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We conjecture that every signed graph of unbalanced girth 2g, whose underlying graph is bipartite and planar, admits

a homomorphism to the signed projective cube of dimension 2g−1. Our main result is to show that for a given g, this

conjecture is equivalent to the corresponding case (k = 2g) of a conjecture of Seymour claiming that every planar

k-regular multigraph with no odd edge-cut of less than k edges is k-edge-colorable. To this end, we exhibit several

properties of signed projective cubes and establish a folding lemma for planar even signed graphs.
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1 Introduction

It is a classic result of Tait from 1890 that the Four-Color Theorem (Conjecture at that time) is equivalent to

the statement that every cubic bridgeless planar graph is 3-edge-colorable. An extension of this equivalent

statement was proposed as a conjecture using the notion of an odd cut, that is a partition (X,Y ) of the set

of vertices where |X | is odd. It is easily observed that if a k-regular multigraph is k-edge-colorable, then

the number of edges with exactly one end in X , assuming |X | is odd, is at least k. Seymour conjectured

in 1975 that for planar multigraphs the converse is also true, which generalizes Tait’s statement:

Conjecture 1.1 (Seymour [13]) Every k-regular planar multigraph with no odd edge-cut of less than k
edges is k-edge-colorable.

A direct extension of the Four-Color Theorem, using the language of graph homomorphisms, was in-

troduced in [10] where it was shown that this conjecture is essentially equivalent to Seymour’s conjecture

for odd values of k. In an unpublished manuscript [5], B. Guenin, after introducing the notion of signed-

graph homomorphisms, provided a further extension of this conjecture and the Four-Color Theorem. He

has then shown relations between his conjecture and several other conjectures.

The theory of homomorphisms of signed graphs includes in particular the theory of graph homomor-

phisms. A first paper on a comprehensive study of this notion was recently written by the authors of

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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this work. Here we would like to emphasis on a direct extension of the Four-Color Theorem and its re-

lation with Seymour’s conjecture. We introduce the basic notations but we refer to [12] and references

mentioned there for more details.

Given a graph G, a signature on G is a mapping that assigns to each edge of G either a positive or a

negative sign. A signature is normally denoted by the set Σ of negative edges. Given a signature Σ on a

graph G, resigning at a vertex v is to change the sign of each edge incident with v. Two signatures Σ1 and

Σ2 on G are equivalent if one can be obtained from the other by a sequence of resignings or, equivalently,

by changing the signs of the edges of an edge-cut. A graph G equipped with a signature Σ is a signified

graph, denoted (G,Σ). A signed graph is a maximal class of signified graphs, all of whose signatures are

equivalent. For convenience, a signed graph will also be denoted (G,Σ) where Σ is any member of the

class of equivalent signatures.

An important notion in signed graphs is the following. An unbalanced cycle in a signed graph (G,Σ)
is a cycle having an odd number of negative edges. Note that this is independent of the choice of a

representative signature. Furthermore, the notion of unbalanced cycle is, in some sense, an extension of

the classic notion of an odd cycle (a cycle with odd length), as a cycle of (G,E(G)) is unbalanced if and

only if it is an odd cycle of G. The unbalanced-girth of (G,Σ) is then the shortest length of an unbalanced

cycle of (G,Σ). A cycle that is not unbalanced, i.e., a cycle that has an even number of negative edges

(possibly none), is called balanced.

Note that if a signed Eulerian graph contains an odd number of negative edges, it must contain an

unbalanced cycle. Therefore, if W is a closed walk in G with an odd number of negative edges in (G,Σ),
then the subgraph induced by the edges of W contains an unbalanced cycle.

One of the first theorems in the theory of signed graphs is that the set of unbalanced cycles (equivalently

the set of balanced cycles) uniquely determines the associated class of signatures. More precisely:

Theorem 1.2 (Zaslavsky [14]) Two signatures Σ1 and Σ2 on a graph G are equivalent if and only if they

induce the same set of unbalanced cycles.

