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Given a graph, finding the maximal matching of minimum size (MMM) and the induced matching of maximum

size (MIM) have been very popular research topics during the last decades. In this paper, we give new complexity

results, namely the NP-hardness of MMM and MIM in induced subgrids and we point out some promising research

directions. We also sketch the general framework of a unified approach to show the NP-hardness of some problems

in subgrids.
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1 Introduction

Given a graph G, a matching M is a set of edges which are pairwise non-adjacent. A matching is said to

be maximal if no other edge can be added to it while keeping the property of it being a matching. Vertices

contained in edges of a matching are said to be saturated by this matching. A vertex which is not saturated

by a matching is called exposed. The problem of finding a maximal matching of minimum size is called

Minimum Maximal Matching (MMM) or Minimum (Independent) Edge Dominating Set (see [26] for the

equivalence of these problems). Given a graph G, the size of a minimum maximal matching is denoted

by β(G).
MMM, NP-hard in general, is extensively studied since early 80s due to its theoretical and practical

interest. In [26], Yannakakis and Gavril show that MMM is NP-hard in several classes of graphs including

bipartite (or planar) graphs with maximum degree 3. In [14], Horton and Kilakos extended these results by

showing the NP-hardness of MMM in planar bipartite graphs and planar cubic graphs. In [28], Zito shows

that the problem remains NP-hard in the so-called almost regular bipartite graphs, that are bipartite graphs
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for which the ratio between the maximum degree ∆ and the minimum degree δ is bounded. Another

strengthening of the result of Yannakakis and Gavril in [26] is given in [9] by showing that MMM is

NP-hard in k-regular bipartite graphs for any fixed k ≥ 3. On the other hand, polynomial time algorithms

for MMM are designed for trees [20], for block graphs [15], for series-parallel graphs [21], for bipartite

permutation graphs and cotrianglated graphs [22], and for clique-width bounded graphs [10].

Due to the hardness of solving MMM even in very restricted classes of graphs, many recent works on

MMM concentrate on two aspects: the approximation point of view (see e.g. [28]) and the exact resolution

of MMM in general graphs via Integer Programming techniques [24, 1].

Another extensively studied problem related to matchings is the problem of finding an induced matching

of maximum size, the so-called Maximum Induced Matching (MIM). A matching is induced if no two

vertices belonging to different edges of the matching are adjacent. Given a graph G, the cardinality of

a maximum induced matching is denoted by iµ(G). MIM, also NP-hard in general, remains NP-hard in

several graph classes such as planar graphs of degree at most 4 [16], line graphs [17], bipartite graphs

[23], bipartite graphs of girth at least 14 [2], or of girth at least 6 [28] or of degree at most 3 [18]. This last

result has been recently improved in [7] by proving that MIM is NP-hard in k-regular bipartite graphs for

any k ≥ 3. On the other hand, MIM can be polynomially solved in weakly chordal graphs [4], AT-free

graphs [5, 3], circular arc graphs [11], cocomparability graphs [12], graphs of bounded clique-width [17],

chordal graphs [2] and interval filament graphs [3], which include cocomparability graphs and polygon-

circle graphs, where the latter include circle graphs, circular-arc graphs, chordal graphs, and outerplanar

graphs.

In this paper, we contribute to narrowing down the gap between P and NP-complete with respect to

MMM by showing that MMM is NP-hard in induced subgrids of degree 2 and 3 with arbitrarily large

girth. Starting from the NP-hardness of MMM in cubic planar graphs, we reduce it to the case of subgrids

by embedding a planar graph into a grid and studying how a solution is affected by edge subdivisions.

Similarly, we show that MIM is NP-hard in induced subgrids of degree 2 and 4 with arbitrarily large girth.

This strengthens the result in [28] on the NP-hardness of MIM in bipartite graphs of girth at least 6. A

similar thought-process has been used for other problems known to be NP-hard in planar graphs of degree

4; e.g. some list-coloring problems in [8]. In the conclusion, we give a general framework to apply this

approach to other problems. We also discuss the tractability of MMM and MIM in grids and point out

some open research directions on the topic.

