
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 15:2, 2013, 223–232
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A graph containment problem is that of deciding whether one graph called the host graph can be modified into some

other graph called the target graph by using a number of specified graph operations. We consider edge deletions,

edge contractions, vertex deletions and vertex dissolutions as possible graph operations permitted. By allowing any

combination of these four operations we capture the following problems: testing on (induced) minors, (induced)

topological minors, (induced) subgraphs, (induced) spanning subgraphs, dissolutions and contractions. We show that

these problems stay NP-complete even when the host and target belong to the class of line graphs, which form a

subclass of the class of claw-free graphs, i.e., graphs with no induced 4-vertex star. A natural question is to study the

computational complexity of these problems if the target graph is assumed to be fixed. We show that these problems

may become computationally easier when the host graphs are restricted to be claw-free. In particular we show that

the H-CONTRACTIBILITY problem, which asks whether a given host graph contains a fixed target graph H as a

contraction, is polynomial-time solvable on claw-free graphs when H is the 4-vertex path P4, whereas on general

graphs P4-CONTRACTIBILITY is known to be NP-complete.

Keywords: claw-free graph, contractibility, containment relation

1 Introduction

Whether or not a graph G contains a graph H depends on the notion of containment we use; in the

literature several natural definitions have been studied. Before we give a survey of existing work and

present our own results, we first state some basic terminology.

1.1 Terminology

We consider undirected graphs with no loops and no multiple edges. We denote the vertex set and edge

set of a graph G by VG and EG, respectively. If no confusion is possible, we may omit subscripts. We

refer the reader to Diestel [5] for any undefined graph terminology.
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(JP090172).
‡Email: mjk@mimuw.edu.pl.
§Email: daniel.paulusma@durham.ac.uk. Supported by EPSRC (EP/G043434/1) and Royal Society (JP090172).

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dm15:2ind.html
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Containment Relation VD ED EC VDi Decision Problem

minor yes yes yes yes MINOR

induced minor yes no yes yes INDUCED MINOR

topological minor yes yes no yes TOPOLOGICAL MINOR

induced topological minor yes no no yes INDUCED TOPOLOGICAL MINOR

contraction no no yes yes CONTRACTIBILITY

dissolution no no no yes DISSOLUTION

subgraph yes yes no no SUBGRAPH ISOMORPHISM

induced subgraph yes no no no INDUCED SUBGRAPH ISOMORPHISM

spanning subgraph no yes no no SPANNING SUBGRAPH ISOMORPHISM

isomorphism no no no no GRAPH ISOMORPHISM

Tab. 1: Known containment relations in terms of the graph operations [11].

Let e = uv be an edge in a graph G. The edge contraction of e removes u and v from G, and replaces

them by a new vertex adjacent to precisely those vertices to which u or v were adjacent. In the case that

one of the two vertices, say u, has exactly two neighbors that in addition are nonadjacent, then we call

this operation the vertex dissolution of u.

Table 1 surveys the known graph containment relations that can be obtained by combining vertex dele-

tions (VD), edge deletions (EC), edge contractions (EC) and vertex dissolutions (VDi). For example, a

graph H is an induced minor of a graph G if H can be obtained from G by a sequence of graph operations

that include vertex deletions, vertex dissolutions and edge contractions, but no edge deletions. The cor-

responding decision problem, in which G and H form the ordered input pair (G,H), is called INDUCED

MINOR. The other rows in Table 1 are to be interpreted similarly.

Remark 1. If edge contractions are allowed then vertex dissolutions are allowed as well, because a vertex

dissolution is a special case of an edge contraction. This means that the total number of different graph

operation combinations is 12.

Remark 2. As can be seen from Table 1, all but two combinations correspond to known relations. The re-

maining two combinations “no yes yes yes”, and “no yes no yes” are equivalent to minors and topological

minors, respectively, if we allow an extra operation that removes isolated vertices.

