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Topological structuring of the digital plane
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We discuss an Alexandroff topology @7 having the property that its quotient topologies includekthalimsky and
Marcus-Wyse topologies. We introduce a further quotiepbtogy and prove a Jordan curve theorem for it.
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1 Introduction

In the classical approach to digital topology (see e.g. Hr] [13]), graph theoretic tools are used for
structuringZ?, namely the well-known binary relations of 4-adjacency &radjacency. But neither 4-
adjacency nor 8-adjacency itself allows an analogue of@hgah curve theorem (cf. [9]) and, therefore,
one has to use a combination of the two adjacencies. To averdbis disadvantage, a new, purely
topological approach to the problem was proposed in [6] whitilizes a convenient topology d#?,
called the Khalimsky topology (cf. [5]), for structuringealtigital plane. At present, this topology is one
of the most important concepts of digital topology. It hasibsetudied and used by many authors, see e.qg.
[3] and [7]-[10].

The possibility of employing convenient topological stures onZ? different from the Khalimsky
topology is discussed in [14]-[19]. Particularly, in [1@],new topology orZ? is introduced and it is
shown there that this topology provides certain convenlerdan curves behaving more advantageously
than the Jordan curves in the Khalimsky space. The quotigaiagies of the topology from [16] are
studied in [17] where it is shown that they include, amongeath the Khalimsky and Marcus-Wyse
topologies. In the present note we continue the investigatirom [16] and [17]. We discuss a topology
onZ? which is finer than the topology introduced in [16] but stélsthe property that the Khalimsky and
Marcus-Wyse topologies belong to its quotient topologws.study another of its quotient topologies on
72, denoted by, and prove a Jordan curve theorem for it. This Jordan cumerém differs from the
Jordan curve theorems for the Euclidean plane, the Khalimplslne, and the (4,8) and (8,4) digital planes
of "classical” digital topology in the following significamvays:

(i) The paper’s Jordan curve theorem only applies to cediaiple closed curves ifZ2, v). There are
arbitrarily long simple closed curvésin (Z2, v) for whichZ? \ C has more than two components.
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(i) Those simple closed curvesin (Z2,v) to which the paper’s Jordan curve theorem applies will in
most cases not be the common boundary of the two compone#ts\of’.

2 Preliminaries

For the topological terminology used we refer to [2] and [#hroughout the note, all topologies dealt
with are thought of as being (given by) Kuratowski closurempors. Recall that a topologyon a setX

is said to be zT% -topologyif each singleton subset df is closed or open (so tha’% impliesTy), and it

is called anAlexandroff topologyf pA = |J, . 4, p{x} wheneverd C X. A pair (X, p) whereX is a set
andp is an Alexandroff topology oX is called an Alexandroff space. Recall also that, given lmgioal
spacesgX, p) and(Y, q), a surjectiore : X — Y is said to haveonnected fibrei e~ ({y}) is connected
(in (X, p)) for every pointy € Y.

If we omit, in the definition of Kuratowski closure operatdkairatowski closure spaces), the require-
ment of idempotency, we obtain the so-calfedtopologiegpretopological spacés cf. [2]. We will use
some concepts naturally extended from topologies (topcddgpaces) to pretopologies (pretopological
spaces). Given pretopologigs, p» on a setX, we say thap, is finerthatps if p1(A) C p2(A) for
every subsetd C X. Amapf : (X,p) — (Y,q), where(X,p) and(Y, q) are pretopological spaces,
is calledcontinuousf f(pA) C q(f(A)) foreveryA C X. Lete : X — Y be a surjection ang be
a pretopology onX. Then the finest pretopologyonY such that : (X,p) — (Y, q) is continuous is
called thequotient pretopology of p generated hy e

Of course, if a quotient pretopology of a topologygenerated by a surjectiar) is a topology, then
it is a quotient topology op (generated by). The proof of our main theorem will be based on a result
(Proposition 4.1) about such quotient topologies of Alekaff topologies.

