
ar
X

iv
:1

80
7.

00
66

3v
6

 [
cs

.F
L

]
 2

 M
ar

 2
02

0

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 22:1, 2020, #9

New tools for state complexity

Pascal Caron1 Edwin Hamel-De Le Court1 Jean-Gabriel Luque1

Bruno Patrou1

1 LITIS, Université de Rouen-Normandie, France

A monster is an automaton in which every function from states to states is represented by at least one letter.

A modifier is a set of functions allowing one to transform a set of automata into one automaton. We revisit

some language transformation algorithms in terms of modifier and monster. These new theoretical concepts

allow one to find easily some state complexities. We illustrate this by retrieving the state complexity of the

Star of Intersection and the one of the Square root operation.

1 Introduction

The studies around state complexities last for more than twenty years now. Mainly initiated by
Yu et al ([22]) and very active ever since, this research area dates back in fact to the beginning of the
1970s. In particular, in [18] Maslov gives values (without proofs) for the state complexity of some
operations: square root, cyclic shift and proportional removal. From these foundations, tens
and tens of papers have been produced and different sub-domains have appeared depending on
whether the used automata are deterministic or not, whether the languages are finite or infinite,
belong to some classes (codes, star-free, . . .) and so on. We focus here on the deterministic case
for any language.

The state complexity of a regular language is the size of its minimal automaton and the state
complexity of a regular operation is the maximal one of those languages obtained by applying
this operation onto languages of fixed state complexities. So, to compute a state complexity,
most of the time the approach is to calculate an upper bound from the characteristics of the
considered operation and to provide a witness, that is a specific example reaching the bound
which is then the desired state complexity.

This work has been done for numerous unary and binary operations. See, for example, [8],
[13], [14], [15], [21] and [10] for a survey of the subject. More recently, the state complexity of
combinations of operations has also been studied. In most of the cases the result is not simply
the mathematical composition of the individual complexities and studies lead to interesting
situations. Examples can be found in [20], [6], [11] or [16].

Beyond the search of state complexities and witnesses, some studies try to improve the given
witnesses, especially the size of their alphabet ([5], [4]). Others try to unify the techniques and
the approaches used to solve the different encountered problems. In [2], Brzozowski proposes
to use some fundamental configurations to produce witnesses in many situations. In [3], the
authors show how to compute the state complexities of 16 combinations by only studying three
of them.

ISSN 1365–8050 c© 2020 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/1807.00663v6
http://dmtcs.episciences.org/
http://dmtcs.episciences.org/4835

2 Pascal Caron, Edwin Hamel-De Le Court, Jean-Gabriel Luque, Bruno Patrou

In this paper, we propose a general method to build witnesses, consisting in maximizing the
transition function of automata. Among the resulting automata, called monsters, at least one
of them is a witness. We just have to discuss the finality of the states to determine which ones
are. We illustrate this technique by recomputing the state complexity of the operation obtained
in combining star with intersection. The state complexity of the square root operation is also
computed and improved (compared to the bound given by Maslov [18]) as another illustration.

The paper is organized as follows. Section 2 gives definitions and notations about automata
and combinatorics. In Section 3, we define modifiers and give some properties of these algebraic
structures. In Section 4, monsters automata are defined and their use in automata computation
is shown. Section 5 is devoted to show how these new tools can be used to compute tight bounds
for state complexity. Star of intersection and square root examples are described.

2 Preliminaries

Let Σ denote a finite alphabet. A word w over Σ is a finite sequence of symbols of Σ. The length
of w, denoted by |w|, is the number of occurrences of symbols of Σ in w. For a ∈ Σ, we denote
by |w|a the number of occurrences of a in w. The set of all finite words over Σ is denoted by Σ∗.
The empty word is denoted by ε. A language is a subset of Σ∗. The cardinality of a finite set E is
denoted by #E, the set of subsets of E is denoted by 2E and the set of mappings of E into itself is
denoted by EE.

A finite automaton (FA) is a 5-tuple A = (Σ,Q, I, F, δ) whereΣ is the input alphabet, Q is a finite
set of states, I ⊂ Q is the set of initial states, F ⊂ Q is the set of final states and δ is the transition
function from Q × Σ to 2Q extended in a natural way from 2Q × Σ∗ to 2Q.

A word w ∈ Σ∗ is recognized by an FA A if δ(I,w) ∩ F , ∅. The language recognized by an
FA A is the set L(A) of words recognized by A. Two automata are said to be equivalent if they
recognize the same language. A state q is accessible in an FA if there exists a word w ∈ Σ∗ such
that q ∈ δ(I,w).

