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Let T be a d-dimensional toroidal grid of nd points. For a given range parameter ω, and a positive integer k ≤ d, we

say that two points in T are mutually visible if they differ in at most k coordinates and are a distance at most ω apart,

where distance is measured using the ℓp norm. We obtain a random d-dimensional line-of-sight graph G by placing

a node at each point in T independently with some fixed probability p∗ and connecting all pairs of mutually visible

nodes. We prove an asymptotically tight connectivity result for this random graph.
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1 Introduction and Results

The study of random graphs was initiated by Erdős and Rényi (1959). Their model consists of a graph on

n nodes, denoted by G(n, p), where each potential edge is added independently with some probability p.

A famous result of Erdős and Rényi (1960) states that if p = (log n+ cn)/n, then

lim
n→∞

P {graph is connected} =











0 cn → −∞,

e−c cn → c ∈ R,

1 cn →∞.

A more common choice for studying wireless networks are random geometric graphs which are formed

by placing n nodes uniformly at random in an underlying space and connecting all pairs of nodes that are

within a distance at most r, where r is a predetermined range parameter. A detailed study of random

geometric graphs can be found in a book by Penrose (2003). For the case where the underlying space is

the d-dimensional torus [0, 1]d it was shown by Penrose (1999) that if θrd = (log n+ cn)/n, then

lim
n→∞

P {graph is connected} =











0 cn → −∞,

e−c cn → c ∈ R,

1 cn →∞,
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where θ is the volume of the unit ball in the norm of choice.

Line-of-Sight networks were introduced by Frieze et al. (2008) to model wireless communications in

an urban setting. Their model is based on an n×n two-dimensional grid of points in the shape of a torus.

The distance between two points is measured using the ℓ1 norm. For a chosen range parameter ω, two

points on the grid are said to be mutually visible if they agree in one coordinate and are a distance at

most ω apart. A random graph is obtained by placing a node at each grid point independently with some

probability p∗ > 0 and connecting all mutually visible pairs of nodes. Among the results proven by Frieze

et al. (2008) is the connectivity threshold for this graph. Assuming that ω = nδ , for some 0 < δ < 6/15,

they show that if p∗ =
((

1− 1
2δ

)

lnn+ 1
2 ln lnn+ cn

)

/2ω, then

lim
n→∞

P {G is connected} =











0 cn → −∞,

e−λ cn → c ∈ R,

1 cn →∞,

where λ = 1
2

(

1− 1
2δ

)

e−2c and cn = o(ln lnn).
If ω = 1 than the model reduces to the well studied problem of site percolation on the lattice whereas

if ω = n than the model is equivalent to another well known problem consisting of the random bipartite

graph Kn,n where each edge is present with probability p∗. The motivation to take ω of the form nδ for

some 0 < δ < 1, is to avoid both of these extremes and focus instead on the middle region whose study

requires new techniques. It was remarked in the original paper of Frieze et al. (2008) that for ω = o(lnn)
the connectivity threshold is very close to one, and therefore less interesting. This justifies the assumption

that ω ≫ lnn.

In this paper we extend the line-of-sight model of Frieze et al. (2008) to higher dimensions and the

general ℓp norm. The initial motivation for higher dimensions comes from the three-dimensional case

that occurs in scenarios where nodes can be placed both on the ground and also in space, for example on

different floors of a building, in airplanes or in satellites Gupta and Kumar (2001) The four-dimensional

case can also be of interest in a situation where communication between nodes is dependent on time which

can be modeled as an additional dimension. Since the methods used for studying the connectivity of the

three-dimensional model can be easily extended to any higher dimension we chose to present our results

in terms of the general d-dimensional case.

1.1 Model description

Given positive integers d and k such that d ≥ 2 and 1 ≤ k < d, we define an underlying d-dimensional

grid in the shape of a torus

T = {(x1, · · · , xd) : xi ∈ {1, 2, ..., n} , 1 ≤ i ≤ d} .
We say that two points are mutually visible if they differ in at most k coordinates and are a distance at

most ω apart. Distance is measured assuming that the points lie on a torus. The norm is the standard ℓp
norm in R

d for 1 ≤ p ≤ ∞. For reasons similar to those in Frieze et al. (2008) our range parameter ω is

of the form ω = nδ , for some constant δ satisfying 0 < δ < δ0 < 1 where δ0 is a constant defined as

δ0 :=











d

d+ k
if d/2 < k < d,

d

d+ k
(⌈

d
k

⌉

− 1
) if k ≤ d/2.
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We note that the choice of δ0 is motivated by the technique used to prove the upper bound in Section 4.3.