By agraphon a set” we always mean an undirected simple graph without loopstivétlvertex set’.
Recall that gpathin a graph is a finite (nonempty) sequenggx, ..., z,, of pairwise different vertices
such thatr;_; andx; are adjacent (i.e., joined by an edge) whenéwer 1, 2, ...n}. Here,xo andx,, are
said to be thend vertice®f the path. By ayclein a graph we understand any finite set of at least three
vertices which can be ordered into a path with the end verackacent.

The connectedness grapf a topologyp on X is the graph onX in which a pair of vertices;, y are
adjacentif and only if: # y and{z, y} is a connected subset X, p). Letp be an Alexandroff topology
on asetX. Thenitis obvious that a subsétC X is connected i X, p) if and only if each pair of points
of A may be joined by a path in the connectedness gragtXop) contained inA. In the sequel, only
connectedness graphs of connected Alexandroff topolagi&s will be displayed. In these graphs, the
closed points will be ringed and the mixed ones (i.e., thafsdhat are neither closed nor open) boxed.
Hence, the points neither ringed nor boxed will be open (tl@eno points o%Z? may be both closed and
open).

By a (discrete) closed curvia a topological spaceX, p) we mean a cycle in the connectedness graph
of p. Thus, every closed curve is a nonempty, finite and connegtedn accordance with [16], a closed
curveC C X in (X, p) is said to besimpleif, for each pointz € C, there are exactly two points &f
adjacent tac in the connectedness graphpofA simple closed curvé’ in (X, p) is said to be &discrete)
Jordan curvelf it separateg X, p) into precisely two components (i.e., if the subspaté C of (X, p)
consists of precisely two components).

We will need the following statement resulting from [15],rGbary 1.5:
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Lemma2.1 Let(X,p), (Y, q) be Alexandroff spaces such thas the quotient pretopology pfgenerated
by a surjectiore : X — Y with connected fibres. Then a subgt Y is connected irfY, ¢) if and only
if e=1(B) is connected i X, p).

Note that the statement of the previous Lemma need not béftgus only the quotient topology and
not the quotient pretopology of - see the following counterexample due to one of the refeoédisis
paper:

Example 2.2Let (X, p) be the topological space wheke = {1, 2, 3,4}, the closure of 1} is {1}, the
closure of{2} is {1, 2, 3}, the closure of 3} is {3}, and the closure of4} is {3,4}. LetY = {a,b,c}
and lete : X — Y be the surjection defined y(1) = a, ¢(2) = ¢(3) = b, ande(4) = ¢ (so thate has
connected fibers). Then, in the quotient spéicey) of (X, p) generated by, we have that lies in the
closure ofc. So,B = {a, c} is connected ifY, ¢), bute~!(B) = {1,4} is not connected if.X, p).

Letz = (z,y) € Z? be a point. We put
Hy(2) = {(z + k,y); k € {-1,1}},
Va(z) = {(z,y +1); L € {-1,1}},
D5(2) = Hy(2) U{(x + k,y —1); k€ {-1,0,1}},
=Ho(z)U{(z+k,y+1); ke {-1,0,1}},
2)U{(x—1,y+1); L e {-1,0,1}},
R5(z) =Va(z)U{(x+ 1,y +1); 1 € {-1,0,1}},

Apa(2) ={(k,1) € Z% k=xand0 < |l —y| < 3, orl =y and0 < |k — | < 3}.
Next, we put
Ay(z) = Ha(z) U Va(z),

A(2) = As(2) \ Au(2).
Thus, the number of points of each of the nine sets introdatxde equals the index of the symbol
denoting this set. In the literature, the points4af{z) and As(z) are said to bé-adjacentand8-adjacent
to z, respectively. It is natural to call the points B (z), Va(z), Ds(2), Us(2), Ls(2), Rs(z), A12(z)
and A, (z) horizontally 2-adjacent, vertically 2-adjacent, down 8jacent, up 5-adjacent, left 5-adjacent,
right 5-adjacent, cross 12-adjaceahddiagonally 4-adjacento z, respectively. Clearly, each of these
adjacencies, excludind;»(z) implies 8-adjacency.

The union of each of the above ten séfs(z), V2(z)... with the singleton{z} is denoted by the
corresponding barred symbols, i.e., By(z), Va(2)....