An important subclass of signed graphs, called consistent signed graphs, is the class of signed graphs

whose balanced cycles are all of even length and whose lengths of unbalanced cycles are all of the same

parity. This class itself consists of two parts. When all the unbalanced cycles are of odd length, then

the set of unbalanced cycles of (G,Σ) is exactly the set of odd-length cycles of G, thus in this case, by

Theorem 1.2, E(G) is a signature and (G,Σ) = (G,E(G)). Such a signed graph will then be called an

odd signed graph. When the lengths of all balanced and unbalanced cycles are even, the graph G must be

bipartite, and Σ can be any subset of edges. Such a signed graph will be called a signed bipartite graph.

Given two graphs G and H , a homomorphism of G to H is a mapping φ : V (G) → V (H) such

that if xy ∈ E(G) then φ(x)φ(y) ∈ E(H). We denote by G → H the existence of a homomorphism

of G to H . This notion extends the notion of coloring because a graph G is k-colorable if and only if

G → Kk. Given two signed graphs (G1,Σ1) and (G2,Σ2) we say that (G1,Σ1) admits a signed-graph

homomorphism, or homomorphism for short, to (G2,Σ2) if there are signatures Σ′

1 and Σ′

2 equivalent

to Σ1 and Σ2, respectively, and a homomorphism ϕ of G1 to G2 such that ϕ also preserves the signs of

edges given by Σ′

1 and Σ′

2. It is easily observed that the existence of ϕ is independent of the choice of the

signature in the image graph while the choice of the signature of (G1,Σ
′

1) is essential. Thus the binary

relation (G1,Σ1) → (G2,Σ2), which denotes the existence of a homomorphism of (G1,Σ1) to (G2,Σ2),
is transitive.
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For every integer k ≥ 3, we denote by UCk the unbalanced cycle of length k, that is UCk = (Ck, {e}),
where e is any edge of the cycle Ck. One of the first results in the theory of signed-graph homomorphisms

is the following easy-to-prove lemma.

Lemma 1.3 There is a homomorphism of UCk to UCℓ if and only if k ≥ ℓ and k ≡ ℓ (mod 2).

Another key notion for this work is the notion of minors. A minor of a signed graph (G,Σ) is a signed

graph obtained from (G,Σ) by a sequence of (i) deleting vertices or edges, (ii) contracting positive

edges and (iii) resigning, in any order. In particular, this notion allows to express in terms of (odd) signed

graphs the following conjecture, proposed by Gerards and Seymour (see [7], p. 115), which extends the

celebrated Hadwiger’s Conjecture.

Conjecture 1.4 (Odd Hadwiger’s Conjecture) If (G,E(G)) does not have (Kn, E(Kn)) as a minor,

then χ(G) ≤ n− 1.

Using the definition of signed projective cube from the next section, the following conjecture is the

main concern of this work:

Conjecture 1.5 Every consistent planar signed graph of unbalanced girth k admits a homomorphism to

the signed projective cube of dimension k − 1.

The case k = 3 of this conjecture is indeed the Four-Color Theorem. It is proved in [10] that this is

equivalent to Conjecture 1.1 for every odd k. Here we do the analog for even values of k, i.e. for planar

signed bipartite graphs, and prove the following:

Theorem 1.6 The following two statements are equivalent:

(i) Every planar 2k-regular multigraph with no odd edge-cut of less than 2k edges is 2k-edge-colorable.

(ii) Every planar signed bipartite graph of unbalanced girth at least 2k admits a homomorphism to the

signed projective cube of dimension 2k − 1.

To this end we prove an analog of the “folding lemma” from [9] for the class of planar signed bi-

partite graphs. We note that, as it is shown in [12], the restriction of the notion of signed-graph ho-

momorphism to the class of signed bipartite graphs already captures the notion of graph coloring and

graph homomorphism through simple and natural graph operations. Roughly speaking, we can asso-

ciate a signed bipartite graph (S(G), ES(G)) with any graph G such that (i) χ(G) ≤ k if and only if

(S(G), ES(G)) → (Kk,k,Mk), where Mk is any perfect matching of the complete bipartite graph Kk,k,

and (ii) for any graphs G and H , G → H if and only if (S(G), ES(G)) → (S(H), ES(H)).
The structure of the paper is as follows: in the next section we define the signed projective cubes

and prove their main properties. Then we prove the folding lemma for planar signed bipartite graphs in

Section 3 and Theorem 1.6 in Section 4.