We obtain a random graph G by placing a node at each grid point independently with some probability

p∗ > 0 and connecting all mutually visible pairs of nodes.

1.2 Main result

Define the constant ap =
(

d
k

) ∫

Bk
p (0,1)

dx where Bk
p (z, r) :=

{

x ∈ R
k :‖ x− z ‖p≤ r

}

. The exact ex-

pression for the integral can be found in Wang (2005) and is given by

∫

Bk
p (0,1)

dx =
2kΓ

(

1 + 1
p

)k

Γ
(

1 + k
p

) ,

where Γ denotes the gamma function. The following theorem is our main result.

Theorem 1 Let p∗ = (d−kδ) lnn+ln lnn+cn
apωk for ω = nδ and cn = o(ln lnn). Let G be the line-of-sight

network defined above with placement probability p∗. Then

lim
n→∞

P {G is connected} =











0 cn → −∞,

e−λ cn → c ∈ R,

1 cn →∞,

where λ = (d−kδ)e−c

ap
.

We observe that the connectivity threshold is the same as the threshold for the existence of isolated

vertices, a result which parallels those for random graphs and random geometric graphs.

1.3 Further remarks

Even though our bounds on k exclude the case k = d, the corresponding threshold for this case is p∗ =
((d − dδ) lnn + ln lnn + cn)/(apω

d). When k = d the line-of-sight network can be thought of as a

discretized version of a random geometric graph. Indeed the above threshold matches the one for random

geometric graphs found in Penrose (2003). We illustrate this for the two-dimensional torus [0, 1]2 and the

Euclidean norm.

We first set r = (c logN/πN)
1/2

for some constant c and obtain a random geometric graph by placing

N points uniformly at random in the torus and connecting all pairs of nodes that are within a distance

r apart. Then the results of Penrose (2003) state that with high probability the graph is connected if

c > 1 and disconnected if c < 1. Now suppose that on this torus we also have an n by n equally spaced

grid of n2 points. A discretized version of the random geometric graph can be obtained by taking each

1/n× 1/n grid square and mapping all the nodes in this square to the grid point at the upper right corner.

Even though more than one node can be mapped to the same grid point, the expected number of nodes that

fall in a given square is N/n2. Taking n ≫
√
N ensures that N/n2 ≪ 1 and thus the probability of two

nodes being mapped to the same grid point is negligible. After performing this mapping we connect a pair

of mapped nodes if and only if they were connected in the original random geometric graph. Requiring

1/N ≪ r ensures that this is roughly equivalent to connecting two nodes if and only if they are within a

distance r apart.
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We now set r′ = ω/n and p = N/n2. We obtain a line-of-sight graph by placing a node at each

grid point independently with probability p and connecting all pairs of nodes that are a distance at

most r′ apart. Then this line-of-sight graph and the discretized random geometric graph are equiva-

lent models. We note that the number of nodes in the two graphs is not necessarily the same. The

line-of-sight graph has an expected number of n2p nodes while the discretized random geometric graph

has a total of N nodes. However since we fixed the placement probability of the line-of-sight graph as

p = N/n2, the total number of nodes is roughly the same. Setting r = r′ and solving for p we obtain

p = c ((2− 2δ) lnn+ ln lnn) /
(

πn2δ
)

which is the connectivity threshold for the line-of-sight network

with k = d.

2 Preliminaries and notation

All the asymptotic results in this paper are given as n → ∞. We say that a certain event holds with high

probability if the probability that the event holds converges to one as n→∞. For two functions f(n) and

g(n) we write f(n) ∼ g(n) provided that f(n) = g(n)(1 + o(1)).

For an event E we let E denote its complement. We write Bin(n, p) to denote a random variable

with a binomial distribution with parameters n and p, and Pois(λ) for a random variable with a Poisson

distribution with parameter λ.

For a subset X of [0, n]d we write vol(X) to denote the volume of X . Given two distinct points

x = (x1, · · · , xd) and y = (y1, · · · , yd) we say that x is lexicographically smaller than y if there exists

j ∈ {1, · · · , d} such that xj < yj and xi = yi for all i < j.

For each point i ∈ T we define V (i) to be the set of all points in T that differ in at most k coordinates

from i and are within a distance ω from i. Let S1, · · · , S(dk) be a labelling of the
(

d
k

)

distinct subsets of

{1, · · · , k} of cardinality k. For each point i ∈ T and each Sj , we define VSj
(i) to be the set of all points

that are within a distance ω from i and that can differ from i only in the k coordinates that are in Sj . Then

∪jVSj
(i) = V (i). We refer to the sets VSj

(i) as sections of the point i. Hence the neighbourhood of each

point consists of the union of
(

d
k

)

sections, which are k-dimensional ℓp balls centered at that point. We

note that the definitions of V (i) and VSj
(i) depend on k, but this dependence is omitted from our notation.

