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A cyclic q-partition of a hypergraph (V,E) is a partition of the edge set E of the form {F, F θ, F θ2 , . . . , F θq−1

} for

some permutation θ of the vertex set V . Let Vn = {1, 2, . . . , n}. For a positive integer k,
(

Vn

k

)

denotes the set of all

k-subsets of Vn. For a nonempty subset K of Vn−1, we let K
(K)
n denote the hypergraph

(

Vn,
⋃

k∈K

(

Vn

k

))

. In this

paper, we find a necessary and sufficient condition on n, q and k for the existence of a cyclic q-partition of K
(Vk)
n .

In particular, we prove that if p is prime then there is a cyclic pα-partition of K
(Vk)
n if and only if pα+β divides n,

where β = ⌊logp k⌋. As an application of this result, we obtain two sufficient conditions on n1, n2, . . . , nt, k, α and

a prime p for the existence of a cyclic pα-partition of the complete t-partite k-uniform hypergraph K
(k)
n1,n2,...,nt .

Keywords: Self-complementary hypergraph, Uniform hypergraph, t-complementing permutation, Cyclically t-com-

plementary hypergraph.

AMS Subject Classification Codes: 05C65, 05E20, 05C25, 05C85.

1 Introduction

1.1 Definitions

For a finite set V and a positive integer k, let
(

V
k

)

denote the set of all k-subsets of V . A hypergraph is

a pair (V,E) in which V is a finite set of vertices and E is a collection of subsets of V called edges. A

hypergraph (V,E) is called k-uniform (or a k-hypergraph) if E ⊆
(

V
k

)

. The order of a hypergraph is the

cardinality of its vertex set, and the rank of a hypergraph is the maximum cardinality of an edge. Thus a

k-uniform hypergraph has rank k. The vertex set and the edge set of a hypergraph X will often be denoted

by V (X) and E(X), respectively.
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Throughout the paper we let Vn = {1, 2, . . . , n} and we always assume that the vertex set of a hyper-

graph of order n is equal to Vn. The complete k-uniform hypergraph of order n is
(

Vn,
(

Vn

k

)

)

and is de-

noted by K
(k)
n . For a nonempty subset K of Vn−1, the complete K-hypergraph is

(

Vn,
⋃

k∈K

(

Vn

k

)

)

and

denoted by K
(K)
n . Let θ be a permutation of Vn. If {E,Eθ, Eθ2

, . . . , Eθq−1

} is a partition of
⋃

k∈K

(

Vn

k

)

,

we call it a cyclic q-partition of K
(K)
n and θ is called a (q,K)-complementing permutation, or a permu-

tation of cyclic q-partition of K
(K)
n . If K = {k} we abbreviate K

({k})
n to K

(k)
n and we call θ a (q, k)-

complementing permutation. We denote the set Eθi

by Ei. It is easy to see that Eθ
i = Ei+1( mod q) for

i = 0, 1, . . . , q − 1. A cyclic q-partition of K
(K)
n corresponds to a family of q isomorphic hypergraphs

{Xi = (Vn, Ei) : i = 0, 1, . . . , q − 1} with edge ranks in K which decompose K
(K)
n , and which are per-

muted cyclically under the action of θ. Each of the hypergraphs Xi in this decomposition are sometimes

called q-complementary, and θ is called a q-antimorphism of Xi.

1.2 History and the statement of the main results

The 2-complementary 2-hypergraphs are the self-complementary graphs, which have been well studied

due to their connection to the graph isomorphism problem and to large sets of combinatorial designs

[3, 7, 8, 9, 10, 11, 12, 13]. A good reference on self-complementary graphs and their generalizations is

found in [4].