Pn denotes a chordless path on n vertices. The length of a path is the number of edges in it. A two-

dimensional n×m grid graph (or grid for short) Gn,m = (V,E) will have vertex set V = ((xi, yj), i =
1, . . . , n; j = 1, . . . ,m) where xi = i, yj = j for all i, j and edge set E such that (xi, yi)(x

′

i, y
′

i) ∈ E ⇔
|xi − x′

i|+ |yi − y′i| = 1.

An induced subgrid of a grid G is obtained by removing some of its vertices (and hence the edges

incident to them) whereas a partial subgrid of G is obtained from an induced subgrid by removing some

edges. In this paper, whenever we say ”subgrid” without specifying whether it is partial or induced, we

mean an induced subgrid.

Given a graph G and weights W = (w(e), e ∈ E) where w(e) denotes the weight of an edge e, let us

define G̃W as the graph obtained from G by subdividing each of its edges e by 3w(e) vertices; in other

words, each edge e of G becomes in G̃W a chordless path of length 3w(e) + 1. In what follows, M and

M ′ denote matchings in G whereas M̃ and M̃ ′ refer to matchings in G̃W . When no ambiguity occurs, for

any vertex u of G, the corresponding vertex in G̃W is also denoted by u. In related figures, these vertices
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are black whereas additional vertices of G̃W are white.

2 MMM in induced subgrids

The following lemma states that given a graph G and weights W on its edges, there is a minimum max-

imal matching of G̃W whose edges have only a specific form with respect to the chordless paths of G̃W

obtained by subdividing the edges of G.

Lemma 2.1 Given a graph G and weights W on its edges, there exists a minimum maximal matching M̃
of G̃W such that for each edge uv ∈ E(G), the corresponding subdivided path Puv = u, x1, x2, . . . , x3w(uv), v

in G̃W is of one of the following types:

Type 1: ux1, x3ix3i+1(i ∈ {1, . . . , w(uv)− 1}), x3w(uv)v ∈ M̃ ; hence M̃ has exactly w(uv) + 1 edges in

Puv ,

Type 2: ux1, x3w(uv)v /∈ M̃ , x3i−1x3i(i ∈ {1, . . . , w(uv)}) ∈ M̃ , u and v are saturated by M̃ ; hence M̃
has exactly w(uv) edges in Puv ,

Type 3: ux1 /∈ M̃ , x3i−1x3i(i ∈ {1, . . . , w(uv)}) ∈ M̃ , u is saturated and v is exposed with respect to M̃ ;

hence M̃ has exactly w(uv) edges in Puv .

Fig. 1: Possible types for a path Puv corresponding to an edge uv ∈ E(G) (with w(uv) = 2) in a minimum maximal

matching M̃ of G̃W .

Proof: For any minimum maximal matching M̃ ′ in G̃W , the end vertices of a path Puv can be either

both saturated, or both exposed, or one saturated and the other one exposed. Each time u or v is saturated

there are still two possibilities: it is saturated either by an edge in Puv or by an edge not in Puv . Having

Types 1, 2 and 3 as illustrated in Figure 1, there are three remaining cases with respect to the saturation

of vertices u and v by M̃ ′ (illustrated in Figure 2); if there is a maximal matching containing one of these

remaining cases for a path Puv , then we show in the sequel that this maximal matching can be locally

modified without changing its size and without harming its maximality such that Puv becomes of Type 1,

2 or 3 and no new remaining case is created by the modification.
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Fig. 2: Remaining cases for a path Puv corresponding to an edge uv ∈ E(G) (with w(uv) = 2) in a minimum

maximal matching M̃
′ of G̃W .

Case 1: Both u and v are exposed.

Then by maximality of M̃ ′, we have necessarily x1x2 ∈ M̃ ′ and similarly x3w(uv)−1x3w(uv) ∈ M̃ ′.