We note that |V (i)| does not depend on i and similarly
∣

∣VSj
(i)

∣

∣ does not depend on i or j. Fix a point

i1 ∈ T and define V = |V (i1)| and V ′ = |VS1(i1)|. Then we have |V (i)| = V for all i ∈ T and
∣

∣VSj
(i)

∣

∣ = V ′ for all i ∈ T , 1 ≤ j ≤
(

d
k

)

. The following lemma gives us the asymptotic values of V and

V ′.

Lemma 2 Let Bk
p (0, r) denote a k-dimensional ℓp ball of radius r centered at the origin. Then for V and

V ′ defined as above we have

V ′ = vol
(

Bk
p (0, ω)

)

+O
(

ωk−1
)

V = apω
k +O

(

ωk−1
)

,

where ap is the constant defined in Section 1.2.

Proof: Let A be the collection of grid points inside Bk
p (0, ω). Then V ′ = |A|. Let C be the union of all

the unit length k-dimensional cubes centered at each grid point in A. Then |A| = vol (B) + O
(

ωk−1
)

.
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Furthermore vol(C) = |A| and Bk
p (0, ω − 2) ⊆ C ⊆ Bk

p (0, ω + 1), where we can assume wlog that

ω > 2 since ω →∞ as n→∞. We thus obtain

vol
(

Bk
p (0, ω − 2)

)

≤ |A| ≤ vol
(

Bk
p (0, ω + 1)

)

.

Hence |A| = vol
(

Bk
p (0, ω)

)

+ O
(

ωk−1
)

which proves the equation for V ′. The equation for V follows

from using the definition of ap in Section 1.2 and the fact that ∪jVSj
(i) = V (i) for all i ∈ T . We note

that while this is not a disjoint union, any two distinct sections of point i can intersect in at most O
(

ωk−1
)

points. Therefore V = apω
k +O

(

ωk−1
)

as required. ✷

Let N denote the number of isolated nodes in G. For each grid point i ∈ T let Xi be the random

indicator variable for the event that there is an isolated node at grid point i. Then N =
∑

i∈T Xi.

Recalling that p∗ = (d−kδ) lnn+ln lnn+cn
apωk and cn = o(ln lnn) we obtain

E {N} ∼ nd(d− kδ) lnn

apωk
e−p∗V ∼ (d− kδ)e−cn

ap
.

Therefore

lim
n→∞

E {N} =



















∞ cn → −∞,

(d− kδ)e−c

ap
= λ cn → c ∈ R,

0 cn →∞.

(1)

This shows that the asymptotic behaviour of E {N} is determined by that of cn. We therefore need to an-

alyze three separate cases depending on whether cn → −∞, cn →∞ or cn → c for some constant c ∈ R.

3 The lower bound

In this section we consider the case where cn → −∞. We use the second moment method to show that

with high probability there are isolated nodes. Recall that for each point i ∈ T we defined V (i) to be the

set of all points in T that differ in at most k coordinates from i and are within a distance ω from i. Now

let

S := {(i, j) : i, j ∈ T, j /∈ V (i), V (i) ∩ V (j) 6= ∅} .

We note that if j ∈ V (i) then we cannot have isolated nodes at both i and j since the two nodes would be

connected. Hence the requirement j /∈ V (i) excludes the case where E {XiXj} = 0. We also observe

that the indicator variables Xi and Xj are independent if and only if V (i)∩V (j) = ∅. Hence S consists of

all pairs of points (i, j) for which the corresponding indicator random variables Xi and Xj are dependent
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and E {XiXj} 6= 0. Then

V {N} =
∑

i

E
{

(Xi −EXi)
2
}

+
∑

i 6=j

E {(Xi −EXi)}E {(Xj −EXj)}

=
∑

i

V {Xi}+
∑

(i,j)∈S

(E {XiXj} −E {Xi}E {Xj})

≤
∑

i

E {Xi}+
∑

(i,j)∈S

E {XiXj}

= E {N}+
∑

(i,j)∈S

E {XiXj} .

Thus using Chebyshev’s inequality

P {N = 0} ≤ V {N}
E

2 {N}
,

we obtain

P {N = 0} ≤ 1

E {N} +
∑

(i,j)∈S E {XiXj}
E

2 {N}
→ 0

if

lim
n→∞

E {N} =∞, and lim
n→∞

∑

(i,j)∈S E {XiXj}
E

2 {N}
= 0.