For a prime power q = pα, the cycle types of the (q, k)-complementing permutations have been de-

termined in [6] and independently in [14], while the case for k = 2 originally appeared in [1]. We state

this result in Theorem 1.1 using the notation of [14], which we now introduce. A necessary and sufficient

condition for a permutation to be (q, k)-complementing of K
(k)
n has been given in [14] for arbitrary q and

k (1 ≤ k ≤ n − 1). For integers n and d, d > 0, the symbol r(n, d) denotes the remainder when n
is divided by d. Thus n ≡ r(n, d) (mod d). For a positive integer k and a prime p, the symbol Cp(k)
denotes the largest nonnegative integer c such that pc divides k. Thus if k =

∑

i≥0 kip
i is the base-p

representation of k, where 0 ≤ ki < p for all integers i ≤ 0, then Cp(k) is the smallest integer i such that

ki > 0. For a finite nonempty set A, we abbreviate Cp(|A|) to Cp(A). The symbol N denotes the set of

nonnegative integers.

Theorem 1.1 [6, 14] Let n, k, p and α be positive integers such that k < n and p is prime. Let θ be a

permutation on Vn with orbits O1,O2, . . . ,Om. Then θ is a (pα, k)-complementing permutation of K
(k)
n

if and only if there is a nonnegative integer ℓ such that
∑

i:Cp(Oi)<ℓ+α |Oi| < r(k, pℓ+1).

The following corollary to Theorem 1.1 gives necessary and sufficient conditions on the order n of a

cyclic pα-partition of K
(k)
n . The equivalence between statements (1) and (2) was noted in both [6] and

[14], while the equivalence between (2) and (3) was established in [14].

Corollary 1.2 [6, 14] Let n, k, p and α be positive integers such that k < n and p is prime. Suppose that

k =
∑

i≥0 kip
i and n =

∑

i≥0 nip
i, where 0 ≤ ki < p and 0 ≤ ni < p for i ∈ N. Then the following

three statements are equivalent.

1. There exists a cyclic pα-partition of K
(k)
n .
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2. There exists ℓ ∈ N such that r(n, pℓ+α) < r(k, pℓ+1).

3. There exist r, ℓ ∈ N with r ≤ ℓ such that nr < kr, ni = ki for r < i ≤ ℓ whenever r < ℓ, and

ni = 0 for ℓ < i < ℓ+ α.

The general complete hypergraph is K
(Vn−1)
n and denoted by K∗

n, for short. The integers p and n
for which there exists a cyclic p-partition of K∗

n were determined in [14], and the cycle types of their

p-antimorphisms were characterized.

Theorem 1.3 [14] Let n and p be positive integers with p < n. The general complete hypergraph K∗
n

has a cyclic p-partition if and only if p is prime and n is a power of p. Moreover, every (p, Vn−1)-
complementing permutation is cyclic.

The goal of this paper is to establish the existence of cyclic q-partitions of K
(K)
n for various subsets K of

Vn−1. Some existence results for cyclic 2-partitions of K
(K)
n were established in [5] for sets K consisting

of integers of the form 2ℓ or 2ℓ + 1, and sets K consisting of integers which are sums of consecutive

powers of 2. In this paper we are mainly interested in existence results for cyclic partitions of K
(K)
n for

sets K of the form {1, 2, . . . , k}. Such results have applications to cyclic decompositions of complete

multipartite k-uniform hypergraphs, which will be discussed in Section 3. The main results of this paper

are stated in Theorems 1.4, 1.7 and 1.8, and Corollaries 1.5 and 1.6 below. The proofs of the theorems are

given in Section 2.

Theorem 1.4 Let n, k, p and α be positive integers such that p is prime and k < n. A permutation σ of

Vn is (pα, Vk)-complementing if and only if the cardinality of any orbit of σ is congruent to 0 (mod pα+β),

where β = ⌊logp k⌋.

Theorem 1.4 implies the following.

Corollary 1.5 Let n, k, p and α be positive integers such that p is prime and k < n. There is a cyclic

pα-partition of K
(Vk)
n if and only if pα+β divides n, where β = ⌊logp k⌋.

It is clear that if K ⊂ K ′ ⊂ Vn and a permutation σ of Vn is (q,K ′)-complementing then σ is also

(q,K)-complementing. Hence, and by Corollary 1.2(3), we have the following.