Recall [6] that the Khalimsky topology df is the Alexandroff topology given as follows:

For anyz = (z,y) € Z2,

Ag(z) if x,y are even,

Hot = H,(z) if z is even and) is odd,
Va(z) if x is odd andy is even,
{z} otherwise.

The Khalimsky topology is connected affigl, a portion of its connectedness graph is shown in Figure
1.

In [6], Khalimsky, Koppermann and Meyer proved the follogidigital Jordan curve theorem for
(Z2,t):
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Fig. 1: A portion of the connectedness graph of the Khalimsky togplo

Theorem 2.3 In the Khalimsky plane, any simple closed curve having atléaur points is a Jordan
curve.

The Marcus-Wyse topology (cf. [11]) is the connected Alekaxff T1 -topology s on Z? given as
follows:
For anyz = (z,y) € Z?,
_ 4(z) if © 4+ y is odd,
s{z} = { {z} otherwise.
The Marcus-Wyse topology is quite simple - its connectedliggaph coincides with the 4-adjacency
graph. The following digital Jordan curve theorem (@?, s) is proved in [8]:

Theorem 2.4 Let C be a cycle in the connectedness grapls stich that, for every point € C, there
are precisely two points a@f adjacent toz andcard{p € C'\ {z}; there exists a point € Z? adjacent to
bothz andp} = 2. ThenC is a Jordan curve ifZ?, s).

The previous Theorem has been recently generalized toer lel@ss of curves in [1].

Note that, at none of its points, can a Jordan curve in theiiisaly or Marcus-Wyse plane turn to
make an acute angle gf(and, in mixed points, a Jordan curve in the Khalimsky plarerwot turn at all).
In the next section, we will introduce a topology @h with respect to which Jordan curves may turn, at
some points, to make an acute anglejof

3 Topology w and some of its quotients

We denote byw the Alexandroff topology oiZ.? given as follows (cf. [18]):
For any point: = (z,y) € Z?,

/:18(,2) if v =4k, y =41, k1 € Z,
AyR)ife =244k, y=2+4+4l, k1l € Z,
Ds(z)ifx=2+4k, y=1+4l, k1€ Z,

s5(z)if e =244k, y=3+4l, k,l € Z,
5(

)
w{z} = f: ifxe=1+4k, y=2+4l, k,l €7,
Rs(z)if e =344k, y=2+44l, k,l € Z,
HQ( Yif e =244k, y=4l, k,l € Z,

Vao(z)if e =4k, y=2+44l, k,l € Z,
{z} otherwise.
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Fig. 3: A portion of a subgraph of the connectedness graph.of

Clearly,w is connected andy. A portion of the connectedness graphuofs shown in Figure 2.

The Alexandroff topology oiZ? introduced and studied in [16] is coarser thanr it is obtained from
the definition ofw by replacingDs(z), Us(z), Ls(z) andR5(z) by Ds(2)\{(z,y—1)}, Us(2)\{(z, y+
D}, Ls(2)\{(x—1,y)}andR5(2) \ {(x +1,y)}, respectively. Because of this fact, some results proved
in [16] and [17] for the topology studied there may easily tamsferred tav. In particular, by Theorem
11in [16], we get:

Theorem 3.1 Every cycleC in the graph a portion of which is shown in Figure 3 is a Jordame in
(72, w) having the property that, i€ has no acute corners, then for each point C the setAg(z)
contains at least one point in each of the componen#&of C.

Analogously to [17], we define an Alexandroff topologyn Z? as follows:
For anyz = (z,y) € Z?,

Hoy(z) if 2 is odd andy is even,

Va(z) if = is even andy is odd,
viz} = Al (2) if z,y are odd,

{z} if z,y are even.
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Evidently,v is connected anﬂ’l A portion of its connectedness graph is shown in Figure 4.
The following three statements are obtained by transfgthe results of Theorems 10-12 in [17] to the
topologyw:

Proposition 3.2 The Khalimsky topology is the quotient pretopologywofienerated by the surjection
f : Z? — 72 given as follows:

(k2D (1,0) = 4k, 41, 1 € 2
) @k )i (2,y) € Au(dk 41+ 2), kil € Z,
F@9) =0 2k +1,20) i (2.9) € Au(dk +2,41). k.l € Z,
(2k 4+ 1,20+ 1) if (2, y) € A} (4k + 2,41+ 2), k,] € Z.