The maximality of M̃ ′ also forces it to contain w(uv)− 1 additional edges in Puv; which sums up

to w(uv) + 1 edges in Puv . It can be easily noticed that such a path can be replaced by a path of

Type 1 (of the same length); the new matching is still maximal since a path of Type 1 has a maximal

matching in Puv and no change is carried out by this replacement in M̃ ′ in edges not contained in

Puv . Moreover, the size of the new matching M̃ is the same as the size of M̃ ′.

Case 2: ux1 ∈ M̃ ′ and v is exposed.

Similarly to Case 1, such a Puv can be replaced by a path of Type 1, defining a new matching M̃ .

Case 3: ux1 ∈ M̃ ′, x3w(uv)v /∈ M̃ ′ and v is saturated.

The maximality of M̃ ′ forces it to contain at least w(uv)+1 edges in Puv . Let us consider NG(u)\
{v}, the neighborhood of u in G and different from v. Let us suppose that all vertices z ∈ NG(u) \

{v} are saturated in G̃W with respect to M̃ ′ and show that in this case M̃ ′ would not be of minimum

size. In fact, in such a case, if there is z ∈ NG(u) \ {v} such that z is saturated by an edge in Puz ,

then Puv can be modified into Type 2 and Puz (from Case 3) into Type 1 (by adding in M̃ ′ the

edge incident to u in Puz and removing from M̃ ′ one edge in Puz), the other paths Puz′ for other

neighbors z′ of u remaining unchanged. Note that the size of the so-obtained maximal matching is

one less than the size of M̃ ′. On the other hand, if for all z ∈ NG(u) \ {v}, z is saturated by an

edge not in Puz , then Puv can be modified into a path of Type 3 (where u becomes exposed) and all

the paths Puz are modified (from Type 2) into Type 3. Again, this results in a maximal matching of

lower size.

So, there is at least one vertex z ∈ NG(u) \ {v} such that z is exposed in G̃W . But then Puz can be

transformed (from Type 3) into Type 1 (hence augmenting the size of M̃ ′ by one on Puz) and Puv

into Type 2 (hence reducing the size of M̃ ′ by one on Puv). As a result, we obtain a new maximal

matching M̃ of the same size.
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In all cases, the new matching M̃ is a minimum maximal matching satisfying the required conditions. ✷

Proposition 2.2 Given a graph G and weights W on its edges, we have β(G̃W ) = β(G)+
∑

e∈E(G) w(e).

Proof: Without loss of generality, let M̃ be a minimum maximal matching of G̃W as described in Lemma

2.1, that is such that for all uv ∈ E(G), Puv is of Type 1, 2 or 3. Now, we define a matching M ′ of G
as follows: M ′ = {uv|Puv is of Type 1}. Let us show that M ′ is maximal; note first that all vertices of

G saturated in G̃W with respect to M̃ are also saturated with respect to M ′ since they necessarily belong

to some path of Type 1. Moreover, consider a vertex u in G which is exposed with respect to M ′ (and

hence with respect to M̃ as well); all of its neighbors in G are saturated by M̃ in G̃W (since they all

necessarily correspond to paths of Type 3) and hence they are also saturated by M ′ in G. Consequently,

M ′ is maximal. Now, we have |M ′| = β(G̃W )−
∑

e∈E(G) w(e) ≥ β(G).

Conversely, having a minimum maximal matching M of G, we define a matching M̃ ′ as follows: if

uv ∈ M then Puv is of Type 1; if uv /∈ M and both u and v are saturated (with respect to M ) then Puv is

of Type 2; and finally if uv /∈ M , u is saturated and v is exposed with respect to M , then Puv is of Type

3. As previously, the maximality of M̃ ′ follows from its definition and the maximality of M . Now, it is

enough to observe that |M̃ ′| = β(G) +
∑

e∈E(G) w(e) ≥ β(G̃W ) to conclude the proof. ✷

Let us recall the following result about the embedding of a given planar graph into a grid:

Theorem 2.3 [27] A planar graph G with maximum degree at most 4 can be embedded in a grid graph

G0 of polynomial size: the vertices u of G are mapped to vertices u0 of G0; each edge e = uv of G is

mapped to a path e0 between u0 and v0 in G0; the intermediate vertices of e0 are called internal vertices,

they belong to exactly one such path.