2 Signed Projective Cubes

Recall that for d ≥ 2, the hypercube of dimension d, denoted Hd, is the graph with vertex set (Z2)
d,

two vertices x and y being adjacent if x − y ∈ {e1, e2, . . . , ed}, where ei is the vector of (Z2)
d with the

i-th coordinate being 1 and other coordinates being 0. This can be seen as the skeleton of the geometric

hypercube, or as a discrete version of the d-dimensional sphere. The distance between any two vertices
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Fig. 1: Signed projective cubes of dimension 2 and 3

in Hd is thus the number of coordinates in which they differ. Two vertices in Hd are said to be antipodal

if they are at maximum graph distance. Hence, each vertex v has a unique antipode v + J , where J =
(1, 1, . . . , 1), whose distance from v is d.

Equivalenlty, the hypercube Hd is inductively obtained from two disjoint copies of Hd−1 by adding an

edge between each pair of corresponding vertices in the two copies. In this view, to obtain the antipodal

of a vertex x in Hd we must first find its antipodal x∗ in the copy of Hd−1 to which x belongs. Then the

twin of x∗ in the other copy is the antipodal of x in Hd.

Projective cubes can be defined in several ways, our first definition is the one that justifies their name.

Just as the projective space of dimension d is built from the sphere of dimension d+1, we define the pro-

jective cube of dimension d, denoted PCd, to be the homomorphic image of Hd+1 under the identification

of antipodal pairs. If we consider two copies of Hd which are the building blocks of Hd+1, the above

mentioned projection will map vertices from one copy to another, where adjacencies are also preserved

but the edges of the matching connecting one copy to another will become edges connecting each vertex of

Hd to its antipodal in Hd. Thus PCd can also be defined as the graph obtained from Hd by adding a new

edge between each pair of antipodal vertices in Hd. Since in the algebraic definition of Hd two vertices

are antipodal if and only if their difference is J , we can also define PCd as a Cayley graph as follows: PCd

is the graph with vertex set (Z2)
d, where vertices u and v are adjacent if u− v ∈ {e1, e2, . . . , ed} ∪ {J}.

We will consider that such an edge uv is labeled by u− v. We will also use the following:

Observation 2.1 For every d ≥ 2, the sum of the edge labels of any cycle in PCd is 0.

It is easy to check that PC2, PC3 and PC4 are isomorphic to K4, K4,4 and the well-known Clebsch

graph, respectively.

Using the Cayley definition of PCd, let J be the set of edges labeled by J . We define the signed

projective cube of dimension d, denoted SPCd, to be the signed graph (PCd,J ). The first two signed

projective cubes are presented in Fig. 1. The presentation of PC4, given in Fig. 2, also shows the method

of construction of the projective cubes. In these figures, dashed edges are negative and solid edges are

positive.

We will first prove that SPCd is a consistent signed graph and determine its unbalanced girth.

Theorem 2.2 All balanced cycles of SPCd are of even length, all unbalanced cycles of SPCd are of the

same parity, and the unbalanced girth of SPCd is d+ 1. Furthermore, for each unbalanced cycle UC of

SPCd and for each x ∈ {e1, e2, . . . , ed} ∪ {J}, there is an odd number of edges of UC labeled by x.

Proof: By the Cayley definition of SPCd, the sum of the edge labels of SPCd is 0. Let UCr be an

unbalanced cycle of length r in SPCd. Thus, by the definition of an unbalanced cycle, there is an odd
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Fig. 2: Signed projective cube of dimension 4

number of edges in UCr labeled by J . To sum up the edge labels of UCr to 0, each ei, i = 1, 2, . . . , d,

must also appear an odd number of times. Thus r ≥ d + 1 and r ≡ d + 1 (mod 2). In particular, this

implies that the lengths of all the unbalanced cycles of SPCd have the same parity.