The surjectiorf is shown in Figure 5 where the corresponding decomposititimeatopological space
(Z2,w) is marked by the dashed lines. All points of a class of the oigmsition are mapped bf/to the
center point of the class expressed in the bold coordinates.

Proposition 3.3 The Marcus-Wyse topologys the quotient pretopology af generated by the surjection
g : Z? — 72 given as follows:

(k+ 1,1 —k)if (v,y) € As(4k,4l), k,l € Z,

(k+1+1,l—k)if (z,y) = (4k + 2,41 + 2) for somek,l € Z
with k + 7 odd or (z,y) € A12(4k + 2,41 + 2) for some
k,l € Zwith k + [ even

g(Iay) =

The decomposition of the topological spd#é, w) given byg is shown in Figure 6, similarly to Figure
5, by the dashed lines. Every class of the decomposition ethbyg to its center point expressed in
the coordinates with respect to the diagonal axes (wherérdteoordinate relates to the axis with only
the non-negative part displayed).

Proposition 3.4 v is the quotient pretopology @6 generated by the surjectidn : Z2> — Z? given as
follows:

(2K, 21) if (z, y) € Ag(4k,Al), k1 € Z,
h(z.y) = (2k, 20+ 1) if (=, )el_?(4k,4z+2), k1€,
DY @k +1,20)if (2,y) € Va(4k +2,41), k1 € Z,

(2k + 1,20+ 1) if (z,y) = (4k + 2,41+ 2), k1 € Z.

The surjectiorh is demonstrated in Figure 7 in a way analogous to that useenwdstratef in Figure
5.
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Fig. 5: Decomposition of Z2, w) given by the surjectiorf.

4 Jordan curves in (Z2,v)

In Theorem 3.1, we have determined Jordan curves in the dgjpall spacgZ?,w). The following
statement enables us to use Theorem 3.1 to determine Jardagsdn a quotient topological space of
(72, w):

Proposition 4.1 Let(Z?,p), (Z?, q) be Alexandroff spaces such thgis the quotient pretopology @fon
Z? generated by a surjection: Z2 — Z2. Lete have connected fibres and BtC Z? be a simple closed
curve in(Z2,q). ThenD is a Jordan curve in{Z?2, q) if the following two conditions are satisfied:

(1) Thereis a Jordan curv€' in (Z?, p) such thaie(C) = D.

(2) C; \ e (D) is nonempty and connected (@?,p) for i = 1,2 whereC; and C, are the two
components ¢f? \ C.

Proof: Let the conditions of the statement be fulfilled and @{t= C; \ e~ 1 (D) andC% = Cy \ e~ 1(D).
SinceC! is connected foi = 1,2 (by the assumptionsy(C) is connected foi = 1,2 by Lemma 2.1.
On the other hand, sina@] U C%, = e~!(Z*\ D) is not connected (by the assumptiori},\ D =
e(C}) U e(CY) is not connected by Lemma 2.1. Heneé(]) ande(CY%) are the components @ \ D.
O

Indeed, Proposition 4.1 may be applied to get a Jordan cheaé¢m in the spacé&?, t) and(Z2,v)
because the mapsandh have connected fibres. This is not truevifs replaced by the topology studied
in [16] (because then only has connected fibres). The mapas connected fibres neither fomor for
the topology from [16].
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Fig. 7: Decomposition of Z*, w) given by the surjectioh.

As for the Khalimsky topology, we have the famous Theoremp2d¥ed in [6] that completely deter-
mines Jordan curves among the simple closed ones. For theubsivyse topology, we have Theorem
2.4 and also Jordan curve theorem proved in [16] (PropositR). Therefore, as the main result of this
note, we will prove a Jordan curve theoremfor

Theorem 4.2 Let D be a simple closed curve {Z?, v) with more than four points such that every pair
of different points:1, 2o € D with both coordinates even satisfidg(z1) N A4(22) € D. ThenD is a
Jordan curve in(Z2, v).

