Bipartite Powers of k-chordal Graphs

L. Sunil Chandran\|t and Rogers Matheu|"

Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India.
received $4^{\text {th }}$ May 2012, revised $17^{\text {th }}$ April 2013, accepted $14^{\text {th }}$ April 2013.

Abstract

Let k be an integer and $k \geq 3$. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3 -chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if G^{m} is chordal then so is G^{m+2}. Brandstädt et al. in [Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. Duchet-type theorems for powers of HHD-free graphs. Discrete Mathematics, 177(1-3):9-16, 1997.] showed that if G^{m} is k-chordal, then so is G^{m+2}. Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m-th bipartite power $G^{[m]}$ of a bipartite graph G is the bipartite graph obtained from G by adding edges (u, v) where $d_{G}(u, v)$ is odd and less than or equal to m. Note that $G^{[m]}=G^{[m+1]}$ for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is $G^{[m]}$, where k, m are positive integers with $k \geq 4$.

Keywords: k-chordal graph, hole, chordality, graph power, bipartite power.

1 Introduction

A hole is a chordless (or an induced) cycle in a graph. The chordality of a graph G, denoted by $\mathcal{C}(G)$, is defined to be the size of a largest hole in G, if there exists a cycle in G. If G is acyclic, then its chordality is taken as 0 . A graph G is k-chordal if $\mathcal{C}(G) \leq k$. In other words, a graph is k-chordal if it has no holes with more than k vertices in it. Chordal graphs are exactly the class of 3 -chordal graphs and chordal bipartite graphs are bipartite, 4 -chordal graphs. k-chordal graphs have been studied in the literature in [2], [5], [6], [8], [9] and [16]. For example, Chandran and Ram [5] proved that the number of minimum cuts in a k-chordal graph is at most $\frac{(k+1) n}{2}-k$. Spinrad[16] showed that $(k-1)$-chordal graphs can be recognized in $O\left(n^{k-3} M\right)$ time, where M is the time required to multiply two n by n matrices.

Powering and its effects on the chordality of a graph has been a topic of interest. The m-th power of a graph G, denoted by G^{m}, is a graph with vertex set $V\left(G^{m}\right)=V(G)$ and edge set $E\left(G^{m}\right)=\{(u, v) \mid u \neq$ $\left.v, d_{G}(u, v) \leq m\right\}$, where $d_{G}(u, v)$ represents the distance between u and v in G. Balakrishnan and

[^0]Paulraja [1] proved that odd powers of chordal graphs are chordal. Chang and Nemhauser [7] showed that if G and G^{2} are chordal then so are all powers of G. Duchet [10] proved a stronger result which says that if G^{m} is chordal then so is G^{m+2}. Brandstädt et al. in [3] showed that if G^{m} is k-chordal then so is G^{m+2}, where $k \geq 3$ is an integer. Studies on families of graphs that are closed under powering can also be seen in the literature. For instance, it is known that interval graphs, proper interval graphs [14], strongly chordal graphs [13], circular-arc graphs [15]|[12], cocomparability graphs [11] etc. are closed under taking powers.

Subclasses of bipartite graphs, like chordal bipartite graphs, are not closed under powering since the m-th power of a bipartite graph need not be even bipartite. Chandran et al. in [4] introduced the notion of bipartite powering to retain the bipartitedness of a bipartite graph while taking power. The m-th bipartite power $G^{[m]}$ of a bipartite graph G is the bipartite graph obtained from G by adding edges (u, v) where $d_{G}(u, v)$ is odd and less than or equal to m. Note that $G^{[m]}=G^{[m+1]}$ for each odd m. It was shown in [4] that the m-th bipartite power of a tree is chordal bipartite. The intention there was to construct chordal bipartite graphs of high boxicity. The fact that the chordal bipartite graph under consideration was obtained as a bipartite power of a tree was crucial for proving that its boxicity was high. Since trees are a subclass of chordal bipartite graphs, a natural question that came up was the following: is it true that the m-th bipartite power of every chordal bipartite graph is chordal bipartite? In this paper we answer this question in the affirmative. In fact, we prove a more general result.

Our Result

Let m, k be positive integers with $k \geq 4$. Let G be a bipartite graph. If G is k-chordal, then so is $G^{[m]}$. Note that the special case when $k=4$ gives us the following result: chordal bipartite graphs are closed under bipartite powering.

2 Graph Preliminaries

Throughout this paper we consider only finite, simple, undirected graphs. For a graph G, we use $V(G)$ to denote the set of vertices of G. Let $E(G)$ denote its edge set. For every $x, y \in V(G), d_{G}(x, y)$ represents the distance between x and y in G. For every $u \in V(G), N_{G}(u)$ denotes its open neighborhood in G, i.e. $N_{G}(u)=\{v \mid(u, v) \in E(G)\}$. A path P on the vertex set $V(P)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ (where $n \geq 2$) has its edge set $E(P)=\left\{\left(v_{i}, v_{i+1}\right) \mid 1 \leq i \leq n-1\right\}$. Such a path is denoted by $v_{1} v_{2} \ldots v_{n}$. If $v_{i}, v_{j} \in V(P), v_{i} P v_{j}$ is the path $v_{i} v_{i+1} \ldots v_{j}$. The length of a path P is the number of edges in it and is denoted by $\|P\|$. A cycle C with vertex set $V(C)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and edge set $E(C)=\left\{\left(v_{i}, v_{i+1}\right) \mid 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{n}, v_{1}\right)\right\}$ is denoted as $C=v_{1} v_{2} \ldots v_{n} v_{1}$. We use $\|C\|$ to denote the length of cycle C.