Similarly, if C is a balanced cycle then C contains an even number of edges labeled by J , by definition.

Since, by Observation 2.1, the sum of the edge labels on each cycle is 0, there should be an even number

of edges labeled by each of the ei’s. Therefore, each balanced cycle is of even length.

To see that SPCd is actually of unbalanced girth d + 1, note that an unbalanced cycle of length d + 1
is induced by the following sequence of vertices: v0 = (0, . . . , 0), vi = vi−1 + ei for 1 ≤ i ≤ d. ✷

Corollary 2.3 The signed projective cube SPC2d is equivalent to (PC2d, E(PC2d)).

Proof: By Theorem 2.2 a cycle in (PC2d,J ) is unbalanced if and only if it is of odd length. This

is exactly the set of unbalanced cycles of (PC2d, E(PC2d)). Hence, by Theorem 1.2, (PC2d,J ) and

(PC2d, E(PC2d)) are equivalent. ✷

A direct proof of this corollary (using resigning) is worth mentioning: for each i, 1 ≤ i ≤ d, the set of

edges of PCd labeled either by ei or by J forms an edge-cut (X,Y ) where X is the set of vertices with

i-th coordinate being 0 and Y is the set of vertices with i-th coordinate being 1. If for each such edge-cut

we resign all the edges of the cut (by resigning at all the vertices of X), then each edge corresponding to

an ei will have a negative sign (as it will be resigned only once) and each edge corresponding to J will

be resigned d times, so that its sign would return to original negative if and only if d is even. Note that

through this process we have resigned at some vertices more than once. At the end, we have resigned at

vertices with an odd number of coordinates being 0.

Thus if a signed graph (G,Σ) admits a homomorphism to SPC2d then, using the signature E(PC2d)
of SPC2d, we conclude that (G,Σ) must be equivalent to (G,E(G)). On the other hand, since the
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underlying graph of SPC2d+1 is bipartite, if (G,Σ) maps to SPC2d+1, then G must also be bipartite.

Thus, in general, consistent signed graphs are the only graphs that can map to signed projective cubes.

The following theorem shows that the problem of finding a mapping of a consistent signed graph to a

signed projective cube is equivalent to a packing problem.

Theorem 2.4 A signed bipartite graph (resp. odd signed graph) admits a homomorphism to SPC2d−1

(resp. SPC2d) if and only if it admits at least 2d− 1 (resp. 2d) edge-disjoint signatures.

Theorem 2.4 in this form first appeared in [5]. For even dimensions, i.e., for the case in brackets, since

all edges being negative is a signature of SPC2d, the problem of finding a homomorphism of (G,Σ) to

SPC2d is reduced to the problem of finding a homomorphism of G to PC2d. Here, we give an independent

proof for odd dimensions. Our proof can be easily adapted for even dimensions as well.

Proof: First assume that there is a homomorphism of (G,Σ) to SPC2d−1. Then, by Lemma 1.3, for

each unbalanced cycle UC of (G,Σ), there should be an unbalanced cycle in its image in SPC2d−1.

Furthermore, for each ei, the set of edges of UC that are mapped to an edge with label ei, should be of

odd size. On the other hand, for a balanced cycle C of (G,Σ) the set of edges of C that are mapped to an

edge with label ei should be of even size. Therefore, for each ei the set Ei(G) of edges of G which are

mapped to edges of SPC2d−1 with label ei has the property that its intersection with each balanced (resp.

unbalanced) cycle of (G,Σ) is of even (resp. odd) size. Thus, by Theorem 1.2, Ei(G) is equivalent to Σ
and obviously the Ei(G)’s are edge disjoint.

For the converse, suppose E1, E2, . . . , E2d−1 are sets of edge-disjoint signatures equivalent to Σ and

let Ê = E1 ∪E2,∪ · · · ∪ E2d−1.