The first condition holds from (1). To verify the second condition we first split the sum
∑

(i,j)∈S E {XiXj}
according to the number of coordinates in which the points i, j ∈ T differ. Specifically for 1 ≤ t ≤ d we

define

St := {(i, j) : (i, j) ∈ S and i and j differ in exactly t coordinates} .

Then

∑

(i,j)∈S

E {XiXj} =
d

∑

t=1

∑

(i,j)∈St

E {XiXj} .

Since there are O
(

ndωt
)

choices for selecting two points i and j such that (i, j) ∈ St we have

∑

(i,j)∈St

E {XiXj} = O
(

ndωt
)

max
(i,j)∈St

E {XiXj}

= O
(

nd+tδ
)

p∗
2

(1− p∗)2V−max(i,j)∈St
|V (i)∩V (j)|

= O
(

nd+(t−2k)δ(lnn)2
)

(1− p∗)2V−max(i,j)∈St
|V (i)∩V (j)|.
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Since we are only summing over pairs of points i and j for which j /∈ V (i) there exists a constant ǫ > 0
such that max(i,j)∈St

|V (i) ∩ V (j)| ≤ (1 − ǫ)V . We now consider two cases. First suppose that t ≤ k.

Then using the above observation we obtain

(1− p∗)2V−max(i,j)∈St
|V (i)∩V (j)| ≤ exp {−p∗ (1 + ǫ)V }

= exp

{

− (d− kδ) lnn+ ln lnn+ cn
apωk

(1 + ǫ)
(

apω
k +O

(

ωk−1
))

}

≤ exp

{

− (1 + ǫ) (d− kδ) lnn−O

(

lnn

ω

)}

∼ n−(1+ǫ)(d−kδ).

Thus for 1 ≤ t ≤ k we have
∑

(i,j)∈St

E {XiXj} = O
(

nd+(t−2k)δ−(1+ǫ)(d−kδ)(lnn)2
)

= O
(

n−ǫd+tδ−kδ+ǫkδ(lnn)2
)

= O
(

n−ǫ(lnn)2
)

since t ≤ k, k ≤ d and δ < 1

→ 0 since ǫ > 0.

Now suppose t > k. Then for any (i, j) ∈ St we claim that V (i)∩V (j) = O
(

ωk−1
)

. To see this recall

that V (i) and V (j) consist of the union of
(

d
k

)

sections in the form of k-dimensional ℓp balls centered

at i and j respectively. Consider one section centered at i and one section centered at j. If they do not

correspond to the same set of k coordinates then clearly they can only intersect in at most O
(

ωk−1
)

points.

On the other hand if they correspond to the same set of k coordinates then since i and j differ in strictly

more than k coordinates there exists at least one coordinate not in this set in which i and j differ in, hence

the two sections do not intersect. Therefore for k < t ≤ d we have

(1− p∗)2V−max(i,j)∈St
|V (i)∩V (j)| ≤ exp

{

−p∗
(

2V −O
(

ωk−1
))}

∼ exp
{

−p∗
(

2apω
k
)}

= exp {−2 ((d− kδ) lnn+ ln lnn+ cn)}
≤ n−2(d−kδ).

Thus for t > k we have
∑

(i,j)∈St

E {XiXj} = O
(

nd+(t−2k)δ−2(d−kδ)(lnn)2
)

= O
(

n−d+tδ(lnn)2
)

→ 0 since t ≤ d and δ < 1.

Therefore we have shown that for all 1 ≤ t ≤ d we have
∑

(i,j)∈St
E {XiXj} → 0 which proves that

lim
n→∞

∑

(i,j)∈S E {XiXj}
E

2 {N}
= 0

as required.
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4 The upper bound

We now consider the case where cn → ∞. Our goal is to show that with high probability the graph is

connected. In section 2 we saw that limn→∞ E {N} = 0 when cn → ∞. Thus P {N > 0} → 0, which

means that with high probability we do not have any isolated nodes. Using the same construction as in

Frieze et al. (2008), we add nodes according to a two stage process. In the first stage we place a node at

each point in T independently with probability

p1 := p∗ − 1

apωk lnn
.

In the second stage we place a node at each point in T independently with probability p2. We pick p2 so

that the two stage process is equivalent to the original process with probability p∗. That is

(1− p1)(1− p2) = 1− p∗.

Thus

p2 ∼
1

apωk lnn
.