3 Holes in Bipartite Powers

Let H be a bipartite graph. Let $\mathcal{B}(H)$ be a family of graphs constructed from H in the following manner: $H^{\prime} \in \mathcal{B}(H)$ if corresponding to each vertex $v \in V(H)$ there exists a nonempty bag of vertices, say B_{v}, in H^{\prime} such that (a) for every $x \in B_{u}, y \in B_{v},(x, y) \in E\left(H^{\prime}\right)$ if and only if $(u, v) \in E(H)$, and (b) vertices within each bag in H^{\prime} are pairwise non-adjacent. Below we list a few observations about H and every $H^{\prime}\left(\right.$, where $H^{\prime} \in \mathcal{B}(H)$):
Observation 1. H^{\prime} is bipartite.

Observation 2. H is an induced subgraph of H^{\prime}.
Observation 3. Let k be an integer such that $k \geq 4$. If H is k-chordal, then so is H^{\prime}.
Proof: Any hole of size greater than 4 in H^{\prime} cannot have more than one vertex from the same bag, say B_{v}, as such vertices have the same neighborhood. Hence, the vertices of a hole (of size greater than 4) in H^{\prime} belong to different bags and thus there is a corresponding hole of the same size in H.

Theorem 4. Let m, k be positive integers with $k \geq 4$. Let G be a bipartite graph. If G is k-chordal, then so is $G^{[m]}$.

Proof: We prove this by contradiction. Let p denote the size of a largest induced cycle, say $C=$ $u_{0} u_{1} \ldots u_{p-1} u_{0}$, in $G^{[m]}$. Assume $p>k$. Then, $p \geq 6$ (since $k \geq 4$ and $G^{[m]}$ is bipartite). Between each u_{i-1} and u_{i}, where $i \in\{0, \ldots, p-1\}$, there exists a shortest path of length not more than m in $G^{\text {(i) }}$. Let P_{i} be one such shortest path between u_{i-1} and u_{i} in G.
Let H be the subgraph induced on the vertex set $\bigcup_{i=0}^{p-1} V\left(P_{i}\right)$ in G. As mentioned in the beginning of this section, construct a graph H^{\prime} from H, where $H^{\prime} \in \mathcal{B}(H)$, in the following manner: for each $v \in V(H)$, let $\left|B_{v}\right|=\left|\left\{P_{i} \mid 0 \leq i \leq p-1, v \in V\left(P_{i}\right)\right\}\right|$ i.e., let B_{v} have as many vertices as the number of paths in $\left\{P_{0} \ldots P_{p-1}\right\}$ that share vertex v in H. For each $i \in\{0, \ldots, p-1\}$, let $Q_{i}^{\prime}=u_{i-1} Q_{i}$ be a shortest path between u_{i-1} and u_{i} in H^{\prime} such that no two paths Q_{i} and Q_{j} (where $i \neq j$) share a vertex ${ }^{(\mathrm{i})}$. From our construction of H^{\prime} from H it is easy to see that such paths exist. Let $Q_{i}=v_{i, 1} v_{i, 2} \ldots v_{i, r_{i}} u_{i}$, where $r_{i}=\left\|Q_{i}\right\| \geq 0$. Thus, $Q_{i}^{\prime}=u_{i-1} v_{i, 1} v_{i, 2} \ldots v_{i, r_{i}} u_{i}$. Clearly, $\left\|Q_{i}^{\prime}\right\|=\left\|P_{i}\right\| \leq m$. The reader may also note that the cycle $C\left(=u_{0} u_{1} \ldots u_{p-1} u_{0}\right)$ which is present in $G^{[m]}$ will be present in $H^{[m]}$ and thereby in $H^{\prime[m]}$ too.

In order to prove the theorem, it is enough to show that there exists an induced cycle of size at least p in H^{\prime}. Then by combining Observation 3 and the fact that H is an induced subgraph of G, we get $k \geq \mathcal{C}(G) \geq \mathcal{C}(H) \geq \mathcal{C}\left(H^{\prime}\right) \geq p$ contradicting our assumption that $p>k$. Hence, in the rest of the proof we show that $\mathcal{C}\left(H^{\prime}\right) \geq p$.

Consider the following drawing of the graph H^{\prime}. Arrange the vertices $u_{0}, u_{1}, \ldots, u_{p-1}$ in that order on a circle in clockwise order. Between each u_{i-1} and u_{i} on the circle arrange the vertices $v_{i, 1}, v_{i, 2}, \ldots, v_{i, r_{i}}$ in that order in clockwise order. Recall that these vertices are the internal vertices of path Q_{i}^{\prime}.
Claim 4.1. In this circular arrangement of vertices of H^{\prime}, each vertex has an edge (in H^{\prime}) with both its left neighbor and right neighbor in the arrangement.