Corollary 1.6 Let p, n and α be positive integers where p is prime. If pα+β divides n, then there is a

cyclic pα-partition of K
(K)
n for any nonempty subset K of {m : 1 ≤ m ≤ k or n− k ≤ m ≤ n− 1}, for

any k such that pβ ≤ k < pβ+1. In particular, there is a cyclic pα-partition of K
(Vk)
n for these k.

Theorem 1.7 Let n, k and q be positive integers such that q = pα1

1 · pα2

2 · ... · pαs
s , where p1, p2, ..., ps

are mutually distinct primes, k < n, and βj = ⌊logpj
k⌋ for every j = 1, 2, .., s. A permutation σ

of Vn is (q, Vk)-complementing if and only if the cardinality of any orbit of σ is congruent to 0 (mod

pα1+β1

1 · pα2+β2

2 · ... · pαs+βs
s ).

Theorem 1.8 Let p, n and α be positive integers where p is prime, and let K ⊆ Vn−1. Suppose that

n =
∑

i≥0 nip
i and k =

∑

i≥0 kip
i for each k ∈ K, where 0 ≤ ni < p and 0 ≤ ki < p for all i ∈ N.

Let L(n, α) = {ℓ ≥ 0 : nℓ+1 = nℓ+2 = · · · = nℓ+α−1 = 0}.

If there is ℓ ∈ L(n, α) such that, for each k ∈ K, there is r ≤ ℓ for which nr < kr and ni = ki for

r < i ≤ ℓ whenever r < ℓ, then there exists a cyclic pα-partition of K
(K)
n .
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In Section 3 we will look at an application of Corollary 1.6 to cyclic pα-partitions of complete t-partite

k-uniform hypergraphs.

2 Proofs of the main results

Given a (q, k)-complementing permutation θ, we can use a simple algorithm described in [6] and [14] to

generate all of the cyclic q-partitions of K
(k)
n with q-antimorphism θ. Hence given a (q,K)-complementing

permutation θ, we can construct a cyclic q-partition of K
(K)
n with q-antimorphism θ by taking the union

of |K| cyclic q-partitions of complete uniform hypergraphs, one of rank k for each k ∈ K, each of which

is constructed using the algorithm in [6]. We obtain the following lemma.

Lemma 2.1 There exists a cyclic q-partition of K
(K)
n if and only if there exists a (q,K)-complementing

permutation. ✷

Proof of Theorem 1.4.

Note that β = ⌊logp k⌋ if and only if pβ ≤ k < pβ+1. Let σ be a permutation of the set Vn with orbits

O1, O2, ..., Om.

Suppose first that the permutation σ is such that every orbit of σ has the cardinality divisible by pα+β

and let k′ ∈ Vk. We shall prove that σ is a (pα, k′)-complementing permutation of K
(k′)
n . For every orbit

O of the permutation σ we have Cp(O) ≥ α + β, hence
∑

i:Cp(Oi)<α+β |Oi| = 0. Moreover, since

0 < k′ ≤ k < pβ+1, we have r(k′, pβ+1) = k′ and σ is (pα, k′)-complementing by Theorem 1.1, and

hence (pα, Vk)-complementing, by Lemma 2.1.

Suppose now that the permutation σ of the set Vn is (pα, Vk)-complementing. We shall prove that for

every j = 1, 2, ...,m the cardinality of Oj is divisible by pα+β .

By Theorem 1.1, for every k′ ∈ Vk there is a nonnegative integer ℓ such that
∑

i:Cp(Oi)<ℓ+α

|Oi| < r(k′, pℓ+1) (1)

Applying (1) for k′ = 1, it is very easy to check that pα divides |Oj |, for every j = 1, 2, ...,m.

Suppose that for an integer γ, 1 ≤ γ ≤ β we have proved that p(γ−1)+α divides the cardinality of every

orbit O1, O2, ..., Om.