We refer to the nodes placed in the first stage as red nodes, and nodes placed in the second stage as blue

nodes. We let H denote the subgraph of G consisting of only red nodes.

We now partition each of the section VSj
(i) of a point i into equal sized subsections. Recall that each

section VSj
(i) is a k-dimensional ℓp ball of radius ω centered at i. We define the positive integer

bp =

{

⌊2ω⌋ if p =∞,
⌊

2ω/k
1
p

⌋

if 1 ≤ p <∞,

and let V ′
Sj
(i) be the k-dimensional cube with side length bp centered at i. Then V ′

Sj
(i) ⊆ VSj

(i) for

each point i and set Sj . We now divide V ′
Sj
(i) into 4k equal sized subcubes of dimension k and side

length bp/4. These subcubes will be referred to as the subsections of the section VSj
(i). We may assume

without loss of generality that bp/4 is an integer since otherwise we can just decrease bp as needed. Since

bp → ∞ as n → ∞ this will not affect the asymptotic analysis. We let n′ = (bp/4)
k

denote the number

of grid points inside each subsection. Then the number of red nodes in a subsection is Bin(n′, p1) with

mean n′p1. We define the positive constants

γ :=

{

(d− kδ)/
(

ap2
k
)

if p =∞
(d− kδ)/

(

ap2
kkk/p

)

if 1 ≤ p <∞

β :=

⌈

20d

γ

⌉

.

The important thing to note is that n′p1 ≥ γ lnn and (γβ)/10 > d. Still following the proof method in

Frieze et al. (2008) we say that a section VSj
(i) is mighty if each of its 4k subsections contains at least

ln lnn red nodes.
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4.1 High probability events

Lemma 3 Let ǫ1 denote the event for any red node v, which has a section VSj
(v) containing β red nodes

u1, · · · , uβ , such that for some ℓ the sections VSℓ
(u1), · · · , VSℓ

(uβ) are pairwise non-intersecting, at

least one of the sections VSℓ
(u1), · · · , VSℓ

(uβ) is mighty. Then ǫ1 holds with high probability.

Proof: Recall that the number of red nodes in a subsection is Bin(n′, p1) with mean n′p1 ≥ γ lnn. For

large enough n we have n′p1− ln lnn ≥ (n′p1)/10. Therefore using a Chernoff bound that can be found

in Chernoff (1952) we obtain

P {Bin (n′, p1) ≤ ln lnn} ≤ exp

{

− (n′p1 − ln lnn)
2

2n′p1

}

≤ exp

{

−−γ lnn
10

}

.

Since there are 4k subsections in a section we have

P
{

VSj
(i) not mighty

}

≤ 4kn−γ/10.

We now upper bound the probability of the event ǫ1. This is the event that there exists a red node

v which has a section VSj
(v) on which we can find β red nodes u1, · · · , uβ such that the sections

VSℓ
(u1), · · · , VSℓ

(uβ) are all non-mighty and pairwise non-intersecting. There are nd ways to select

the location of the red node v, at most
(

d
k

)2
ways to choose the integers j and ℓ, and at most

(

V
β

)

ways

to select the locations of the β red nodes in VSj
(v). The red node v and the β red nodes in VSj

(v)
are all present independently with probability p1. Since the sections VSℓ

(u1), · · · , VSℓ
(uβ) are pairwise

non-intersecting each one is non-mighty independently from the others. Hence

P {ǫ1} ≤ nd

(

d

k

)2(
V

β

)

(p1)
β+1

(

4kn−γ/10
)β

= O
(

nd−(γβ)/10
)

since

(

V

β

)

(p1)
β+1

= o(1)

→ 0 since (γβ)/10 > d.

✷

Lemma 4 Let ǫ2 denote the event that there is no red node v with deg(v) < ln lnn that has a red

neighbour w such that w has a non-mighty section. Then ǫ2 holds with high probability.

Proof: For a fixed red node v and t ≤ ln lnn we have

P {deg(v) = t} =
(

V

t

)

pt1(1− p1)
V−t ≤

(

V

t

)

pt1e
−p1(V−t) ∼

(

V

t

)

pt1e
−p1V ≤

(

V

t

)

pt1n
−(d−kδ).

Conditional on deg(v) = t there are t choices for a neighbour w of v. Recalling that each of the
(

d
k

)
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sections of w is non-mighty with probability at most 4kn−γ/10 we obtain

P {ǫ2} ≤
ln lnn
∑

t=0

ndp1t

(

d

k

)

4kn−γ/10

(

V

t

)

pt1n
−(d−kδ)

= O
(

n−γ/10 lnn
)

ln lnn
∑

t=0

O

(

t

(

V

t

)

pt1

)

→ 0 since γ > 0.