We first claim that EJ = E − Ê is also a signature. We use Theorem 1.2 to prove this. If UC is an

unbalanced cycle of (G,Σ), then it contains an odd number of edges from each Ei, 1 ≤ i ≤ 2d− 1 and,

therefore, it contains an odd number of edges from Ê. Since UC is of even length, it has an odd number

of edges from EJ = E − Ê. Now, let C be a balanced cycle of (G,Σ). Clearly, the intersection of C
with each Ei, 1 ≤ i ≤ 2d − 1, and hence with Ê, contains an even number of edges. Again, since C
has an even number of edges, the intersection of C with EJ = E − Ê also has an even number of edges.

Therefore, the set of unbalanced cycles of (G,Σ) is exactly the set of cycles whose intersection with EJ

contains an odd number of edges.

Let now ϕ : E(G) → {e1, e2, . . . , e2d−1} ∪ {J} be defined as follows: if uv ∈ Ei, 1 ≤ i ≤ 2d − 1,

then ϕ(uv) = ei and if uv ∈ EJ , then ϕ(e) = J . It is easy to verify now that given a cycle C of G,∑
uv∈E(C) ϕ(uv) is 0 (in (Z2)

2d−1).

A homomorphism of (G,Σ), using its representation (G,EJ ), to SPC2d−1 can be now built as follows:

for each connected component G′ of G choose a vertex x and let φ(x) = 0. Then for any other vertex y
choose a path P with x and y being its two ends and let φ(y) =

∑
uv∈E(P ) ϕ(uv). Since ϕ adds up to

zero in each cycle, φ is well defined. Every edge uv of (G,EJ ) is mapped to an edge of SPC2d−1 with

label φ(v) − φ(u) and it is easy to check that φ is a homomorphism of (G,EJ ) to SPC2d−1. ✷

As an easy corollary we get that the homomorphism relation between signed projective cubes them-

selves is very much like that of the homomorphism relation between cycles as given in Lemma 1.3:

Theorem 2.5 There is a homomorphism of SPCd to SPCd′ if and only if d ≥ d′ and d ≡ d′ (mod 2).

Though the theorem easily follows from the previous theorem, we give an independent proof which

explicitely constructs such a homomorphism.
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Proof: A homomorphism φ of SPCd+2 to SPCd can be defined as follows. If the last two coordinates

of v are 00 or 11, then φ(v) is the restriction of v to its first d coordinates. Otherwise, to get φ(v), we

first restrict v to its first d coordinates and then add the d-dimensional vector J . To see that φ is indeed a

homomorphism of SPCd+2 to SPCd, one must resign SPCd+2 at every vertex whose last two coordinates

are 01 or 10. Associativity of homomorphisms then implies the existence of a homomorphism of SPCd

to SPCd′ when d ≥ d′ and d ≡ d′ (mod 2). The inverse claim follows from Theorem 2.2 and the fact

that every unbalanced cycle of SPCd must have, in its image, an unbalanced cycle of SPCd′ . ✷

3 Folding lemma

As mentioned before, it has been shown in [12] that the notion of signed homomorphisms on signed

bipartite graphs already captures the notion of graph homomorphisms. The operations used to build this

connection preserves planarity. Thus any homomorphism theory on planar graphs can be strengthened in

the language of signed homomorphisms on planar signed bipartite graphs.

A key lemma in the study of homomorphism properties of a planar graph is the folding lemma of

Klostermeyer and Zhang [9]. This lemma implies that for each planar graph G of shortest odd cycle

length 2r + 1, and for each k ≤ r, there is a planar homomorphic image H of G where every face of

H is of length 2k + 1 and the shortest odd-length cycle of H is also of length 2k + 1. By considering

unbalanced cycles instead of odd-length cycles, we will get the same result for the class of planar signed

bipartite graphs.