Since the permutation σ is (pα, pγ)-complementing, by Theorem 1.1 there is an integer ℓ such that
∑

i:Cp(Oi)<ℓ+α

|Oi| < r(pγ , pℓ+1). (2)

Note that r(pγ , pℓ+1) =

{

0 if ℓ < γ
pγ if ℓ ≥ γ

. Hence ℓ ≥ γ.

Moreover, if
∑

i:Cp(Oi)<ℓ+α |Oi| < pγ for an ℓ such that ℓ ≥ γ, then

∑

i:Cp(Oi)<γ+α

|Oi| < pγ .

By consequence
∑

i:Cp(Oi)<γ+α |Oi| ∈ {0, 1, ..., pγ − 1}. But since every orbit of the permutation σ has

cardinality divisible by p(γ−1)+α, we have
∑

i:Cp(Oi)<γ+α |Oi| = 0. This means that pα+γ divides |Oj |
for every j = 1, 2, ...,m. The theorem follows. ✷
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Lemma 2.2 ([14]) Let k, n and q be positive integers, k < n. A permutation σ of the set Vn is (q, k)-
complementing if and only if σs(e) 6= e for any subset e ⊂ Vn of cardinality k and s 6≡ 0 (mod q).

Lemma 2.2 implies easily the following.

Lemma 2.3 Let n and q be positive integers and let K ⊂ Vn−1, K 6= ∅. A permutation σ of the set

Vn is (q,K)-complementing if and only if σs(A) 6= A for any subset A ⊂ Vn such that |A| ∈ K and

s 6≡ 0 (mod q).

Proof of Theorem 1.7.

By Lemma 2.3, a permutation σ of the set Vn is (q, Vk)-complementing if and only if σs(A) = A implies

s ≡ 0 (mod q) for any subset A of Vn such that |A| ∈ Vk. But this implication holds if and only if

σs(A) = A implies s ≡ 0 (mod p
αj

j ) for all j = 1, 2, ..., s and all such sets A, which holds if and

only if the permutation σ is (p
αj

j , Vk)-complementing for every j = 1, 2, . . . , s, by Lemma 2.3. Now

Theorem 1.4 guarantees that σ is (p
αj

j , Vk)-complementing for every j if and only if the cardinality of

every orbit of σ is divisible by p
αj+βj

j for every j, which holds if and only if every orbit of σ has cardinality

divisible by pα1+β1

1 · pα2+β2

2 · ... · pαs+βs
s , as claimed. ✷

Since permutations θ of Vn map edges of rank k onto edges of rank k, it follows that each cyclic q-

partition {E,Eθ, Eθ2

, . . . , Eθq−1

} of K
(K)
n gives rise to a cyclic q-partition {E ∩

(

Vn

k

)

, Eθ ∩
(

Vn

k

)

, Eθ2

∩
(

Vn

k

)

, . . . , Eθq−1

∩
(

Vn

k

)

} of K
(k)
n for each k ∈ K. Hence we can view a cyclic q-partition of K

(K)
n as a

union of |K| cyclic q-partitions of complete uniform hypergraphs, one of rank k for each k ∈ K, which

all share a common q-antimorphism θ. Moreover, the complements of the edges in a cyclic q-partition of

K
(k)
n with q-antimorphism θ form a cyclic q-partition of K

(n−k)
n with the same q-antimorphism θ. The

following lemma follows easily from these observations.

Lemma 2.4 Let n and q be positive integers and let K ⊆ Vn−1.

1. A permutation θ is (q,K)-complementing if and only if it is (q, k)-complementing for all k ∈ K.

2. There exists a cyclic q-partition of K
(M)
n with q-antimorphism θ if and only if there exists a cyclic

q-partition of K
(K)
n with q-antimorphism θ for all nonempty subsets K of M .