✷

Lemma 5 Let ǫ3 denote the event that every vertex has at least one red neighbour. Then both ǫ3 holds

with high probability.

Proof: Recall that a red vertex is present with probability p1 and a blue vertex is present with probability

p2. The probability that either a blue or red vertex does not have any red neighbours is just (1− p1)
V . We

note that

(1− p1)
V ≤ exp {−p1V } = exp

{

−p∗V +
V

apωk lnn

}

∼ exp {−p∗V } .

Since p2 ≤ p1 ≤ p∗ we obtain

P {ǫ3} ≤ ndp∗(1− p1)
V ≤ ndp∗e−p∗V → 0

since cn →∞. ✷

4.2 The algorithm

We note here that this section differs in style from the analysis in Frieze et al. (2008). We assume that

the high probability events ǫ1, ǫ2, ǫ3, ǫ4 all hold and that our graph G has no isolated nodes. All the nodes

mentioned in this section are assumed to be red nodes.

We first define some notation used in Algorithm 1. We recall the definition of bp as

bp =

{

⌊2ω⌋ if p =∞,
⌊

2ω/k
1
p

⌋

if 1 ≤ p <∞.

Let s := bp/4 and for a point x ∈ T define the set of torus points B(x, s) := {y ∈ T :‖ x− y ‖∞≤ s}.
For a given point u ∈ T let ui denote its ith coordinate. Given a subsection U and a point x ∈ T we define

the function

d(U, x) = max
u: u ∈ U

‖ u− x ‖ℓ∞ ,

By the closest subsection to x, we mean the subsection U that minimizes d(U, x). If the minimizer is not

unique we select one arbitrarily.
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Algorithm 1 takes as input any point x ∈ T and a node v ∈ H and returns a node φ(x, v) that is in the

same component of H as v and lies in the box B(x, s). The general idea is to start at node v and move

from neighbouring node to neighbouring node, until we reach a node inside the box B(x, s). Initially all

coordinates are declared unfixed. Each time the algorithm moves to a new node it checks the distance to

the point x in each of the remaining unfixed coordinates. When this distance becomes at most s it declares

the respective coordinate fixed.

There are three tracking variables used by the algorithm. The variable currNode keeps track of the

location of the algorithm. At each step the algorithm first chooses a set of k coordinates which is tracked

by the variable currSet, and then selects a neighbour of currNode which lies in the section corresponding

to currSet. Hence at each step the algorithm moves in the direction of the k coordinates which are in

currSet. The idea is to select the currSet which contains the maximum number of unfixed coordinates

among all available choices and then move to a neighbour which decreases the distance to x in each of

the unfixed coordinates belonging to currSet. This is done by selecting the subsection which minimizes

the distance to x. We now present the algorithm

Algorithm 1

Require: node v ∈ H , point x ∈ T
Ensure: node φ(x, v) ∈ B(x, s) that is in same component of H as v

1: If v ∈ B(x, s) return v and terminate

2: update(v)

3: if deg(v) < ln lnn then

4: currSet← set Sℓ with max number of unfixed coordinates

5: currNode← any neighbour w of v
6: else

7: currSet← set Sℓ chosen according to Rule 1

8: currNode← neighbour w such that the section VcurrSet(w) is mighty

9: end if

10: while there are unfixed coordinates do

11: update(currNode)

12: currSubsection← subsection in VcurrSet(currNode) that is closest to x
13: currSet← set Sℓ chosen according to Rule 2

14: currNode← neighbour w such that the section VcurrSet(w) is mighty

15: end while

16: return currNode

The algorithm uses the two rules:

• Rule 1: select the set with the maximum number of unfixed coordinates among all sets Sℓ for

which there exists a section of currNode with at least β nodes having pairwise non-intersecting VSℓ

sections

• Rule 2: select the set with the maximum number of unfixed coordinates among all sets Sℓ for which

currSubsection contains at least β nodes having pairwise non-intersecting VSℓ
sections.
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And the subroutine:

update(v)

1: for all unfixed coordinates i do

2: if |vi − xi| ≤ s then

3: Set coordinate i to fixed.

4: end if

5: end for

We now prove that the algorithm runs correctly through a series of claims.

Claim 6 If deg(v) < ln lnn then the algorithm is able to select a neighbour of w of v whose sections are

all mighty.