Let $x_{1}, x_{2} \in V\left(H^{\prime}\right)$, where $x_{1} \in V\left(Q_{i}\right), x_{2} \in V\left(Q_{j}\right)$. We define the clockwise distance from x_{1} to x_{2}, denoted by clock_dist $\left(x_{1}, x_{2}\right)$, as the minimum non-negative integer s such that $j=i+s$. Similarly, the clockwise distance from x_{2} to x_{1}, denoted by clock_dist $\left(x_{2}, x_{1}\right)$, is the minimum non-negative integer s^{\prime} such that $i=j+s^{\prime}$. Let $x, y, z \in V\left(H^{\prime}\right)$. We say $y<_{x} z$ if scanning the vertices of H^{\prime} in clockwise direction along the circle starting from x, vertex y is encountered before z. Let $x \in V\left(Q_{i}\right)$. Vertex y is called the farthest neighbor of x before z if $y \in N_{H^{\prime}}(x), y \in V\left(Q_{i}\right) \cup V\left(Q_{i+1}\right) \cup V\left(Q_{i+2}\right), y<_{x} z$, and for every other $w \in N_{H^{\prime}}(x)$ either $z<_{x} w$ or $w \notin V\left(Q_{i}\right) \cup V\left(Q_{i+1}\right) \cup V\left(Q_{i+2}\right)$ or both.
Claim 4.2. There always exists a vertex which is the farthest neighbor of x before z, unless $(x, z) \in$ $E\left(H^{\prime}\right)$ and $z \in V\left(Q_{i}\right) \cup V\left(Q_{i+1}\right) \cup V\left(Q_{i+2}\right)$.

[^1]Let $\{A, B\}$ be the bipartition of the bipartite graph H^{\prime}. We categorize the edges of H^{\prime} as follows: an edge $(x, y) \in E\left(H^{\prime}\right)$ is called an l-edge, if $l=\min ($ clock_dist (x, y), clock_dist $(y, x))$.

Fig. 1: $x \in V\left(Q_{i}\right), y \in V\left(Q_{i+l}\right)$ and let $(x, y) \in E\left(H^{\prime}\right)$ be an l-edge, where $l>2$. The dotted line between u_{i-1} and u_{i} indicate the path Q_{i}. Similarly, the dotted line between u_{i+l-1} and u_{i+l} indicate the path Q_{i+l}.

Claim 4.3. H^{\prime} cannot have an l-edge, where $l>2$.

Proof: Suppose H^{\prime} has an l-edge, where $l>2$, between $x \in Q_{i}$ and $y \in Q_{i+l}$ (see Fig. 1). Let $a_{1}=\left\|u_{i-1} Q_{i}^{\prime} x\right\|, b_{1}=\left\|x Q_{i}^{\prime} u_{i}\right\|, a_{2}=\left\|u_{i+l-1} Q_{i+l}^{\prime} y\right\|$ and $b_{2}=\left\|y Q_{i+l}^{\prime} u_{i+l}\right\|$. We consider the following two cases:
Case 1: l is even
In this case u_{i-1} and u_{i+l-1} will be on the same side of the bipartite graph H^{\prime}. Without loss of generality, let $u_{i-1}, u_{i+l-1} \in A$. Then, $u_{i}, u_{i+l} \in B$. We know that, for every $w_{1}, w_{2} \in V\left(H^{\prime[m]}\right)$ with $w_{1} \in A$ and $w_{2} \in B$, if $\left(w_{1}, w_{2}\right) \notin E\left(H^{\prime[m]}\right)$ then $d_{H^{\prime}}\left(w_{1}, w_{2}\right) \geq m+2$ (recalling m and $d_{H^{\prime}}\left(w_{1}, w_{2}\right)$ are odd integers). Therefore, we have $a_{1}+1+b_{2} \geq d_{H^{\prime}}\left(u_{i-1}, u_{i+l}\right) \geq m+2$. Similarly, $b_{1}+1+a_{2} \geq$ $d_{H^{\prime}}\left(u_{i}, u_{i+l-1}\right) \geq m+2$. Summing up the two inequalities we get, $\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right) \geq 2 m+2$. This implies that either $\left\|Q_{i}^{\prime}\right\|$ or $\left\|Q_{i+l}^{\prime}\right\|$ is greater than m which is a contradiction.
Case 2: l is odd
(proof is similar to the above case and hence omitted).
Hence we prove the claim.

We find a cycle $C^{\prime}=z_{0} z_{1} \ldots z_{q} z_{0}$ in H^{\prime} using Algorithm $3.1{ }^{\text {(i) }}$. Please read the algorithm before proceeding further. .