An FA is complete and deterministic (CDFA) if #I = 1 and for all q ∈ Q, for all a ∈ Σ, #δ(q, a) = 1.
Let D = (Σ,QD, iD, FD, δ) be a CDFA. When there is no ambiguity, we identify #D to #QD. For
any word w, we denote by δw the function q → δ(q,w). Two states q1, q2 of D are equivalent if
for any word w of Σ∗, δ(q1,w) ∈ FD if and only if δ(q2,w) ∈ FD. Such an equivalence is denoted
by q1 ∼ q2. A CDFA is minimal if there does not exist any equivalent CDFA with less states
and it is well known that for any DFA, there exists a unique minimal equivalent one [12]. Such
a minimal CDFA can be obtained from D by computing the accessible part of the automaton
D/ ∼= (Σ,QD/ ∼, [iD], FD/ ∼, δ∼) where for any q ∈ QD, [q] is the ∼-class of the state q and satisfies
the property δ∼([q], a) = [δ(q, a)], for any a ∈ Σ. The number of its states is denoted by #Min(D).
In a minimal CDFA, any two distinct states are pairwise inequivalent.

For any integer n, let us denote ~n� for {0, . . . , n − 1}. When there is no ambiguity, for any
character X and any integer k given by the context, we write X for (X1, · · · , Xk). The state complexity
of a regular language L denoted by sc(L) is the number of states of its minimal CDFA. Let Ln

be the set of languages of state complexity n. The state complexity of a unary operation ⊗ is
the function sc⊗ associating with an integer n, the maximum of the state complexities of ⊗L for
L ∈ Ln. A language L ∈ Ln is a witness (for ⊗) if sc(⊗(L)) = sc⊗(n). This can be generalized,
and the state complexity of a k-ary operation ⊗ is the k-ary function which associates with any

New tools for state complexity 3

k-tuple of integers n, the integer max{sc(⊗L) | L ∈ Ln1
× · · · × Lnk

}. Then, a witness is a tuple
L ∈ (Ln1

× · · · × Lnk
) such that scL = sc⊗n.

We also need some background from finite transformation semigroup theory [9]. Let n be an
integer. A transformation t is an element of ~n�~n�. We denote by it the image of i under t. A
transformation of ~n� can be represented by t = [i0, i1, . . . in−1] which means that ik = kt for each
k ∈ ~n� and ik ∈ ~n�. A permutation is a bijective transformation on ~n�. The identity permutation
is denoted by 1. A cycle of length ℓ ≤ n is a permutation c, denoted by (i0, i1, . . . , iℓ−1), on a subset
I = {i0, . . . , iℓ−1} of ~n� where ikc = ik+1 for 0 ≤ k < ℓ − 1 and iℓ−1c = i0. A transposition t = (i, j) is a
permutation on ~n�where it = j and jt = i and for all elements k ∈ ~n�\ {i, j}, kt = k. A contraction

t =
(

i
j

)
is a transformation where it = j and for all elements k ∈ ~n� \ {i}, kt = k.

Let L and L′ be two regular languages defined over an alphabet Σ. Let Union(L, L′) = {w | w ∈
L∨w ∈ L′}, Inter(L, L′) = {w | w ∈ L∧w ∈ L′}, Xor(L, L′) = {w | (w ∈ L∧w < L′)∨ (w < L∧w ∈ L′)},
Prefin(L) = {w = uv | u ∈ L, v ∈ Σ∗}, Comp(L) = {w | w < L}, Conc(L, L′) = {w = uv | u ∈ L, v ∈ L′},
Star(L) = {w = u1 · · ·un | ui ∈ L}, SRoot(L) = {w ∈ Σ∗ | ww ∈ L} .

3 Modifier and associated transformations

We first define a mechanism which unifies some automata transformations for regular operations
on languages. This mechanism is called a modifier. A k-modifier is an algorithm taking k automata
as input and outputting an automaton. A lot of regular operations on languages can be described
using this mechanism (mirror, complement, Kleene star, . . .). These regular operations are called
describable. Then, we give some properties for describable operations. We will first see that not
all regular operations are describable and that there also exist modifiers which do not correspond
to regular operations on languages.

3.1 Definitions

The state configuration of a DFA A = (Σ,Q, i, F, δ) is the triplet (Q, i, F). Our purpose is to consider
operations on languages that can be encoded on DFA. To this aim, such an operation will be
described as a k-ary operatorm, acting on DFAs A1, . . .Ak over the same alphabetΣ and producing
a new DFA such that

• the alphabet of m(A1, ...,Ak) is Σ,

• the state configuration ofm(A1, ...,Ak) depends only on the state configurations of the DFAs
A1, . . . ,Ak,

• for any letter a ∈ Σ, the transition function of a in m(A1, . . . ,Ak) depends only on the state
configurations of the DFAs A1, . . . ,Ak and on the transition functions of a in each of the
DFAs A1, ...,Ak (not on the letter itself nor on any other letter or transition function).