Lemma 3.1 (Folding Lemma) Let (G,Σ) be a planar signed bipartite graph of unbalanced girth g. If

C = v0 · · · vr−1v0 is a balanced facial cycle of (G,Σ), or an unbalanced facial cycle of (G,Σ) with

r > g, then there is an integer i ∈ {0, . . . , r − 1} such that the signed graph (G′,ΣG′) obtained from

(G,Σ) by identifying vi−1 and vi+1 (subscripts are taken modulo r) is a homomorphic image of (G,Σ)
of unbalanced girth g.

Proof: We follow notations and ideas of Section 4 in [9]. Suppose that C = v0 · · · vr−1v0 is a balanced

facial cycle of (G,Σ), or an unbalanced facial cycle of (G,Σ) with r > g. For each i ∈ {0, . . . , r− 1}, if

vi−1vivi+1 does not belong to a UC4 — which is always the case if g > 4 — let Gi be the graph obtained

from G by identifying vi−1 and vi+1, after having resigned at vi−1 if vi−1vi and vivi+1 have opposite

signs. If such a Gi has unbalanced girth at least g we are done (the mapping that identifies vi−1 and vi+1

is clearly a homomorphism of (G,Σ) to (G′,ΣG′) = (Gi,Σi), where Σi is the signature of Gi induced

by Σ). Otherwise (including the case g = 4), it means that for each i ∈ {0, . . . , r − 1}, G contains

an unbalanced cycle Ci of length g passing through the segment vi−1vivi+1 of C. This kind of cycle is

called a critical cycle of (G,Σ) around C containing vi−1vivi+1. Each critical cycle Ci of length g must

contain a maximal segment vµCvµ+pi
= vµvµ+1 · · · vµ+pi

with vi−1vivi+1 ⊆ vµCvµ+pi
, vµ−1 /∈ Ci

and vµ+pi+1 /∈ Ci, where pi is called the pace of Ci around C.

Let now Cℓ be a critical cycle with the largest pace and vbCvd be the maximal segment of C contained

in Cℓ. Consider another critical cycle Cb that contains the segment vb−1vbvb+1 and let vaCvc be the

maximal segment of C contained in Cb such that vb−1vbvb+1 ⊆ vaCvc. By the choice of Cℓ, vc must be

contained in the segment vbCvd and vb 6= vc 6= vd. Note also that va 6= vb. There are two possibilities:

either va is contained in the segment vbCvd too or not. Let us first suppose the latter case (we will show

later that the former case is not possible). Since C is facial, no critical cycle intersects interior(C). Thus,
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vd

vc

vb

va

w

Cℓ

Cb

C
′

C

Fig. 3: Configuration for the proof of Lemma 3.1

since va is not contained in the segment vbCvd, we get that Cℓ and Cb cross each other in exterior(C) on

some vertex, say w (see Fig. 3). Moreover, va, vb, vc and vd appear in this order around the facial cycle

C.

Let x0 −x1 − · · · −xn−1 −x0 denote a signed Eulerian graph formed by the union of (xi, xi+1)-paths

where i ∈ Zn. ThenC = va−vb−vc−vd−va, Cℓ = vb−vc−vd−w−vb and Cb = va−vb−vc−w−va.

Let C′ = vb − vc −w− vb, where vb − vc is the path belonging to C, vc −w the path belonging to Cb

and w − vb the path belonging to Cℓ. We consider two cases.

1. The cycle C′ is balanced. We then have:

(i) va − vb −w− va, which is the symmetric difference of Cb and C′, is an unbalanced Eulerian

graph, so it contains an unbalanced cycle. Since Cb is critical, we get that |vb − w| ≥ |vb −
vc|+ |vc − w|, where |x− y| is the length of the (x, y)-path; and

(ii) vc − vd −w − vc, which is the symmetric difference of Cℓ and C′, is an unbalanced Eulerian

graph, so it contains an unbalanced cycle. Since Cℓ is critical, we get that |vc − w| ≥ |vb −
vc|+ |vb − w|.

By comparing (i) and (ii) we get that |vb − vc| ≤ 0, a contradiction with the fact that vb 6= vc.