[^2]```
Algorithm 3.1 Finding Cycle \(C^{\prime}\) in \(H^{\prime}\) such that \(\left\|C^{\prime}\right\| \geq\|C\|\)
 1. \(l \leftarrow \max _{l^{\prime}}\left(H^{\prime}\right.\) has an \(l^{\prime}\)-edge \()\). Without loss of generality assume that this \(l\)-edge is between a vertex
 in \(Q_{0}\) and a vertex in \(Q_{l}\)
 2. Scan the vertices of \(Q_{0}\) in clockwise direction to find the first vertex \(z_{0}\), where \(z_{0} \in V\left(Q_{0}\right)\), which
 has an \(l\)-edge to a vertex in \(Q_{l}\).
 3. Scan the vertices of \(Q_{l}\) in clockwise direction to find the last vertex in \(Q_{l}\) which is a neighbor of \(z_{0}\)
 in \(H^{\prime}\). Call it \(z_{1}\).
 4. Find the farthest neighbor of \(z_{1}\) before \(z_{0}\). Call it \(z_{2}\). /* refer proof of Claim 4.4 for a proof of
 existence of such a \(z_{2} * /\)
 5. \(s \leftarrow 2\).
 while \(\left(z_{s}, z_{0}\right) \notin E\left(H^{\prime}\right)\) do
 6. Find the farthest neighbor of \(z_{s}\) before \(z_{0}\). Call it \(z_{s+1}\). \(/ *\) such a neighbor exists by Claim \(4.2^{*} /\)
 7. \(s \leftarrow s+1\).
 end while
 8. \(q \leftarrow s\).
 9. Return cycle \(C^{\prime}=z_{0} z_{1} \ldots z_{q} z_{0}\).
```

Claim 4.4. There always exists a farthest neighbor of $z_{1}$ before $z_{0}$.
Proof: Note that $z_{0} \in Q_{0}$ and $z_{1} \in Q_{l}$, where $l \leq 2$ (by Claim4.3). Recalling that $\|C\|=p \geq 6$, we have $z_{0} \notin V\left(Q_{l}\right) \cup V\left(Q_{l+1}\right) \cup V\left(Q_{l+2}\right)$. Hence by Claim4.2, the claim is true.
Claim 4.5. The while loop in Algorithm 3.1 terminates after a finite number of iterations.
Proof: From Claim 4.1, we know that each vertex has an edge (in $H^{\prime}$ ) with both its left neighbor and right neighbor in the circular arrangement. Each time when Step 6 of Algorithm 3.1 is executed, a vertex $z_{s+1}$ is chosen such that $z_{s+1}$ is the farthest neighbor of $z_{s}$ before $z_{0}$. Since $H^{\prime}$ is a finite graph, there will be a point of time in the execution of the algorithm when in Step 6 it picks a $z_{s+1}$ such that $\left(z_{s+1}, z_{0}\right) \in$ $E\left(H^{\prime}\right)$.
From Claim4.5, we can infer that $C^{\prime}$ is a cycle.
Claim 4.6. $C^{\prime}$ is an induced cycle in $H^{\prime}$.
Proof: Suppose $C^{\prime}$ is not an induced cycle. Then there exists a chord $\left(z_{a}, z_{b}\right)$ in $C^{\prime}$. Since $\left(z_{a}, z_{b}\right)$ is a chord, we have $b \neq a-1$ or $b \neq a+1$. Let $l=\max _{l^{\prime}}\left(H^{\prime}\right.$ has an $l^{\prime}$-edge $)$. Let $z_{a} \in V\left(Q_{i}\right)$, $z_{b} \in V\left(Q_{j}\right)$. We know that $\min \left(\right.$ clock_dist $\left(z_{a}, z_{b}\right)$, clock_dist $\left.\left(z_{b}, z_{a}\right)\right) \leq l$. Without loss of generality, assume clock_dist $\left(z_{a}, z_{b}\right) \leq l \leq 2$ (from Claim4.3). That is, $j-i \leq l \leq 2$ and $\left(z_{a}, z_{b}\right)$ is a $(j-i)$-edge. If $z_{a}=z_{0}$, then $z_{b} \neq z_{1}$ and the algorithm exits from the while loop, when $q=b$, thus returning a cycle $z_{0} \ldots z_{b} z_{0}$. But in such a cycle $\left(z_{b}, z_{0}\right)$ is not a chord. Therefore, $z_{a} \neq z_{0}$. Similarly, $z_{b} \neq z_{0}$. We know that $z_{a+1} \neq z_{b}, z_{a+1}<_{z_{a}} z_{b}$, and $z_{a+1} \in V\left(Q_{i}\right) \cup V\left(Q_{i+1}\right) \cup V\left(Q_{i+2}\right)$. Since $j-i \leq 2$, $z_{b} \in V\left(Q_{i}\right) \cup V\left(Q_{i+1}\right) \cup V\left(Q_{i+2}\right)$. If $z_{b}<_{z_{a}} z_{0}$, then it contradicts the fact that $z_{a+1}$ is the farthest neighbor of $z_{a}$ before $z_{0}$. Therefore, $z_{0}<_{z_{a}} z_{b}$. Then, either $z_{b}=z_{1}$ or $z_{1}<_{z_{a}} z_{b}$. Recall that $l=\max _{l^{\prime}}\left(H^{\prime}\right.$ has an $l^{\prime}$-edge $)$, and $\left(z_{0}, z_{1}\right)$ is an $l$-edge with $z_{0} \in V\left(Q_{0}\right)$ and $z_{1} \in V\left(Q_{l}\right)$. Since (i) $\left(z_{a}, z_{b}\right)$ is a $(j-i)$-edge, where $j-i \leq l$, (ii) $z_{0}<_{z_{a}} z_{b}$, and (iii) $z_{b}=z_{1}$ or $z_{1}<_{z_{a}} z_{b}$, we have $l \geq j-i=$ clock_dist $\left(z_{a}, z_{b}\right) \geq \operatorname{clock} k_{-} d i s t\left(z_{0}, z_{b}\right) \geq \operatorname{clock}{ }_{-} d i s t\left(z_{0}, z_{1}\right)=l$. Hence, $j-i=l$ and