1.2 Existing Results

The problems in Table 1 except for GRAPH ISOMORPHISM are all known to be NP-complete (cf. [11,

21]). It is therefore natural to fix the graph H (the target graph) in an ordered input pair (G,H) and

consider only the graph G (the host graph) to be part of the input. We indicate this by adding “H-” to

the names of the decision problems. For any fixed H , the problems H-DISSOLUTION, H-SUBGRAPH

ISOMORPHISM, H-INDUCED SUBGRAPH ISOMORPHISM, H-SPANNING SUBGRAPH ISOMORPHISM,

and H-GRAPH ISOMORPHISM can be solved in polynomial time by brute force. A celebrated result by

Robertson and Seymour [22] states that the problems H-MINOR and H-TOPOLOGICAL MINOR can be

solved in cubic time and polynomial time, respectively, for every fixed graph H . The latter result has

recently been improved to cubic time by Grohe et al. [12]. The computational complexity classifications

(with respect to the fixed target graph H) of the remaining three problems H-INDUCED MINOR, H-

INDUCED TOPOLOGICAL MINOR and H-CONTRACTIBILITY are still open. Many partial results are

known, in particular for special graph classes. Below we briefly survey these.
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Fellows et al. [6] showed that the H-INDUCED MINOR problem is NP-complete for a specific graph

H on 68 vertices. This is still the smallest known NP-complete case for H-INDUCED MINOR. They also

showed that for every fixed graph H , the H-INDUCED MINOR problem can be solved in polynomial time

on planar graphs. Later this result was extended by van ’t Hof et al. [15] who showed that for every fixed

planar graph H , the H-INDUCED MINOR problem is polynomial-time solvable on any minor-closed graph

class not containing all graphs. Belmonte et al. [1] showed that for every fixed graph H , the H-INDUCED

MINOR problem is polynomial-time solvable for chordal graphs.

Lévêque et al. [18] gave polynomial-time solvable and NP-complete cases for the H-INDUCED TOPO-

LOGICAL MINOR problem; small cases such as H = K4 (the complete graph on 4 vertices) are still open.

On the other hand, Fiala et al. [7] showed that for every fixed H , the H-INDUCED TOPOLOGICAL MINOR

problem can be solved in polynomial time on claw-free graphs, i.e., graphs with no induced 4-vertex stars.

Brouwer and Veldman [4] gave both polynomial-time solvable and NP-complete cases for the H-

CONTRACTIBILITY problem. One of their results is that this problem is already NP-complete for a graph

H on 4 vertices, namely when H is fixed to be the 4-vertex path or the 4-vertex cycle. This research

was later extended by Levin, Paulusma and Woeginger [19, 20] and van ’t Hof et al. [15]. Kamiński,

Paulusma and Thilikos [17] showed that for every fixed H , the H-CONTRACTIBILITY problem can be

solved in polynomial time on planar graphs. By extending previous results [2, 10], Belmonte et al. [1]

showed that for every fixed graph H , the H-CONTRACTIBILITY problem is polynomial-time solvable for

chordal graphs.

1.3 Our Results

We focus on claw-free graphs and its proper subclass of line graphs, which are well studied, both within

structural and algorithmic graph theory; we refer to Faudree, Flandrin, and Ryjáček [8] for a survey.

In Section 3 we show that all considered decision problems are NP-complete even under the further

restriction that G and H are line graphs and both part of the input except for GRAPH ISOMORPHISM,

which stays GRAPH ISOMORPHISM-complete for such input pairs. As such we can concentrate on

the case when H is fixed. Then the only two remaining problems are the H-INDUCED MINOR and

H-CONTRACTIBILITY problem; as mentioned earlier on, the other eight H-containment problems are

polynomial-time solvable on claw-free graphs for any fixed H .