3. There exists a cyclic q-partition of K
(K)
n if and only if there exists a cyclic q-partition of K

(K∪K̂)
n ,

where K̂ = {n− k : k ∈ K}. ✷

Proof of Theorem 1.8:

Suppose that there is ℓ ∈ L(n, α) such that, for each k ∈ K, there is r ≤ ℓ for which nr < kr, and

ni = ki for r < i ≤ ℓ whenever r < ℓ. Then Corollary 1.2 guarantees that r(n, pℓ+α) < r(k, pℓ+1) and

there exists a cyclic pα-partition of K
(k)
n for each k ∈ K. By Lemma 2.4(2), we must show that there

exists such a set of |K| cyclic pα-partitions with a common pα-antimorphism θ.

Now since r(n, pℓ+α) < r(k, pℓ+1) for all k ∈ K, it follows that n = Mpℓ+α+ j for some positive in-

teger M and some j < mink∈K{r(k, pℓ+1)}. Let θ be a permutation on Vn whose orbits O1,O2, . . . ,Om

consist of j orbits of length 1 and M orbits of length pℓ+α. Fix k ∈ K. We will show that θ is a (pα, k)-
complementing permutation for this k.

Now certainly
∑

i:Cp(Oi)<ℓ+α |Oi| = j < r(k, pℓ+1). To apply Theorem 1.1 to show that θ is (pα, k)-
complementing, we need to show that this holds for some ℓ∗ with kℓ∗ 6= 0. By assumption, there is
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r ≤ ℓ for which nr < kr, and ni = ki for r < i ≤ ℓ whenever r < ℓ. Let ℓ∗ be the largest integer in

{r, r + 1, r + 2, . . . , ℓ} such that kℓ∗ 6= 0. Then r(k, pℓ+1) = r(k, pℓ
∗+1). Also, we must have ni = 0

for ℓ∗ < i < ℓ + α. Since ℓ∗ + α ≤ ℓ + α, it follows that
∑

i:Cp(Oi)<ℓ∗+α |Oi| =
∑

i:Cp(Oi)<ℓ+α |Oi|.
Thus kℓ∗ 6= 0 and

∑

i:Cp(Oi)<ℓ∗+α

|Oi| =
∑

i:Cp(Oi)<ℓ+α

|Oi| < r(k, pℓ+1) = r(k, pℓ
∗+1).

Now Theorem 1.1 guarantees that θ is a (pα, k)-complementing permutation. Since k was an arbitrary

element of K, Lemma 2.4(1) implies that θ is a (pα,K)-complementing permutation. Hence Lemma 2.1

guarantees that there exists a cyclic pα-partition of K
(K)
n , as claimed. ✷

Proof of Corollary 1.6:

If pα+β divides n, then using the notation of Theorem 1.8 we have β ∈ L(n, α). Let k be an integer

such that pβ ≤ k < pβ+1. For each m ∈ Vk and each integer i ≥ 0, let mi denote the coefficient of

pi in the base-p representation of m. Let r = r(m) = max{i : mi > 0}. Then mr(m) > nr(m) = 0
and mi = ni = 0 for i = r(m) + 1, r(m) + 2, . . . , β. Hence Theorem 1.8 guarantees the existence of

a cyclic pα-partition of K
(Vk)
n . Now Lemma 2.4(3) implies that there exists a cyclic pα-partition of K

(M)
n

for M = {m : 1 ≤ m ≤ k or n− k ≤ m ≤ n− 1}, and Lemma 2.4(2) implies that there exists a cyclic

pα-partition of K
(K)
n for every nonempty subset K of M , as claimed. ✷

3 Decomposing complete multipartite uniform hypergraphs

Let X = (V,E) be a hypergraph. A subset S ⊆ V is stable in X if S contains no edge of X . The

hypergraph X is called t-partite if V can be partitioned into t stable and mutually disjoint subsets

A1, A2, ..., At. Hence V = A1 ∪ A2 ∪ ... ∪ At, Ai ∩ Aj = ∅ for i 6= j, e 6⊂ Ai for i = 1, 2, ..., t
and any edge e ∈ E. The complete t-partite k-hypergraph with vertex set V = A1 ∪ A2, ..., At has

edge set Ek = {e : e ⊂ V, |e| = k, e 6⊂ Ai for i = 1, 2, ..., t}, and is denoted by K(k)(A1, A2, ..., At) or