Proof: By Proposition 3.3y is the quotient pretopology @f generated by:. It may easily be seen that,
in the graph a portion of which is shown in Fig. 3, there is [ely one cycle” that satisfies(C') = D.

By Theorem 3.1 is a Jordan curve ifZ?, w). Clearly, every point of” has either two even coordinates
or two odd coordinates or a coordinate that is a multiple of.f6' consists of the center points of the sets
h=1(z), z € C, (see Fig. 7) and the points lying between the pairs of cendnts of the setd ! (z;)
andh~1(z;) wherezy, 2o € D are adjacent points in the connectedness graph(cfearly, for every
pair of pointszy, 2o € D adjacent in the connectedness graph ofhere is precisely one point lying
between the center point @f*(z;) and that ofh~!(z3) - it is the only point adjacent to each of the
two center points in the graph shown in Fig. 2). Sidees a simple closed curve i%?,v), we have
card{(x+1i,y+7); 1,7 € {—2,2}}NC) = 2 for every point(z,y) € C with x = 4k+2 andy = 4]+ 2
for somek,l € Z. Further, we have car@ > 8 because” has more than four points. The fact that
every pair of different points;, z2 € h(C) with both coordinates even satisfids(z1) N A4(z2) C h(C)
implies that

(a) (4k, 4l + 2) € C whenever(4k, 41), (4k, 4l +4) € C (k,l € Z) and

(b) (4k + 2,41) € C whenevel4k,4l), (4k +4,41) € C (k,l € 7).
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Let Cy, Cy be the two components of the subspédge\ C of (Z%,w) and putC! = C; \ h=1(D) for
i = 1,2. SinceC has more than four points, we ha@é £ () fori = 1,2. Let(«,y) € D be a point and
write h=!(z,y) briefly instead ofa = ({(z,y)}). Itis evident that:~!(z,y) C C if and only if bothz
andy are odd (therh~!(x, y) is a singleton). Thus, letr, y) € D be a point withz or y even.

(1) Suppose that is even and; is odd. Therh~!(z,y) = Ha(2z,2y) where(2z,2y) € C. The points
h(2z,2y — 1) = (z,y — 1) andh(2z,2y + 1) = (z,y + 1) must also lie inD, so that(2z,2y — 1) and
(2x,2y + 1) both lie inC, buth(2z — 2,2y) = (x — 1,y) does not lie inD, so that(2z — 2,2y) ¢ C.
Therefore, every path (in the connectedness graph) of C; (i € {1, 2}) containing the poinf2z—1, 2y)
as a non-end vertex contains also the pofgts— 1,2y — 1) and(2x — 1,2y + 1) because they are the
only points ofC; adjacent to2a — 1, 2y) in the connectedness graphwof Thus, given any path if;

(¢ € {1,2}) that contains the poirf2z — 1, 2y), when we replace the poif®x — 1, 2y) by (2z — 2, 2y),
we obtain another path ifi; becaus¢2z — 2, 2y) is adjacent to botf2z — 1, 2y — 1) and(2z — 1, 2y + 1).
It follows thatC; \ {(2x — 1, 2y)} is connected foi € {1,2}. Using analogous arguments, we may show
thatC; \ {(2z + 1,2y)} is also connected fare {1,2}. Thus,C; \ h~!(z,y) is connected foi = 1, 2.

(2) If = is odd andy is even, therh~(x,y) = V»(2z,2y) where(2z,2y) € C and the situation is
analogous to (1), so that; \ »~!(x,y) is connected foi = 1, 2.

Put Dp = {(m,n) € D; m + nisodd andC/ = C; \ h=*(Dy). Then (1) and (2) imply that
C!" is connected foi = 1,2. We will now deduce from the connectednesg¥fthatC; \ h=1(D) =
C! \ h~1(D) must also be connected (for= 1, 2). It will then follow from Proposition 4.1 thab is a
Jordan curve irfZ?, v). In the sequel, the term "path” will mean "path in the coneectess graph af”.