In Section 4, we consider the question whether forbidding induced claws in the input graph makes

the problem H-CONTRACTIBILITY computationally easier. Our motivation stems from the result on

H-INDUCED TOPOLOGICAL MINOR, which is polynomial-time solvable on claw-free graphs for every

fixed graph H [7] while being NP-complete on general graphs already when H is the complete graph

on 5 vertices [18]. We provide a partially affirmative answer to this question as follows. In Section 4.1,

we show that P4-CONTRACTIBILITY, where P4 denotes the 4-vertex path, is polynomial-time solvable

for claw-free graphs. Recall that for general graphs, P4-CONTRACTIBILITY is NP-complete [4]. In fact,

we show that H-CONTRACTIBILITY is polynomial-time solvable on claw-free graphs for any fixed graph

H that is a so-called pileous clique, which is a special type of split graph. However, claw-freeness does

not make the H-CONTRACTIBILITY problem tractable for all target graphs H: in Section 4.2 we show

that P7-CONTRACTIBILITY is NP-complete even for line graphs. As a direct consequence, the LONGEST

PATH CONTRACTIBILITY problem, which is that of determining the longest path to which a given graph

can be contracted, is NP-hard for line graphs. This problem was introduced by van ’t Hof, Paulusma

and Woeginger [16] who showed that it is polynomial-time solvable for P5-free graphs and NP-hard for

P6-free graphs, whereas Heggernes et al. [14] observe that this problem is polynomial-time solvable for
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chordal graphs.

In Section 5 we state some open problems and also shortly discuss the H-INDUCED MINOR problem

for claw-free graphs.

2 Preliminaries

Let G = (V,E) be a graph. We write G[U ] to denote the subgraph of G induced by U ⊆ V , i.e., the

graph on vertex set U and an edge between any two vertices if and only if there is an edge between them

in G. We say that U is a clique if there is an edge in G between any two vertices of U , and U is an

independent set if there is no edge in G between any two vertices of U . Two disjoint sets U,U ′ ⊆ V are

called adjacent if there exist vertices u ∈ U and u′ ∈ U ′ such that uu′ ∈ E. A vertex v is a neighbor

of u if uv ∈ E. We let N(u) denote the set of neighbors of u. The degree of a vertex u is its number of

neighbors. The length |P | of a path P is the number of edges of P . The distance from a vertex u to a

vertex v in G is the length of a shortest path from u to v in G. We let Cn, Kn, and Pn denote the cycle,

complete graph, and path on n vertices, respectively.

A graph G = (V,E) is called k-connected if G[V \U ] is connected for every set U ⊆ V of at most

k−1 vertices. A graph G that is not connected is called disconnected. A k-vertex cut is a subset S ⊆ V of

size k such that G[V \S] is disconnected. The vertex in a 1-vertex cut of a graph G is called a cut vertex.

A star is a graph formed by joining each vertex of an independent set to an extra vertex called the centre

vertex. A double star is formed by joining each vertex of an independent set to one of the two end-vertices

of an extra edge called the centre edge. A pileous clique is a graph with the property that its vertex set can

be decomposed into a clique and an independent set of degree-1 vertices. Note that pileous cliques form a

subclass of split graphs. In particular, stars and double stars (including the P4) are special cases of pileous

cliques. A graph is claw-free if it has no induced subgraph isomorphic to the claw, i.e., the 4-vertex star

K1,3 = ({a1, a2, a3, b}, {a1b, a2b, a3b})
The line graph of a graph G with edges e1, . . . , ep is the graph L(G) with vertices u1, . . . , up such

that there is an edge between any two vertices ui and uj if and only if ei and ej share one end vertex

in H . We call G the preimage of L(G). Note that every line graph is claw-free. We also observe

that L(K3) = L(K1,3) = K3. However, K3 is well-known to be unique in this perspective (see e.g.

Harary [13]).

Let G and H be two graphs. An H-witness structure W is a vertex partition of G into |VH | (nonempty)

sets W (x) called H-witness bags, such that

(i) each W (x) induces a connected subgraph of G;

(ii) for all x, y ∈ VH with x 6= y, bags W (x) and W (y) are adjacent in G if and only if x and y are

adjacent in H;

By contracting all bags to single vertices we find that H is a contraction of G if and only if G has an

H-witness structure. We note that G may have more than one H-witness structure. We call a bag that

corresponds to a vertex of degree 1 in H a leaf bag.