K
(k)
n1,n2,...,nt when |Ai| = ni for i = 1, 2, ..., t. Let θ be a permutation of the set A1∪A2∪...∪At such that

Aθ
i = Ai for i = 1, 2, ..., t. We say that θ is a (q, k)-complementing permutation of K(k)(A1, A2, ..., At)

if there is a subset E of the set of edges of K(k)(A1, A2, ..., At) such that E ∪Eθ ∪Eθ2

∪ ...∪Eθq−1

is a

partition of E(K(k)(A1, A2, ..., At)). Such a q-partition of E(K(k)(A1, A2, ..., At) is then called a cyclic

q-partition of K(k)(A1, A2, ..., At).

For a nonempty set K of positive integers, let K(K)(A1, A2, ..., At) denote the hypergraph with the

vertex set V = A1 ∪A2 ∪ ... ∪At and the edge set
⋃

k∈K Ek.

A permutation θ of A1∪A2∪...∪At is said to be a (q,K)-complementing permutation of K(K)(A1, A2, ..., At)
if it is a (q, k)-complementing permutation of K(k)(A1, A2, ..., At) for every k ∈ K.

For a permutation θ of V and a subset A of V , let θ|A denote the restriction of the function θ to the set

A. That is θ|A(x) = θ(x), for all x ∈ A. If A is an invariant set of θ, then θ|A is a permutation of A.

Theorem 3.1 Let k, p, t and α be positive integers such that p is prime. Let V = A1∪A2∪ ...∪At where

Ai ∩Aj = ∅ for i 6= j and let θ be a permutation of the set V such that Ai
θ = Ai for every i = 1, 2, ..., t.

Each of the following two conditions is sufficient for θ to be a (pα, Vk)-complementing permutation of

K(Vk)(A1, A2, ..., At).
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1. For all but at most one i ∈ {1, 2, ..., t}, the cardinality of all the orbits of θ|Ai
are divisible by pα+β ,

where β = ⌈logp k⌉ − 1.

2. For every i ∈ {1, 2, ..., t}, the cardinalities of all orbits of θ|Ai
are divisible by pα+γ , where γ =

⌊logp k/2⌋.

Proof: Let B be a subset of V such that |B| = k and there is no i such that B ⊂ Ai. It suffices to show

that if Bθs

= B then s ≡ 0 (mod pα).

(1) Since B has non empty intersection with at least two sets, there exists an index i0 such that C = B∩

Ai0 6= ∅ and the cardinality of any orbit of θ|Ai0
is divisible by pα+β . Note that Cθs

= C
θs
|Ai0 = C.

Write k′ = |C|. We have clearly 0 < k′ < k, hence k′ ∈ Vk−1. Since β = ⌈logp k⌉ − 1, we

have pβ ≤ k − 1 < pβ+1, and so Theorem 1.4 implies that θA|i0
is a (pα, Vk−1)-complementing

permutation of KVk

|Ai0
|. Hence s ≡ 0 (mod pα), and the sufficiency of condition (1) is proved.

(2) The proof of sufficiency of the condition (2) is similar to the proof given above. It suffices to observe

that there is an index i1 such that C ′ = B ∩Ai1 6= ∅ and |C ′| ≤ k/2. ✷

Corollary 3.2 Let n1, n2, . . . , nt, k, p and α be positive integers such that p is prime. If at least one of the

following two conditions is verified then there is a (pα, k)-complementing permutation of K
(k)
n1,n2,...,nt .

1. For all but at most one i ∈ {1, 2, ..., t}, pα+β |ni where β = ⌈logp k⌉ − 1.

2. For every i ∈ {1, 2, ..., t}, pα+γ |ni where γ = ⌊logp k/2⌋. ✷
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