Proof: Since the event ǫ3 holds we know that v has at least one neighbour and since the event ǫ2 holds

we know that for any neighbour of v all of its sections are mighty. ✷

Claim 7 If deg(v) > ln lnn then the algorithm is able to select a set Sℓ according to Rule 1 and is then

able to find a neighbour w of v such that VSℓ
(w) is mighty.

Proof: Since deg(v) → ∞ as n → ∞ for large enough n there exists a section VSj
(v) of v which

contains at least βk nodes. Since all of these nodes are distinct and lie in the same k-dimensional section

there must exists a coordinate i ∈ Sj such at least β of these nodes have pairwise distinct i coordinates.

Therefore for any choice of Sℓ, such that i /∈ Sℓ, the corresponding VSℓ
sections of these β nodes will be

pairwise non-intersecting. Since each set contains k < d coordinates there is always a choice of such a

set. Now since ǫ1 holds we know that least one of these β nodes has a mighty VSℓ
section. ✷

Claim 8 In each iteration of the while loop the algorithm is able to select a set Sℓ according to Rule 2

and is then able to find a neighbour w of currNode such that VSℓ
(w) is mighty.

Proof: We first note that at the start of each iteration the section VcurrSet(currNode) is mighty. This follows

from the way the algorithm always selects currNode. Every subsection of a mighty section contains at

least ln lnn nodes. Hence for large enough n we have ln lnn > βk and the same argument as in the proof

of Claim 7 applies. ✷

Claim 9 In each iteration of the while loop the distance to x is decreased for each unfixed coordinate

belonging to currSet, and the distance to x remains at most s for each fixed coordinate belonging to

currSet.

Proof: Let u=currNode and Sℓ= currSet. Then the algorithm will select the closest subsection to x from

the 4k subsections of the section VSℓ
(u) and move to a new node belonging to this subsection. Let i ∈ Sℓ

and assume without loss of generality that ui ≥ xi. If i is unfixed then ui > xi + s and the algorithm will

choose the subsection corresponding to the interval [ui − s, ui − 2s] in the ith coordinate. Then for any

node w whose ith coordinate belongs to this interval we will have wi − xi < ui − xi. On the other hand
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if i is fixed then the algorithm will choose the subsection corresponding to the the interval [ui, ui − s].
Hence for any node w whose ith coordinate belongs to this interval we will have |wi − xi| ≤ s. We

note that the distance to x could actually increase in this case, that is we can have |wi − xi| > |ui − xi|,
however it will always remain at most s. ✷

Claim 9 implies that once the distance to x in a coordinate is at most s it will remain at most s for

the remainder of the algorithm. Furthermore since the algorithm selects a new currSet in each iteration,

and it always chooses the one with the maximum number of unfixed coordinates, it follows that while

a coordinate remains unfixed it will keep getting selected. Hence by Claim 9 after enough iterations

each unfixed coordinate will become fixed. Therefore we have proved the following lemma which is the

counterpart of lemma 2.5 in Frieze et al. (2008).

Lemma 10 Assume that the high probability events ǫ1, ǫ2, ǫ3, ǫ4 all hold and that G does not have any

isolated nodes. Then for each point x ∈ T and each node v ∈ H there exists a node φ(x, v) that is in the

same component of H as v and lies in the box B(x, s).

4.3 The second stage

We now show how placing the blue nodes in the second stage can guarantee that the final graph is con-

nected with high probability, following the proof method in Frieze et al. (2008). Let L be the set of points

in T whose coordinates are multiples of 3ω. For each component K of H let vK be the lexicographically

smallest node in K. Now suppose we have two distinct components K and J of H . For each x ∈ L let

φ(x, vK) and φ(x, vJ) be the unique nodes returned by Algorithm 1. Then φ(x, vK) and φ(x, vJ) both

lie in the box B(x, s). Since K and J are distinct components it follows that the nodes φ(x, vK) and

φ(x, vJ) are distinct for all x ∈ L.

For d/2 < k < d let z(J,K, x) be the unique point in B(x, s) that agrees with φ(x, vK) in the first

d − k coordinates and with φ(x, vJ) in the last k coordinates. We recall that two points are said to be

mutually visible if they differ in at most k coordinates and are within a distance ω apart. Since 2s ≤ ω
it follows that z(J,K, x) is mutually visible with both φ(x, vK) and φ(x, vJ). Therefore if we were to

place a blue node at the point z(J,K, x) the nodes φ(x, vK) and φ(x, vJ), and therefore the components

K and J , would become linked up.