Note that by subdividing the edges e = uv of G by the internal vertices in its embedding, we obtain a

partial subgrid G′ of G0. The edge uv ∈ E(G) corresponds to a path of length ℓ(uv) in G′. Having a

grid (or induced subgrid, or partial subgrid) G, we will also use the notion of a d-expansion of G, d ≥ 2,

defined in [8] as the subgrid obtained from G by subdividing each edge by d− 1 vertices; hence a path of

length ℓ in G becomes a (chordless) path of length ℓd in its d-expansion.

Theorem 2.4 MMM is NP-hard in subgrids of degree 2 and 3 and of arbitrarily large girth.

Proof: Given a cubic planar graph G, we will show that, for all g ≥ 3, there are weights W on the edges

of G such that G̃W is a subgrid of degree 2 and 3 and of girth at least g. Let us first consider an embedding

of G into a p× q grid G0 of polynomial size. Consider the partial subgrid G′ obtained by subdividing the

edges of this embedding by the internal vertices of G0. Let k = ⌈ g
48⌉; take a 9k-expansion of G′, called

G′′. Note that G′′ is a subgrid of a (9k(p − 1) + 1) × (9k(q − 1) + 1) grid G1. Each edge uv ∈ E(G),
corresponding to a path of length ℓ(uv) in G′, is associated to a path of length 9kℓ(uv) between u0 and

v0 in G′′. Clearly, at least the first nine edges of such a path (starting from u0 for instance) are either

all horizontal or all vertical. Let us call u0, x1, x2, x3, x4, x5 the first vertices of this path; we remove

edges x3x4 and x4x5 from G′′ and replace them by a path of G1 of length 6 having two corners as in

Figure 3. The graph obtained G̃ is a subgrid of girth at least g and has vertices of degree 2 and 3. Now,

it is easy to note that the edge uv of G corresponds to a path of length 9kℓ(uv) + 4 in G̃. So, by letting

w(uv) = 3kℓ(uv) + 1, we have that G̃ is isomorphic to G̃W .
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Fig. 3: Transformation of a planar graph G into a subgrid G̃W of degree 2 and 3 with girth 48.

Obviously, the above transformation from G to G̃W can be made in polynomial time. Moreover, Proposi-

tion 2.2 implies that G has a minimum maximal matching of size β(G) if and only if there is a minimum

maximal matching of size β(G) +
∑

e∈E(G) w(e) in G̃W . The proof is concluded by using the NP-

hardness of MMM in cubic planar graphs [14]. ✷

3 MIM in induced subgrids

We apply the same methodology to show that MIM is NP-hard in subgrids of degree 2 or 4 and of arbitrary

large girth. To this aim, we need the following proposition that is the MIM version of Proposition 2.2

Proposition 3.1 Given a graph G and weights W on its edges, we have iµ(G̃W ) = iµ(G)+
∑

e∈E(G) w(e).

Proof: Let us consider a graph G and weights W on its edges, we first claim that there is a maximum

induced matching M̃i of G̃W such that:

(a) ∀uv ∈ E(G), |Puv ∩ M̃i| ∈ {w(uv), w(uv) + 1}

(b) If |Puv∩M̃i| = w(uv) then we have M̃i∩{ux1, x3w(uv)v} = ∅ for Puv = u, x1, x2, . . . , x3w(uv), v

Let us consider a maximum induced matching M̃ ′

i of G̃W . For every uv ∈ E(G), Puv being of length

3w(uv)+1, we have |Puv ∩M̃ ′

i | ≤ w(uv)+1 and moreover if it is equal to w(uv)+1 then the matching

on this path is of Type 1 as described in Lemma 2.1 (see Figure 1), with u and v saturated by edges of

Puv ∩ M̃ ′

i . On the other hand, M̃ ′

i being of maximum size, |Puv ∩ M̃ ′

i | ≥ w(uv)− 1.
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Starting from M̃ ′

i we will apply successively the two following rules for computing another maximum

induced matching M̃i satisfying conditions (a) and (b).