2. The cycle C′ is unbalanced. We then have:

(i) C′ contains an unbalanced cycle. SinceCb is critical, we get that |vc−w| ≥ |vc−vd|+|vd−w|.

(ii) va − vb − vc − vd − w − va, which is the symmetric difference of Cℓ and the symmetric

difference of C′ and Cb, is an unbalanced Eulerian graph, so it contains an unbalanced cycle.

Since Cb is critical, we get that |vc − w| ≤ |vc − vd|+ |vd − w|.
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By comparing (i) and (ii) we get that |vc − w| = |vc − vd|+ |vd − w| and the length of va − vb −
vc− vd−w− va is the same as the length of the critical cycle Cb. Thus va− vb− vc− vd−w− va
itself is critical but with a pace larger than the pace of Cℓ, a contradiction.

It remains to show that va cannot be contained in the segment vbCvd. Suppose to the contrary that va
is contained in the segment vbCvd, possibly with va = vd. Since Cℓ is with a largest pace p, we conclude

that 2p > |V (C)|, as otherwise Cℓ would be of larger pace. We distinguish two cases.

1. The cycle C is balanced. Then the symmetric difference of Cℓ and C is an unbalanced Eulerian

graph that contains an unbalanced cycle of length shorter than the length of the critical cycle Cℓ, a

contradiction.

2. The cycle C is unbalanced. Since the length ℓ(C) of C is different from g, we get ℓ(C) ≥ g+2; in

particular, ℓ(C) > ℓ(Cb). We consider the symmetric difference of Cb and the symmetric difference

of Cℓ and C. The result is an unbalanced Eulerian graph that contains an unbalanced cycle with a

length shorter than the length of the critical cycle Cℓ, since the (vc, va)-path of Cℓ belonging to C
is replaced by a shorter (vc, va)-path belonging to Cb, again a contradiction.

We thus get that there is some Gi such that (Gi,Σi) is the required signed graph. ✷

By repeated application of this lemma we get the following:

Corollary 3.2 Given a planar signed bipartite graph (G,Σ) of unbalanced girth g, there is a homomor-

phic image (G′,Σ′) of (G,Σ) such that:

• G′ is planar,

• (G′,Σ′) is a signed bipartite graph,

• (G′,Σ′) is of unbalanced girth g,

• every face of (G′,Σ′) is an unbalanced cycle of length g.

Proof: We can assume that G is connected (otherwise, we may pick one vertex in each component and

identify them). If u is a cut-vertex of (G,Σ), with two neighbors v1 and v2 lying on the outerface and not

belonging to the same block, the signed graph (G1,Σ1), obtained by identifying v1 and v2 (after having

resigned at v1 if necessary), is clearly a bipartite homomorphic image of (G,Σ) with unbalanced girth g.

Repeating this procedure for every cut-vertex of (G,Σ), we get a 2-connected signed bipartite graph, say

(Gk,Σk), which is a homomorphic image of (G,Σ) with unbalanced girth g. Every face of (Gk,Σk) is

then either a balanced cycle or an unbalanced cycle of length at least g. We can then apply Lemma 3.1

until every face is an unbalanced cycle of length g, and get the desired result. ✷
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4 An extension of the Four-Color Theorem

In this section, we prove Theorem 1.6.

Proof: First assume that every planar signed bipartite graph of unbalanced girth at least 2k admits a

homomorphism to SPC2k−1 and let G be a planar 2k-regular multigraph with no odd edge-cut of less

than 2k edges. Using Tutte’s matching theorem we can easily verify that G admits a perfect matching.

Let M be a perfect matching of G. Let GD be the dual of G with respect to some embedding of G on the

plane. Since G is 2k-regular, GD is clearly bipartite. Let MD be the edges in GD corresponding to the

edges of M . It is now easy to check that (GD,MD) is a planar signed bipartite graph of unbalanced girth

2k. Therefore, by our main assumption, (GD,MD) admits a homomorphism to SPC2k−1. This mapping

induces a 2k-edge-coloring on GD (not necessarily a proper edge-coloring) using colors e1, . . . , e2k−1, J .