For k ≤ d/2 let p(J,K, x) be the unique path whose points all lie in B(x, s) that is picked as follows:

we let the first point of the path agree with φ(x, vK) in the first d− k coordinates and with φ(x, vJ) in the

last k coordinates. Hence the first point of the path is mutually visible with φ(x, vK). We let the second

point agree with φ(x, vK) in the first d−2k coordinates and with φ(x, vJ) in the last 2k coordinates. This

ensures that the second point of the path is mutually visible with the first point of the path. We continue

in this way until the last point is mutually visible with φ(x, vJ). Then this path has at most ⌈d/k⌉ − 1
points. If we were to place a blue node at each point of the path then φ(x, vK) and φ(x, vJ), and therefore

the components K and J , would become linked up.

Lemma 11 For distinct points x and y in L the points z(J,K, x) and z(J,K, y) are distinct and the paths

p(J,K, x) and p(J,K, y) do not have any points in common.

Proof: This follows since the point z(J,K, x) and the path p(J,K, x) lie in B(x, s), while the point

z(J,K, y) and the path p(J,K, y) lie in B(y, s). These boxes are disjoint since they each have side length

2s ≤ ω and x and y are at least 3ω apart. ✷

✷
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Hence for a fixed pair of components J and K there are (n/3ω)d such points (or paths) that could link

them up. The probability of not placing a blue node at a fixed point is 1− p2, while the probability of not

placing a blue node at every point in a fixed path of length ℓ is 1 − pℓ2. The total number of components

of H is upper bounded by (2s)d ≤ ωd since for any fixed point x ∈ L each component has a point in the

box B(x, s) and this box has a total of (2s)d points.

Therefore for d/2 < k < d we have

P {H is not connected} ≤ P {there exist components J and K that are not linked up}
= ωd(1− p2)

nd/(3ω)d

≤ ωdexp

{

−nd−(d+k)δ

ap3d lnn

}

→ 0 if δ <
d

d+ k
.

And similarly for k ≤ d/2

P {H is not connected} ≤ P {there exist components J and K that are not linked up}
≤ ωd(1− p

⌈d/k⌉−1
2 )n

d/(3ω)d

≤ ωdexp

{

−nd−(d+k(⌈ d
k⌉−1))δ

3d(ap lnn)⌈d/k⌉−1

}

→ 0 if δ <
d

d+ k
(⌈

d
k

⌉

− 1
) .

Thus assuming the high probability events ǫ1, ǫ2, ǫ3, ǫ4 hold and G has no isolated nodes, H is con-

nected with high probability. From ǫ3 we know that every blue node has at least one red neighbour, and

therefore it follows that G must be connected with high probability. This completes the proof of the upper

bound.

4.4 The middle case

We finally consider the case cn → c. The proof in this section also follows the general structure of the one

in Frieze et al. (2008). In Section 2 we have shown that if cn → c then limn→∞ E {N} = λ. For a given

node v of the graph G let v′ denote its location in the torus. Then define N ′′ to be the number of pairs of

isolated nodes (u, v) such that (u′, v′) ∈ S , where the set S was defined in Section 3. Let N ′ denote the

number of isolated nodes u such that for all other isolated nodes v we have (u′, v′) ∈ S . Then

N ′ ≤ N ≤ N ′ +N ′′.

In Section 3 we have shown that

E {N ′′} =
∑

i∼j

E {XiXj} → 0,
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Therefore N = N ′ with high probability. Let t be a positive integer. We obtain the following upper

and lower bounds on E {(N ′)t}, where (N ′)t = t!
(

N ′

t

)

,

E {(N ′)t} ≤ t!

(

nd

t

)

(

p∗(1− p∗)V
)t

=
(

ndp∗(1− p∗)V
)t

,

E {(N ′)t} ≥
((

nd − t (V )
2
)

p∗(1− p∗)V
)t

.

Therefore

lim
n→∞

E {(N ′)t} = λt,

and thus N ′ is asymptotically Poisson with mean λ, Alon and Spencer (2000). This implies that

lim
n→∞

P {G has an isolated vertex} = 1−P {Pois(λ)=0} = 1− e−λ.

Now consider the two stage process from Section 4 and recall the definition of the events ǫ1, ǫ2 and ǫ3.

The only part of the analysis in Section 4 that used the fact that cn → ∞ was showing that the event ǫ3
holds with high probability. We now have

P {ǫ3} = P { G has a vertex with no red neighbour}
∼ P {G has an isolated vertex}
→ 1− e−λ.

Therefore if we condition on the event ǫ3 the rest of the analysis in Section 4 holds for the case cn → c as

well and it shows that G is connected with high probability. Therefore

lim
n→∞

P {G is connected} = e−λ.

This completes the proof of the middle case.
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