Fig. 2: Figure illustrates the case when path $P$ defined in Claim 4.8 is a trivial path. The dotted lines between each $u_{i-1}$ and $u_{i}$ indicate the path $Q_{i}^{\prime}$. Each continuous arc corresponds to an edge in the cycle $C^{\prime}=z_{0} \ldots z_{q} z_{0}$.
$\left(z_{a}, z_{b}\right)$ is an $l$-edge. We know that $\left(z_{0}, z_{1}\right)$ is also an $l$-edge with $z_{0} \in V\left(Q_{0}\right)$ and $z_{1} \in V\left(Q_{l}\right)$. Since $z_{0}<_{z_{a}} z_{b}$ and $z_{b}=z_{1}$ or $z_{1}<_{z_{0}} z_{b}$, we get $z_{a} \in V\left(Q_{0}\right)$ and $z_{b} \in V\left(Q_{l}\right)$. From Step 2 of the algorithm we know that $z_{0}$ is the first vertex (in a clockwise scan) in $Q_{0}$ which has an $l$-edge to a vertex in $Q_{l}$. This implies that, since $z_{0}<_{z_{a}} z_{b}, z_{a}=z_{0}$ which is a contradiction. Hence we prove the claim.

What is left now is to show that $q+1 \geq p$, i.e., $\left\|C^{\prime}\right\| \geq\|C\|$, where $C^{\prime}=z_{0} \ldots z_{q} z_{0}$ and $C=$ $u_{0} \ldots u_{p-1} u_{0}$. In order to show this, we state and prove the following claims.
Claim 4.7. For every $j \in\{0, \ldots, p-1\},\left(V\left(Q_{j}\right) \cup V\left(Q_{j+1}\right)\right) \cap V\left(C^{\prime}\right) \neq \emptyset$.
Proof: Suppose the claim is not true. Find the minimum $j$ that violates the claim. Clearly, $j \neq 0$ as $z_{0} \in V\left(Q_{0}\right)$. We claim that $z_{q} \in V\left(Q_{j-1}\right)$. Suppose $z_{q} \notin V\left(Q_{j-1}\right)$. Let $a=\max \left\{i \mid z_{i} \in\right.$ $\left.V\left(Q_{j-1}\right)\right\}$ (note that, since $j \neq 0$, by the minimality of $j,\left(V\left(Q_{j-1}\right) \cup V\left(Q_{j}\right)\right) \cap V\left(C^{\prime}\right) \neq \emptyset$ and therefore $\left.V\left(Q_{j-1}\right) \cap V\left(C^{\prime}\right) \neq \emptyset\right)$. Since $z_{a} \neq z_{q}$, by the maximality of $a$, we have $z_{a+1} \notin V\left(Q_{j-1}\right)$. From our assumption, $\left(V\left(Q_{j}\right) \cup V\left(Q_{j+1}\right)\right) \cap V\left(C^{\prime}\right)=\emptyset$ and therefore $z_{a+1} \notin V\left(Q_{j-1}\right) \cup V\left(Q_{j}\right) \cup V\left(Q_{j+1}\right)$. Thus $z_{a} \neq z_{q}$ and $z_{a+1}$ is not the farthest neighbor of $z_{a}$ before $z_{0}$. This is a contradiction to the way $z_{a+1}$ is chosen by Algorithm 3.1. Hence, $z_{q} \in V\left(Q_{j-1}\right)$. We know that $\left(z_{q}, z_{0}\right) \in E\left(H^{\prime}\right)$ with $z_{q} \in V\left(Q_{j-1}\right)$ and $z_{0} \in V\left(Q_{0}\right)$. Since $l=\max _{l^{\prime}}\left(H^{\prime}\right.$ has an $l^{\prime}$-edge $)$, we have min (clock_dist $\left(z_{q}, z_{0}\right)$, clock_dist $\left.\left(z_{0}, z_{q}\right)\right) \leq l$. That is, $j \geq p+1-l$ or $j \leq 1+l$. As $l \leq 2$ (by Claim4.3), we have $j=p-1$ or $j \leq 1+l$. Since $z_{0} \in V\left(Q_{0}\right),\left(V\left(Q_{p-1}\right) \cup V\left(Q_{0}\right)\right) \cap V\left(C^{\prime}\right) \neq \emptyset$ and hence $j \neq p-1$. Therefore, $j \leq 1+l$. Since $z_{0} \in V\left(Q_{0}\right)$ and $z_{1} \in V\left(Q_{l}\right)$ (recall $l \leq 2$ ), we get $j=1+l$. We know that, for every $z_{a}, z_{b} \in V\left(C^{\prime}\right)$, if $a<b$ then $z_{a}<_{z_{0}} z_{b}$. Therefore, $z_{1}<_{z_{0}} z_{q}$. We have $z_{1} \in V\left(Q_{l}\right)$. Since $j=1+l$, we also have $z_{q} \in V\left(Q_{l}\right)$. Thus, we have $z_{1}, z_{q} \in V\left(Q_{l}\right)$ and $z_{1}<_{z_{0}} z_{q}$. But this contradicts the fact that $z_{1}$ is the last vertex in $Q_{l}$ encountered in a clockwise scan that has $z_{0}$ as its neighbor.