By Theorem 2.2 every unbalanced cycle has received exactly 2k different colors. In particular each face

of GD , which is an unbalanced cycle of length 2k, has received all 2k colors. Thus reassigning these

colors to their corresponding edges in G will result in a proper 2k-edge-coloring of G.

Now we assume that every planar 2k-regular multigraph with no odd edge-cut of less than 2k edges is

(properly) 2k-edge-colorable. Let (G,Σ) be a plane signed bipartite graph of unbalanced girth 2k. We

would like to prove that this signed graph admits a homomorphism to SPC2k−1. By Corollary 3.2 we

may assume that each face of (G,Σ) is an unbalanced cycle of length exactly 2k. Let GD be the dual

of G with respect to its embedding on the plane. Obviously GD is a 2k-regular multigraph, furthermore

it is easy to check that GD has no odd edge-cut of strictly less than 2k edges (this is the dual of having

unbalanced girth at least 2k). Thus, by our main assumption, GD is 2k-edge colorable. Let Mi be one of

the color classes, which, therefore, is a perfect matching. Let Σi be the edges of G corresponding to the

edges of GD in Mi. We first claim that Σi is equivalent to Σ. This is the case because in both (G,Σi)
and (G,Σ) each face is an unbalanced cycle, and any other cycle is unbalanced if and only if it bounds an

odd number of faces. That means that the sets of unbalanced cycles in both signatures are the same and

the claim follows by Theorem 1.2. To complete the proof note that we have partitioned edges of G into

2k sets Σi each being a signature of (G,Σ). Thus, by Theorem 2.4, (G,Σ) admits a homomorphism to

SPC2k−1. ✷

Since Seymour’s conjecture is verified up to k ≤ 8, see [6], [3], [4] and [2], we conclude that:

Corollary 4.1 Every planar signed bipartite graph of unbalanced girth 4 (6 and 8, respectively) admits

a homomorphism to SPC3 (SPC5,SPC7, respectively).

Note that if G is a simple bipartite graph, then the unbalanced girth of (G,Σ) is at least 4. Furthermore,

note that SPC3 is isomorphic to (K4,4,M) where M is a perfect matching of K4,4. Therefore:

Corollary 4.2 Every planar signed bipartite graph admits a homomorphism to (K4,4,M).

Using Theorem 6.2 of [12] it follows that this corollary is stronger than the Four-Color Theorem. A

fact that, in the edge-coloring formulation, was already proved by P. Seymour [13].

5 Remarks

1. B. Guenin [5] conjectured that in Conjecture 1.5 the condition of planarity can be replaced with the

weaker condition of having no (K5, E(K5)) as a minor, which, if true, would imply the same results for

a larger class.
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2. If Conjecture 1.5 holds, i.e., if every planar signed bipartite graph or planar odd signed graph of

unbalanced girth g admits a homomorphism to a signed projective cube of unbalanced girth g, then,

by Theorem 2.5, any such planar signed graph also admits a homomorphism into projective cubes of

unbalanced girth g − 2i.
We believe that for this latter case, when i ≥ 1, not all vertices of the signed projective cube are needed.

Indeed it is shown in [11] that, for planar odd signed graphs, determining minimal subgraphs of the signed

projective cube SPC2g that would bound the class of planar odd signed graphs of unbalanced girth at least

2k + 1, k ≥ g, would relate to questions such as determining the supremum of the fractional and circular

chromatic numbers of planar graphs of given odd girth.

We believe an analog question for the case of signed bipartite graph would result in development of

further theories and discovery of signed bipartite graphs with high symmetries. Thus we ask:

Problem 5.1 What are the minimal subgraphs of SPC2g−1 to which every planar signed bipartite graph

of unbalanced girth 2g + 2i, i ≥ 1, admits a homomorphism?

A particular case of this question, which is the bipartite analog of Grötzsch’s theorem and Jaeger-

Zhang’s conjecture, is studied in [1].
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