The proof thatC; \ h~1(D) is connected is based on the fact thatPifs any path inC? whose first
and last points lie ifC; \ h~(D), andz is any point of P in L= (D) (so that: € C! N h=1(D)), then:

(i) The immediate predecessor and the immediate succefsdndhe pathP both lie inZ? \ h=1(D),
and hence irC; \ h=(D).

(ii) There is a short path (of length at most 4)dh \ h~1(D) from the immediate predecessor:oin P

to the immediate successoroin P.

Readily, (i) and (i) imply that”;\ h =1 (D) is connected: Indeed,ifandb are any points il; \h=(D) =
C!"\ h~1(D), then (asC! is connected) there is a pathin C!’ from a to b and, since we can use the
short path referred to in (i) as a "detour” @; \ h~*(D) around any point of P that lies inh=1(D),
there is also a path i\; \ =1 (D) froma to b. So, it remains only to confirm that (i) and (ii) are true.

(i) follows from the observation that no two points@f N h~1(D) are adjacent im's connectedness
graph because each point@f N h~1(D) lies in As(c) for some point € C whose coordinates are both
divisible by four.

(ii) is obviously true if the predecessor and the succeskerio P are the same point; in this case the
short path has length 0. In the other cases, (ii) can be e tiffeinspection of Fig. 7: In view of the
symmetries of the connectedness graplvpfve may assume, without loss of generality, that the point
zliesinh=1({(2,2)}) = As((4,4)), where(2,2) € D (so that(4,4) € C) and, since: # (4,4) (as
z € C!'), we may further assume that

either (A)z = (4, 5), and the predecessor and the successoro® are (4,6) and (5,6) or vice versa,;

or (B) z = (4,5), and the predecessor and the successerof are (3,6) and (5,6);

or (C)z = (5,5), and the predecessor and the successerof are (5,6) and (6,6) or vice versa;

or (D) z = (5,5), and the predecessor and the successerof are (5,6) and (6,5).

In case (A), (i) holds because (4,6) is adjacent to (5,6)cdses (B) and (C), we first note thdt 6) ¢
h=1(D) - for otherwise{(3,6), (4,6), (5,6)} = h=1({(2,3)}) € Dy and so not all points of” are in
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C!, which is a contradiction. Thus, in case (B), the path whasetp are (3,6), (4,6), and (5,6) satisfies
the condition of (ii). In case (C), sindd,6) ¢ h~!(D), we have that4,8) ¢ C (by condition (a) in
the first paragraph of this proof), which impliés, 7) ¢ h~'(D); so the path whose points are (5,6),
(5,7), and (6,6), or its reverse, satisfies the conditionipf (n case (D), we can similarly deduce that
(5,7) ¢ h~1(D) and(7,5) ¢ h=1(D); moreover(6,6) ¢ C (as (6,6) cannot be adjacent to two points
of the simple closed curvé' in the connectedness graph ofbecausg5,7) ¢ C, (7,5) ¢ C, and
(5,5) = z ¢ C),and s0(6,6) ¢ h=1(D). Thus, in case (D), the path whose points are (5,6), (5,78),(6
(7,5), and (6,5) satisfies the condition of (ii). O

Example 4.3Every cycle in any of the four graphs portions of which arevamin Figure 8 is a Jordan

curve in(Z2,v).

5 Concluding remarks

Jordan curves play an important role in computer image [ging because they represent boundaries
of regions of digital images. It may therefore be useful taldeth topologies providing a rich enough



176 Josefélapal

variety of Jordan curves in the digital plane for the studgligftal images. One of the topologies with this
property is the well-known Khalimsky topology. In this nptee have introduced two more such topolo-
gies, namelyw andv. The results obtained suggest that these topologies mehséd as background
structures on the digital plane to solve problems of digitelge processing, especially those closely re-
lated to boundaries (image data compression, pattern mé¢amy boundary detection and contour filling,
etc.). The topologyw has an advantage over the Khalimsky topology consistingerfdact that Jordan
curves in(Z?,w) may turn, at some points, to make an acute afgle
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