3 When Both Host and Target Graph are Part of the Input

We show the following result, which justifies why we fix the target graph H in the remainder of our paper.
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Proposition 1 All problems in Table 1 are NP-complete for ordered input pairs (G,H) where G and

H are line graphs, except for the GRAPH ISOMORPHISM problem, which is GRAPH ISOMORPHISM-

complete for such input pairs.

Proof: Let G be an n-vertex line graph, and H be the n-vertex cycle; note that H is a line graph and that

L(H) is an n-vertex cycle as well.

We observe that the statements that G contains H as a minor, topological minor, subgraph, or span-

ning subgraph, respectively are equivalent. The last statement (spanning subgraph) is equivalent to ask-

ing whether G is Hamiltonian, which is an NP-complete problem even for line graphs as shown by

Bertossi [3]. This means that we get the desired result for MINOR, TOPOLOGICAL MINOR, SUBGRAPH

ISOMORPHISM and SPANNING SUBGRAPH ISOMORPHISM. We note that G contains H as a spanning

subgraph if and only if L(G) contains L(H) as an induced subgraph. Hence, from the same reduction,

we obtain the desired result for INDUCED SUBGRAPH ISOMORPHISM.

We now show that L(G) contains L(H) as an induced subgraph if and only if L(G) contains L(H)
as an induced minor. The forward implication holds by definition. To prove the backward implication,

suppose that L(G) contains L(H) as an induced minor. By definition, L(G) contains an induced subgraph

F that contains L(H) as a contraction. We consider an L(H)-witness structure of F . Recall that L(H) is

a cycle on n edges. We fix one edge between each pair of adjacent witness bags. Then these n edges can

be connected to each other via paths inside the witness bags. Hence F , and consequently, L(G) contains

an induced cycle C on at least n vertices. Note that C corresponds to a (not necessarily induced) cycle

in G with the same number of vertices. Because G has exactly n vertices, we find that C has exactly n

vertices. Consequently, L(G) contains an induced n-vertex cycle, namely C, that is isomorphic to L(H).
Hence INDUCED MINOR is NP-complete when both the host and target graph are line graphs.

By a similar argument we can show that L(G) contains L(H) as an induced subgraph if and only if

L(G) contains L(H) as an induced topological minor. In this way we get the desired result for INDUCED

TOPOLOGICAL MINOR as well.

For the CONTRACTIBILITY problem we refer to Corollary 6 which states that the P7-CONTRACTIBILITY

problem is NP-complete for line graphs; note that H = P7 is a line graph, because P7 = L(P8).
The two remaining problems are DISSOLUTION and GRAPH ISOMORPHISM. We first consider the

DISSOLUTION problem. Let G and H be two graphs. For each vertex u in G that has degree at least 3
we do as follows. Suppose that u has p neighbors. We replace u by p new vertices, each adjacent to each

other and to exactly one neighbor of u. Afterwards we do the same for each vertex x in H that is of degree

at least 3. We call the new graphs G′ and H ′, respectively. We claim that G′ and H ′ are line graphs. This

can be seen as follows. For every maximal clique in G′ we take a star with edges corresponding to the

vertices of the maximal clique; note that some edges may belong to two stars. The resulting graph has G′

as its line graph. By the same argument, H ′ is also a line graph. Moreover, G contains H as a dissolution

if and only if G′ contains H ′ as a dissolution. Because DISSOLUTION is NP-complete, we then find that

this problem stays NP-complete even when both the host and target graph are line graphs.

We now consider the GRAPH ISOMORPHISM problem. Let G and H be two arbitrary graphs on at least

four vertices. Then G and H are isomorphic if and only if L(G) and L(H) are isomorphic, where the

backward implication is due to the aforementioned observation that every connected line graph except for

the graph K3 has a unique preimage (see e.g. Harary [13]). This shows that GRAPH ISOMORPHISM stays

GRAPH ISOMORPHISM-complete when G and H are restricted to line graphs. Hence we have proven

Proposition 1. ✷
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4 Contractions

4.1 Polynomial-Time Solvability

We start with two useful lemmas, the second of which can be found in Levin et al. [19] but follows directly

from the polynomial-time result on graph minors by Robertson and Seymour [22].

