least 6|V (H)| − 10, again a contradiction with
Euler’s formula. This concludes the proof. (�)

Claim 2. If a vertex u of M ′ has degree 2 in M
′
, then all the vertices of M ′ sharing a neighbor in M

′
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with u also have degree 2 in M
′
.

Proof. Let u1 be a vertex of M ′ with two neighbors v1, v2 in M
′
. Suppose that there exists a vertex

u2 in M ′ adjacent to v1 or v2 (say v1) and with degree 3 in M
′
. If u2 is not adjacent to v2, then u2

is a contradicting vertex. So assume u2 is also adjacent to v2 and let v3 be the third neighbor of u2 in
M
′
. Applying Lemma 4.2 to vertex u1, let t be a vertex adjacent to only one of v1 and v2, say v1, and

such that [u1v1t] is facial. There is another vertex adjacent to t in M
′
. If this vertex is not v3, then t is a

contradicting vertex (as u1 propagates to v2 then u2 to v3). So t has only two neighbors in M
′
, v1 and v3.

Now, every other vertex in the graph is separated from v1, v2 or v3 by one of the three separating cycles
(u1v1u2v2), (tv1u2v3) and (tu1v2u2v3). The monitored vertex u2 necessarily has more neighbors (by
Observation 4.1). Suppose there is a neighbor of u2 in the cycle (tu1v2u2v3). Then there is a neighbor w
to u2 and v2 forming a face [u2v2w]. If w is not adjacent to v3, then w has some extra neighbors in M

′
,

and is a contradicting vertex (u1 propagates to v1 then u2 to v3). If w is also adjacent to v3, by Lemma 4.2
it has a neighbor adjacent to only one of v2 and v3, also separated from v1 by the cycle (tu1v2u2v3), and
the same argument applies. The same arguments apply also if u2 has neighbors in the other separating
cycles. Thus there is no vertex adjacent to v1 or v2 with degree 3 in M

′
. This concludes the proof. (�)

Let u1 be a vertex of M ′ with exactly two neighbors in M
′
, denoted x and z. By Lemma 4.2, there is

a neighbor of u1 adjacent to only one of x and z, say u2 is adjacent to x but not z (and [xu1u2] is facial).
By Claim 2, u2 has only one other neighbor in M

′
, denote it y. Note that we now have the property (P):

any neighbor v ∈M ′ of x, y or z has at least two neighbors in {x, y, z} and is not adjacent to any vertex
of M

′ \ {x, y, z}. Otherwise v would be a contradicting vertex. Consider the two paths from u2 to z that
partition N(u1). Let w1 be the last vertex before z in the path that does not go through x (i.e., [u1w1z] is
facial and w1 is not adjacent to x). Since u2 is not adjacent to z, then w1 6= u2. By the above property
(P), w1 is adjacent to y. Moreover, y may not have a neighbor separated from x and z by (u1u2yw1), so
[u2w1y] is a facial triangle.

Suppose first that x is of degree three, and let u3 denote its third neighbor, adjacent to both u1 and
u2. It has one other neighbor among y and z, say y. Observe that [u2u3y] is necessarily a facial triangle,
and that by Claim 2, u3 is not adjacent to z. Since z is of degree at least 3, it has a neighbor v1 6= u3
such that [u1v1z] is facial. By property (P), v1 is adjacent to y. Now z has no other neighbor within the
cycle (v1yw1z), or it would be a common neighbor to y and z, but applying Lemma 4.2 would lead to a
contradiction. So w1 is adjacent to v1, and [v1w1y] and [v1w1z] are facial triangles. In addition, y cannot
have a neighbor separated from x and z by (u1u3yv1) so [u3v1y] is a facial triangle. Thus we are in the
first configuration of Figure 17.

Assume now that each of x, y and z have degree at least 4. Let u3 form a facial triangle with x and
u2. If u3 is adjacent to z, then the fourth neighbor of x is also adjacent to z. By Lemma 4.2, it has a
neighbor adjacent to only one of x and z, which is separated from y by (u1xu3z), a contradiction. So u3
is adjacent to y forming a facial triangle [u2u3x]. By the same argument, we infer the existence of u0 and
v1, common neighbors of x and z and of y and z respectively, and that the corresponding triangles are
facial. If x were of degree 5, then we would get similarly a contradiction applying Lemma 4.2 on u3 or
u0. By the same reasoning on y and z, we obtain the second configuration of Figure 17, which concludes
the proof of Lemma 4.7. 2

The results from the four Lemmas 4.4, 4.5, 4.6 and 4.7 conclude the section: after Algorithm 2, each
induced triangulation of G is isomorphic to one of the graphs depicted in Figure 13.
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