Claim 4.8. Let $\left(z_{a}, z_{a+1}\right),\left(z_{b}, z_{b+1}\right) \in E\left(C^{\prime}\right)$ be two 2-edges, where $a<b$. Let $P, P^{\prime}$ denote the clockwise $z_{a+1}-z_{b}, z_{b+1}-z_{a}$ paths respectively in $C^{\prime}$. Both $P$ and $P^{\prime}$ contain at least one 0-edge.


Fig. 3: Figure illustrates the case when path $P$ defined in Claim4.8 is $P=z_{a+1} z_{a+2} \ldots z_{a+1+s}$, where $s \geq 1$ and $z_{a+1+s}=z_{b}$. The dotted lines between each $u_{i-1}$ and $u_{i}$ indicate the path $Q_{i}^{\prime}$. Each continuous arc corresponds to an edge in the cycle $C^{\prime}=z_{0} \ldots z_{q} z_{0}$.

Proof: Consider the path $P$ (proof is similar in the case of path $P^{\prime}$ ). Path $P$ is a non-trivial path only if $z_{a+1} \neq z_{b}$. Suppose $z_{a+1}=z_{b}$ (see Fig. 22. Let $z_{a} \in V\left(Q_{f}\right)$. For the sake of ease of notation, assume $f=1$ (the same proof works for any value of $f$ ). Let $a_{1}=\left\|u_{0} Q_{1}^{\prime} z_{a}\right\|, b_{1}=\left\|z_{a} Q_{1}^{\prime} u_{1}\right\|$, $a_{2}=\left\|u_{2} Q_{3}^{\prime} z_{b}\right\|, b_{2}=\left\|z_{b} Q_{3}^{\prime} u_{3}\right\|, a_{3}=\left\|u_{4} Q_{5}^{\prime} z_{b+1}\right\|$, and $b_{3}=\left\|z_{b+1} Q_{5}^{\prime} u_{5}\right\|$. We know that, for every $w_{1}, w_{2} \in V\left(H^{\prime[m]}\right)$ with $w_{1} \in A$ and $w_{2} \in B$, if $\left(w_{1}, w_{2}\right) \notin E\left(H^{\prime[m]}\right)$ then $d_{H^{\prime}}\left(w_{1}, w_{2}\right) \geq m+2$. Since $\left(u_{0}, u_{3}\right) \notin E\left(H^{\prime[m]}\right),\left(u_{1}, u_{4}\right) \notin E\left(H^{\prime[m]}\right)$ and $\left(u_{2}, u_{5}\right) \notin E\left(H^{\prime[m]}\right)$, we have $a_{1}+b_{2} \geq m+1$, $b_{1}+a_{3} \geq m$, and $a_{2}+b_{3} \geq m+1$. Adding the three inequalities and by applying an easy averaging argument we can infer that either $a_{1}+b_{1}=\left\|Q_{1}\right\|>m, a_{2}+b_{2}=\left\|Q_{3}\right\|>m$, or $a_{3}+b_{3}=\left\|Q_{5}\right\|>m$ which is a contradiction. Therefore $P$ is a non-trivial path i.e., $z_{a+1} \neq z_{b}$. Assume $P$ does not contain any 0 -edge. Let $P=z_{a+1} z_{a+2} \ldots z_{a+1+s}$, where $s \geq 1, a+1+s=b$, and $\left(z_{a+1}, z_{a+2}\right) \ldots\left(z_{a+s}, z_{a+1+s}\right)$ are 1-edges (see Fig. 3). Since $\left(u_{0}, u_{3}\right) \notin E\left(H^{\prime[m]}\right),\left(u_{1}, u_{4}\right) \notin E\left(H^{\prime[m]}\right)$, we have $c_{a}+d_{a+1} \geq m+1$ and $d_{a}+d_{a+2} \geq m$ (please refer Fig. 3 for knowing what $c_{a}, d_{a}, \ldots, c_{b+1}, d_{b+1}$ are). Summing up the two inequalities, we get $d_{a+1}+d_{a+2} \geq 2 m+1-\left(c_{a}+d_{a}\right)$. We know that, for each $i \in\{0, \ldots p-1\}$, $\left\|Q_{i}^{\prime}\right\| \leq m$. Therefore, we have $c_{a}+d_{a} \leq m$. Hence, $d_{a+1}+d_{a+2} \geq m+1$. Since $\left(c_{a+1}+d_{a+1}\right)+$ $\left(c_{a+2}+d_{a+2}\right) \leq 2 m$, we get

$$
\begin{equation*}
c_{a+1}+c_{a+2} \leq m-1 \tag{1}
\end{equation*}
$$

Since $\left(u_{s+2}, u_{s+5}\right) \notin E\left(H^{\prime[m]}\right),\left(u_{s+1}, u_{s+4}\right) \notin E\left(H^{\prime[m]}\right)$, we have,

$$
\begin{aligned}
c_{b}+d_{b+1} & \geq m+1 \\
c_{a+s}+c_{b+1} & \geq m
\end{aligned}
$$

Summing up the two inequalities, we get

$$
c_{b}+c_{a+s} \geq 2 m+1-\left(c_{b+1}+d_{b+1}\right)
$$