Lemma 2 Let H be a connected graph on at least three vertices. If a graph G contains H as a contrac-

tion, then G has an H-witness structure, in which every leaf bag consists of exactly one vertex.

Proof: Let G be a graph that contains a connected graph H on at least three vertices as a contraction.

Then G has an H-witness structure W . Let x be a vertex of H with exactly one neighbor y. Suppose that

|W (x)| ≥ 2. By definition, there exists a vertex u ∈ W (x) that is adjacent to W (y). Let D1, . . . , Dp

be the connected components of G[W (x) \ {u}]. Because |W (x)| ≥ 2, we find that p ≥ 1. Let v be a

vertex of D1 that is not a cut vertex of G[D1]. We move all vertices of W (x) \ {v} to W (y). This results

in a new H-witness structure of G. Because H is a connected graph on at least three vertices, we did not

increase the size of any other leaf bag. Hence, by repeating this procedure we obtain our desired witness

structure. ✷

Lemma 3 ([22]) Let G be a graph and let Z1, . . . , Zp ⊆ VG be p specified pairwise disjoint sets such that∑p

i=1
|Zi| ≤ k for some fixed integer k. The problem of deciding whether G contains Kp as a contraction

with Kp-witness bags W1, . . .Wp such that Zi ⊆ Wi for i = 1, . . . , p can be solved in polynomial time.

We are ready to state the first result in this section; recall that a pileous clique is a graph whose vertices

of degree at least 2 form a clique, such as the P4, and that already P4-CONTRACTIBILITY is NP-complete

for general graphs [4].

Theorem 4 If H is a fixed pileous clique, then H-CONTRACTIBILITY is solvable in polynomial time on

claw-free graphs.

Proof: Let H be a pileous clique. If H has one or two vertices, the problem is trivial even for general

graphs. Suppose that H has at least three vertices. We split the vertices of H into two classes: V1

containing all vertices of degree 1 and V2 containing the remaining vertices, which induce a clique in H .

Let G be a graph. By Lemma 2 we deduce that G has an H-witness structure in which every leaf bag

is of cardinality 1, should G contain H as a contraction. Hence we can do as follows. For each vertex

x ∈ V1, we guess a vertex ux ∈ VG to form the corresponding leaf bag. We first check if the set of

guessed ux-vertices is independent. If not, then we discard the set of ux-vertices. Otherwise, we proceed

as follows. We observe that all neighbors of a vertex ux must go to the same bag which corresponds to

the unique neighbor y of x. Hence, we may contract any edge between two neighbors of ux. Because G

is claw-free, G[N(ux)] consists of at most two connected components. This means that after performing

the aforementioned edge contractions ux has at most two neighbors left in the resulting graph G′, and

these neighbors must be placed in the bag W (y) corresponding to y. We now put all vertices that must go

to W (y) in the set Z(y). Note that such a set can contain more than two vertices in case y has more than

one neighbor in V1. If y has no neighbor in V1, then we set Z(y) := ∅. It can happen that a vertex is in

more than one set Z(y). In that case we discard this set of ux-vertices (and we must guess some other set

of ux-vertices). Suppose that this is not the case, i.e., no vertex is in more than one set Z(y). We have

that
∑

y∈V2
|Z(y)| ≤ 2|V1|.
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We remove all vertices ux and are left to check whether the resulting graph G′′ obtained from G′

contains K|V2| as a contraction with witness bags W (y) such that Z(y) ⊆ W (y) for each y ∈ V2. Because∑
y∈V2

|Z(y)| ≤ 2|V1| is fixed as H is fixed, this can be done in polynomial time due to Lemma 3.

Because the number of different guesses for the sets of ux-vertices is at most n|V1|, which is polynomial

as H is fixed, the theorem follows. ✷

4.2 NP-Completeness

We now show that Pk-CONTRACTIBILITY is NP-complete for all k ≥ 7 even on line graphs. In order

to do this we first reformulate the problem. Let F = L(G) be the line graph of a graph G. Because

no disconnected graph contains Pk as a contraction, we may assume without loss of generality that G is

connected. For the same reason we assume that G has at least seven vertices. This means that F is not

isomorphic to K3. Consequently, there exists no graph G′ different from G with L(G′) = F .