We first apply Rule 1 for every edge uv ∈ E(G):

Rule 1: If |Puv ∩ M̃ ′

i | = w(uv) and M̃ ′

i ∩ {ux1, x3w(uv)v} 6= ∅, then supposing for instance that

ux1 ∈ M̃ ′

i , we replace M̃ ′

i by M̃ ′

i \ (Puv ∩ M̃ ′

i)∪ {x3i+1x3i+2, i = 0, . . . w(uv)− 1}, another maximum

induced matching.

Then, for every edge uv ∈ E(G) such that |Puv ∩ M̃ ′

i | = w(uv) − 1, since M̃ ′

i is maximum, we

necessarily have two vertices z1, z2 outside Puv such that z1u ∈ M̃ ′

i and vz2 ∈ M̃ ′

i . z1 belongs to a path

Pu1u and z2 belongs to a path Pvu2
, where u1u ∈ E(G), vu2 ∈ E(G). Moreover, since Rule 1 has been

applied to all edges in E(G) and in particular to u1u and vu2, the fact that z1u ∈ M̃ ′

i and vz2 ∈ M̃ ′

i

means that Pu1u and Pvu2
have respectively w(u1u) + 1 and w(vu2) + 1 edges in M̃ ′

i and therefore they

are both of Type 1.

Rule 2: Replace M̃ ′

i by M̃ ′

i \ [(Puv ∩M̃ ′

i)∪{vz2}]∪{x3i+2x3i+3, i = 0, . . . , w(uv)−1} and apply Rule

1 on the path Pvu2
.

Note that when we apply Rule 1 to Pvu2
, it is no more of Type 1 since we first remove vz2 from M̃ ′

i .

In addition, the other end-edge of Pvu2
belongs to M̃ ′

i . Thus, Rule 1 can be applied.

Denoting by M̃i the transformed induced matching, it is a maximum induced matching satisfying con-

ditions (a) and (b). We then consider the set M ′

i = {uv|Puv is of Type 1}. By condition (a), none

of the paths Puv has |Puv ∩ M̃i| = w(uv) − 1 and therefore both u and v cannot simultaneously be-

long to two different paths of Type 1. Consequently, M ′

i is an induced matching and moreover |M ′

i | =

iµ(G̃W )−
∑

e∈E(G) w(e) ≤ iµ(G).

Conversely, having a maximum induced matching Mi of G, we define a matching M̃ ′

i as follows: if

uv ∈ Mi then Puv is of Type 1; if uv /∈ Mi, at least one among u and v, say u is exposed and then

edges x3i+1x3i+2, i = 0, . . . w(uv) − 1 are put in M̃ ′

i . M̃ ′ is an induced matching satisfying |M̃ ′| =

iµ(G) +
∑

e∈E(G) w(e) ≤ iµ(G̃W ), which concludes the proof. ✷

MIM is known to be NP-hard in planar graphs of maximum degree 4 [16]. We can even adapt the proof

to show a slightly more restrictive result:

Proposition 3.2 MIM is NP-hard in 4-regular planar graphs.

Proof: The proof of [16] is based on the remark that, given a graph G and adding for each vertex v
a vertex v′ and a pendant edge vv′, the resulting graph G′ satisfies iµ(G′) = α(G), where α denotes

the stability number. Moreover if G is planar then G′ is also planar. NP-hardness in planar graphs of

maximum degree 4 ([16]) follows from the fact that Maximum Stable Set problem is NP-hard in cubic

planar graphs.

It is shown in [25] that Maximum Stable Set problem remains NP-hard in cubic planar graphs without

bridge. Using Petersen’s Theorem [13] such graphs admit a perfect matching and consequently:

Lemma 3.3 Max Stable Set problem is NP-hard in cubic planar graphs admitting a perfect matching.

We are now ready to describe the reduction: starting from a planar cubic graph with a perfect matching

M we add to each edge uv ∈ M the gadget H as depicted on Figure 4.
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Fig. 4: The gadget H .