Since $b=a+s+1$ and $c_{b+1}+d_{b+1} \leq m$, we get

$$
\begin{equation*}
c_{a+s+1}+c_{a+s} \geq m+1 \tag{2}
\end{equation*}
$$

Substituting for $s=1$ in Inequality 2, we get $c_{a+2}+c_{a+1} \geq m+1$. But this contradicts Inequality 1 . Hence $s>1$. Suppose $s=2$. Since $\left(u_{2}, u_{5}\right) \notin E\left(H^{\prime[m]}\right)$ ), we have $c_{a+1}+d_{a+3} \geq m$. Adding this with Inequality 2 , we get $c_{a+1}+c_{a+2} \geq(2 m+1)-\left(c_{a+3}+d_{a+3}\right) \geq m+1$. But this contradicts Inequality 1 Hence $s>2$. Since $\left.\left.\left(u_{s}, u_{s+3}\right) \notin E\left(H^{\prime[m]}\right)\right), \ldots,\left(u_{2}, u_{5}\right) \notin E\left(H^{\prime[m]}\right)\right)$, we have the following inequalities:-

$$
\begin{aligned}
c_{a+s-1}+d_{a+s+1} & \geq m \\
\vdots & \vdots \vdots \\
c_{a+1}+d_{a+3} & \geq m
\end{aligned}
$$

Adding the above set of inequalities and applying the fact that $c_{i}+d_{i} \leq m, \forall i \in\{0, \ldots q\}$, we get $c_{a+1}+c_{a+2}+d_{a+s}+d_{a+s+1} \geq 2 m$. Adding this with Inequality 2 we get $c_{a+1}+c_{a+2} \geq(3 m+1)-$ $\left(c_{a+s+1}+d_{a+s+1}\right)-\left(c_{a+s}+d_{a+s}\right) \geq m+1$. But this contradicts Inequality 1 . Hence we prove the claim.

Claim 4.9. For every $j, j^{\prime} \in\{0, \ldots, p-1\}$, where $j<j^{\prime}$ and $\left(V\left(Q_{j}\right) \cup V\left(Q_{j^{\prime}}\right)\right) \cap V\left(C^{\prime}\right)=\emptyset$, there exist $i, i^{\prime} \in\{0, \ldots, p-1\}$, where only $i$ satisfies $j<i<j^{\prime}$, such that $\left|V\left(Q_{i}\right) \cap V\left(C^{\prime}\right)\right| \geq 2$ and $\left|V\left(Q_{i^{\prime}}\right) \cap V\left(C^{\prime}\right)\right| \geq 2$.
Proof: By Claim4.7, (i) $j^{\prime} \neq j+1$ or $j^{\prime} \neq j-1$, and (ii) there exist $r, r^{\prime} \in\{0, \ldots, q\}$ such that $\left(z_{r}, z_{r+1}\right)$ is a 2-edge with its endpoints on $Q_{j-1}$ and $Q_{j+1}$ and $\left(z_{r^{\prime}}, z_{r^{\prime}+1}\right)$ is a 2-edge with its endpoints on $Q_{j^{\prime}-1}$ and $Q_{j^{\prime}+1}$. By Claim 4.8. we know that if $P, P^{\prime}$ denote the clockwise $z_{r+1}-z_{r^{\prime}}, z_{r^{\prime}+1}-z_{r}$ paths respectively in $C^{\prime}$, then both $P$ and $P^{\prime}$ contains at least one 0 -edge. This proves the claim.

In order to show that the size of cycle $C^{\prime}\left(=z_{0} \ldots z_{q} z_{0}\right)$ is at least $p$, we consider the following three cases:-
Case $\left|\left\{Q_{j} \in\left\{Q_{0} \ldots Q_{p-1}\right\} \mid V\left(Q_{j}\right) \cap V\left(C^{\prime}\right)=\emptyset\right\}\right|=0$ : In this case, for every $j \in\{0, \ldots p-1\}, Q_{j}$ contributes to $V\left(C^{\prime}\right)$ and therefore $\left\|C^{\prime}\right\| \geq p=\|C\|$.
Case $\left|\left\{Q_{j} \in\left\{Q_{0} \ldots Q_{p-1}\right\} \mid V\left(Q_{j}\right) \cap V\left(C^{\prime}\right)=\emptyset\right\}\right|=1$ : Let $Q_{j}$ be that only path (among $Q_{0} \ldots Q_{p-1}$ ) that does not contribute to $V\left(C^{\prime}\right)$. Then we claim that there exists a $Q_{j^{\prime}}$, where $j^{\prime} \neq j$, such that $V\left(C^{\prime}\right) \cap V\left(Q_{j^{\prime}}\right) \geq 2$. Suppose the claim is not true then it is easy to see that $\left\|C^{\prime}\right\|=p-1$ which is an odd number thus contradicting the bipartitedness of $H^{\prime}$. Hence the claim is true. Now, by applying the claim it is easy to see that $\left\|C^{\prime}\right\|=\sum_{j}\left|V\left(C^{\prime}\right) \cap V\left(Q_{j}\right)\right| \geq p=\|C\|$.