Observe that F contains Pk as a contraction if and only if the edges of G can be partitioned into k

nonempty classes E1, . . . , Ek, such that each class Ei induces a connected subgraph in G and moreover,

every edge in Ei (which we also call an Ei-edge) may only be adjacent to edges in E1 or in E2 if i = 1,

edges in Ei−1, Ei, or Ei+1 if 2 ≤ i ≤ k − 1 and edges in Ek−1 or Ek if i = k. We call this problem the

k-EDGE PARTITION problem. Clearly, Pk-CONTRACTIBILITY on line graphs and k-EDGE PARTITION

are polynomially equivalent.

Theorem 5 The k-EDGE PARTITION problem is NP-complete for k = 7.

Proof: We will reduce from the HYPERGRAPH 2-COLORABILITY (H2C) problem, which is known to

be NP-compete (cf. [9]). An instance of this problem consists of a set system S = {S1, . . . , Sm} over a

ground set Q = {q1, . . . , qn}. We may assume that Si 6= ∅ for all 1 ≤ i ≤ m, and that S1∪· · ·∪Sm = Q.

The question is whether Q can be 2-colored , i.e., can be partitioned into two subsets Qb and Qr, such

that no set in S is monochromatic, i.e., only contains elements of Qb or of Qr.

For a given set system S we construct a graph G as follows. First we form a clique on vertices

q1, . . . , qn, representing the set Q. In the next step we insert 2m new isolated edges vjwj and v′jw
′
j

for j = 1, . . . ,m. We add edges between vertices qi and vj , v′j respectively, to build two copies of the

incidence graph for S . Namely we insert new edges qivj and qiv
′
j if and only if qi ∈ Sj . The construction

of G is finished by adding two new isolated edges xy and x′y′ and by making x connected to all wj and

analogously x′ to all w′
j , see Figure 1.

We claim that G is a yes-instance of 7-EDGE PARTITION if and only if S can be 2-colored.

First suppose that S can be 2-colored. Let Qb and Qr denote the subsets of Q colored by blue and red,

respectively. We partition the edges of G as follows:

• E1 = {xy}

• E7 = {x′y′}

• E2 = {xw1, . . . , xwm}

• E6 = {x′w′
j , . . . , x

′w′
m}

• E3 = {w1v1, . . . , wmvm} ∪ {vjqi | qi ∈ Sj ∩Qr} ∪ {qiqi′ | qi, qi′ ∈ Qr}
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Fig. 1: The constructed graph G.

• E5 = {w′
1v

′
1, . . . , w

′
mv′m} ∪ {v′jqi | qi ∈ Sj ∩Qb} ∪ {qiqi′ | qi, qi′ ∈ Qb}

• E4 = EG \ (E1 ∪ E2 ∪ E3 ∪ E5 ∪ E6 ∪ E7)

Obviously, E1, E2, E6 and E7 induce a connected subgraph. The E3-edges also induce a connected

subgraph, since every E3-edge is incident with some (red) vertex qi and all such red vertices are connected

in E3. Analogously we get that E5 induces a connected subgraph. Finally, the subgraph induced by E4

contains a complete bipartite subgraph between red and blue q-vertices. Moreover, every vj is connected

with an E4-edge to some blue q-vertex, and every v′j is connected with an E4-edge to some red q-vertex.

Hence E4 induces a connected subgraph of G. Finally, the edge in E1 is only adjacent to E2-edges,

and the edge in E7 is only adjacent to E6-edges, while the edges in all other partition classes are only

adjacent to edges in their own partition class or to edges in the preceding and succeeding partition class.

We conclude that G is a yes-instance of 7-EDGE PARTITION.