Denoting by G′ the resulting graph, it is straightforward to verify that G′ is planar and 4-regular.

Moreover, for any edge uv ∈ M , denote by EH,u,v the set of edges of the copy of the gadget H attached

to u and v and denote by a and b the two edges of EH,u,v incident, in G′, to u and v respectively. We

have, for any maximum induced matching M ′

i of G′: |M ′

i ∩{a, b}| ≤ 1 and |M ′

i ∩ (EH,u,v \{a, b})| = 1.

Then, we deduce: iµ(G′) = α(G) + |M |.
The proof is completed by noticing that the transformation is polynomial. ✷

Then, using exactly the same methodology as in the proof of Theorem 2.4, we show:

Theorem 3.4 MIM is NP-hard in subgrids of degree 2 and 4 and of arbitrarily large girth.

4 Concluding remarks

In this paper, we have shown the NP-hardness of MMM and MIM in induced sugrids. Similar thought

processes have been applied to other combinatorial problems known to be NP-hard in planar graphs of

maximum degree 4, like Independent Dominating Set [6] or List Coloring [8]. It would be interesting

to unify all such results or even to derive general conditions allowing us to conclude the NP-hardness in

subgrids from NP-hardness in planar graphs of maximum degree 4. A first step is the following proposi-

tion. Given a graph G with weights W on its edges, and two integers r and p where r < p, we denote by

G̃W,p,r the graph obtained from G by replacing each edge uv by a path of length pw(uv) + r.

Proposition 4.1 Given a problem π satisfying:

(1) there are two integers r and p where r < p such that for any graph G, any k and W , there is k′

such that

optπ(G) ≤ k ⇔ optπ(G̃W,p,r) ≤ k′

if π is a minimization problem, and

optπ(G) ≥ k ⇔ optπ(G̃W,p,r) ≥ k′

if π is a maximization problem,
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and either

(2) r(p+ r) is even and π is NP-hard in planar graphs of maximum degree in D ⊂ {1, . . . , 4},

or

(2’) r is odd, p is even and π is NP-hard in bipartite planar graphs of maximum degree in D ⊂
{1, . . . , 4},

then π is NP-hard in subgrids of degree in {2} ∪D and of arbitrarily large girth.

Proof sketch: Starting from a planar graphs of degree in D, the proof consists in embedding it in a grid,

subdividing edges to transform it into a partial subgrid, performing a pi-expansion for some appropriate i
and locally correcting length of Puv such that |Puv| ≡ r mod p. As shown in the proof of Theorem 2.4

it is easy to correct the length of each Puv by extending its length by a fixed even number x, which allows

us to conclude in case (2) by taking x = r or x = p + r. In case (2’), we first modify the subgrid

after pi-expansion as follows (see [8]): let (A,B) be a bipartition of G, for any vertex u0 of the subgrid

corresponding to a vertex of A, replace u0 by one of its neighbors in the subgrid and make the appropriate

modification on Puv for any neighbor v of u in G (see Figure 5). In this way, the length of each Puv is

modified by one which allows us to take x = r±1. In both cases, the related NP-hardness result in planar

graphs gives the conclusion. ✷

Fig. 5: Modification of u0 corresponding to u ∈ A in the subgrid in case (2’) of Proposition 4.1.

Note that for many problems known to be NP-hard in planar graphs of degree 4 and polynomial in

subgrids e.g., maximum independent set, such a reduction does not exist. The condition (1) describes an

instance transformation where edges are replaced by a gadget that is a path of some specific (arbitrarily

large) length. Interesting further work would be to extend Proposition 4.1 using more general gadgets

in order to get new NP-hardness results in subgrids. A natural question is then to find which problems

known to be NP-hard in bipartite planar graphs are polynomially solvable in subgrids.

Another research direction concerns the complexity of MMM and MIM in grid graphs which have a

very regular structure unlike induced subgrids. For MIM, a first step has been done in [19] showing that

MIM can be solved in polynomial time in n × m grids for some cases of n and m. For MMM, we

conjecture that β(Gn,m) = ⌈nm
3 ⌉.
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