Case $\left|\left\{Q_{j} \in\left\{Q_{0} \ldots Q_{p-1}\right\} \mid V\left(Q_{j}\right) \cap V\left(C^{\prime}\right)=\emptyset\right\}\right|>1$ : Scan vertices of $H^{\prime}$ starting from any vertex in clockwise direction. Claim 4.9 ensures that between every $Q_{j}$ and $Q_{j^{\prime}}$, which do not contribute to $V\left(C^{\prime}\right)$, encountered there exists a $Q_{i}$ which compensates by contributing at least two vertices to $V\left(C^{\prime}\right)$. Therefore, $\left\|C^{\prime}\right\| \geq p=\|C\|$.

## 4 Discussion

An interesting open question that naturally follows from our result is the following: given a graph $G$ and positive integers $k, m$ where $k \geq 4$, if $G^{[m]}$ is $k$-chordal, then is $G^{[m+2]}$ also $k$-chordal? As mentioned earlier, Brandstädt et al. in [3] showed a similar result in the context of ordinary graph powering. They showed that, for every graph $G$, if $G^{m}$ is $k$-chordal, then so is $G^{m+2}$, where $k, m$ are positive integers with $k \geq 3$. A straightforward extension of their proof technique doesn't seem to work in our context due to the bipartite nature of the powering that we consider.

## References

[1] R. Balakrishnan and P. Paulraja. Powers of chordal graphs. J. Aust. Math. Soc. Ser. A, 35:211-217, 1983.
[2] H. L. Bodlaender and D. M. Thilikos. Treewidth for graphs with small chordality. Discrete Applied Mathematics, 79:45-61, 1997.
[3] Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. Duchet-type theorems for powers of hhd-free graphs. Discrete Mathematics, 177(1-3):9-16, 1997.
[4] L. Sunil Chandran, Mathew C. Francis, and Rogers Mathew. Chordal bipartite graphs with high boxicity. Graphs and Combinatorics, 27(3):353-362, 2011.
[5] L. Sunil Chandran and L. Shankar Ram. On the number of minimum cuts in a graph. In Proceedings of the 8th International computing and combinatorics conference, LNCS 2387, pages 220-230, 2002.
[6] L. Sunil Chandran, C.R. Subramanian, and Vadin V. Lozin. Graphs of low chordality. To appear in Dicrete Mathematics and Theoretical Computer Science, 2005.
[7] Gerard J. Chang and George L. Nemhauser. The $k$-domination and $k$-stability problems on sun-free chordal graphs. SIAM Journal on Algebraic and Discrete Methods, 5(3):332-345, 1984.
[8] Yon Dourisboure. Compact routing schemes for generalised chordal graphs. Journal of Graph Algorithms and Applications, 9:277-297, 2005.
[9] Feodor F. Dragan. Estimating all pairs shortest paths in restricted graph families: a unified approach. Journal of Algorithms, 57(1):1-21, 2005.
[10] P. Duchet. Classical perfect graphs. Ann. Discrete Math., 21:67-96, 1984.
[11] Carsten Flotow. On powers of m-trapezoid graphs. Discrete Appl. Math., 63(2):187-192, 1995.
[12] Carsten Flotow. On powers of circular arc graphs and proper circular arc graphs. Discrete Appl. Math., 69(3):199-207, 1996.
[13] A Lubiw. $\gamma$-free matrices. Master's thesis, Dept. of combinatorics and Optimization, University of Waterloo, 1982.
[14] A. Raychaudhuri. On powers of interval and unit interval graphs. Congr.Numerantium, 59:235-242, 1987.
[15] A. Raychaudhuri. On powers of strongly chordal and circular graphs. Ars Combinatoria, 34:147160, 1992.
[16] Jeremy P. Spinrad. Finding large holes. Information Processing Letters, 39(4):227-229, 1991.


[^0]:    $\dagger$ Email: sunil@csa.iisc.ernet.in
    $\ddagger$ Email: rogers@csa.iisc.ernet.in

[^1]:    ${ }^{(i)}$ throughout this proof expressions involving subscripts of $u, P, Q$, and $Q^{\prime}$ are to be taken modulo $p$. Every such expression should be evaluated to a value in $\{0, \ldots, p-1\}$. For example, consider a vertex $u_{i}$, where $i<p$ Then, $p+i=i$.

[^2]:    ${ }^{(i)}$ throughout this proof expressions involving subscripts of $z$ are to be taken modulo $q+1$. Every such expression should be evaluated to a value in $\{0, \ldots, q\}$. For example, consider a vertex $z_{a}$, where $a<q+1$. Then, $q+1+a=a$.