Now suppose that G is a yes-instance of 7-EDGE PARTITION. By construction of G, every E1-edge

must be incident with one of {x, x′} and every E7-edge with the other vertex of {x, x′}. Without loss of

generality assume that x belongs to every E1-edge and that x′ belongs to every E7-edge. As E3-edges

cannot be incident to any E1-edge, we get that x is not incident with any E3-edge. Analogously, x′ is not

incident with any E5-edge. We also observe that an E3-edge must be present in every path from x to x′

at distance at least 3 from x′. Therefore, E3-edges may only be incident with vertices vj and possibly qi,

but every vj is incident with at least one E3-edge. As the E3-edges induce a connected subgraph, we find

in fact that every vj is connected to some qi by an E3-edge. By symmetry of our construction, every v′j is

connected to some qi by an E5-edge.

As E3-edges and E5-edges cannot be incident with the same vertex qi, we may partition Q into two

parts, one part Qr containing those qi that are incident with an E3-edge, and the other part Qb containing

the remaining elements of Q. Because every vj is connected to some qi by an E3-edge, every Sj intersects

Qr. Analogously, as every v′j is connected to some qi via an E5-edge, every Sj intersects Qb as well.

For the sake of completeness note that there may be vertices qi incident only with E4-edges, but we have

chosen to put the corresponding elements qi to Qb, although we could have distributed them arbitrarily.

This completes the proof of Theorem 5. ✷

Corollary 6 The P7-CONTRACTIBILITY problem is NP-complete for line graphs.
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Another example of a small graph H , for which H-CONTRACTIBILITY is NP-complete on claw-free

graphs is H = C6. This result can be shown by an analogous construction as the one used in the proof of

Theorem 5 for the case H = P7. The only difference is that the constructed graph will have the edge xx′

instead of the edges xy and x′y′. We omit a proof of this statement, since it would mimic the arguments

of the proof of Theorem 5.

5 Future Work

A computational complexity classification of the H-CONTRACTIBILITY problem for claw-free graphs is

still open. For example, the cases H = P5 or H = P6 must still be resolved, as we cannot use the

hardness reduction in Theorem 5 for them. We stress though that the aim of this note was to investigate

whether claw-freeness of the input graph is useful for solving the H-CONTRACTIBILITY problem. We

showed that H-CONTRACTIBILITY is NP-complete on claw-free graphs already for small graphs H , but

also that there exist graphs H for which H-CONTRACTIBILITY is polynomial-time solvable on claw-free

graphs and NP-complete on general graphs. Hence, we conclude that claw-freeness helps but to a limited

extent.

For the H-INDUCED MINOR problem we can derive a similar result as Theorem 4. This result is not

known for general graphs.

Proposition 7 The H-INDUCED MINOR problem is polynomial-time solvable on claw-free graphs when-

ever H is a pileous clique.

Proof: Proposition 7 can be shown in a similar way as the corresponding result for H-CONTRACTIBILITY.

We use the same algorithm as in the proof of Theorem 4 with the following modifications. First, we re-

move any common neighbors between two ux-vertices if the corresponding x-vertices in H have no com-

mon neighbor. Second, after removing the ux-vertices, we apply Lemma 3 on the connected components

of the remaining graph G′′ instead of the whole G′′. If we are successful with one such a component, then

we are done. Otherwise we must guess a different set of ux-vertices, as before. ✷

Recall that the smallest known NP-complete case for H-INDUCED MINOR is a target graph H on 68
vertices, as shown by Fellows et al. [6]. The gadget in their NP-completeness reduction is not claw-

free, and the following problem is open. Does there exist a graph H for which H-INDUCED MINOR is

NP-complete for claw-free graphs?

We also recall that for any fixed H , the H-INDUCED TOPOLOGICAL MINOR problem can be solved in

polynomial time for claw-free graphs [7]. This means that H-INDUCED MINOR is polynomial-time solv-

able on claw-free graphs for any fixed H that has maximum degree 2, because for such target graphs H the

two problems H-INDUCED MINOR and H-INDUCED TOPOLOGICAL MINOR are polynomially equiva-

lent. In particular this holds for H = 2C3, where 2C3 denotes the disjoint union of two 3-vertex cycles;

determining the computational complexity of 2C3-INDUCED MINOR for general graphs is a notoriously

open problem.
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