More formally,

Definition 1 A k-modifier m is a 4-tuple of mappings (Q, ι, f, d) acting on k CDFA A with A j =

(Σ,Q j, i j, F j, δ j) to build a CDFA mA = (Σ,Q, i, F, δ), where

Q = QQ, i = ι(Q, i, F), F = f(Q, i, F) and

∀a ∈ Σ, δa = d(i, F, δa).

4 Pascal Caron, Edwin Hamel-De Le Court, Jean-Gabriel Luque, Bruno Patrou

Notice that we do not need to put explicitly the dependency of d on Q because the information

is already present in δa.

For 1-modifiers, as Q = (Q1), we denote ι(Q1, i1, F1) for ι(Q, i, F), f(Q1, i1, F1) for f(Q, i, F), and

d(i1, F1, δ
a
1
) for d(i, F, δa).

Example 1 Consider the modifier Prefin of Table 1. If A1 = (Σ,Q1, i1, F1, δ1) is a complete
deterministic automaton then Prefin(A1) = (Σ,Q1, i1, F1, δ) where for any state q ∈ Q1 for any
a ∈ Σwe have δa(q) = δa

1
(q) if q < F1 and δa(q) = q if q ∈ F1 .

For instance consider the automaton A1 with the following graphical representation:

0 1

2

a

b a

b
a, b

The automaton Prefin(A1) is given by

0 1 2
a

b a, b a, b

Definition 2 We consider an operation ⊗ acting on k-tuples of languages defined on the same alphabet.
The operation ⊗ is said to be describable (m-describable) if there exists a k-modifierm such that for any
k-tuple of CDFA A, we have L(mA) = ⊗(L(A1), . . . , L(Ak)).

Example 2 The operation Prefin defined by Prefin(L) = LΣ∗ for any L ⊂ Σ∗ is the Prefin-
describable operation where Prefin is the modifier defined in Table 1.

For the modifiers Union, Inter and Xor, a state is an element of the cartesian product of the states
of the input. For the Conc modifier, a state is a pair composed of a state of the first input and
a subset of states of the second input. For the Star modifier, a state is a subset of states of the
input. For theSRootmodifier, each state is a function from the set of states to the set of states of
the input.

New tools for state complexity 5

QQ ι(Q, i, F) f(Q, i, F) d(i, F, δa)

Comp Q1 i1 Q1 \ F1 δa
1

Prefin Q1 i1 F1 q→
{
δa

1
(q) if q < F1

q if q ∈ F1

Union Q1 ×Q2 (i1, i2) F1 ×Q2 ∪Q1 × F2 δa

Inter Q1 ×Q2 (i1, i2) F1 × F2 δa

Xor Q1 ×Q2 (i1, i2)
F1 × (Q2 \ F2)
∪(Q1 \ F1) × F2

δa

Conc Q1 × 2Q2 (i1, ∅) {(q1,E) | E ∩ F2 , ∅} (q1,E)→ ΞF1

i1
(δa

1
(q1), δa

2(E))

Star 2Q1 ∅ {E | E ∩ F1 , ∅} ∪ {∅} E→

{δa

1
(i1)}

F1,i1
if E = ∅

δa
1
(E)

F1,i1
otherwise

SRoot Q
Q1

1
Id

{
g | g2(i1) ∈ F1

}
g→ (δa

1
◦ g)

where E
F,x
= E ∪ {x} if E ∩ F , ∅ and E otherwise, and ΞF

y(x,E) = (x,E ∪ {y}) if x ∈ F and (x,E) otherwise.

Tab. 1: Description of modifiers for some describable operations

Example 3 (Mirror modifier) Let us define the 1-modifierMirror = (Q, ι, f, d) as :

• Q(Q1) = 2Q1 ,

• ι(Q1, i1, F1) = F1,

• f(Q1, i1, F1) = {E ⊂ Q1 | i1 ∈ E}.

• d(i1, F1, δ
a
1
) is defined as E→ E′ with E′ =

⋃

q∈E

{q′ | δa
1(q′) = q},

The mirror operation is describable, indeed, for any DFA A1, the mirror of L(A1) is L(Mirror(A1)).
Applying theMirror modifier to the automaton A of Figure 1 leads to the DFA of Figure 2.

0 1 2
a

b

a, b

a, b

Fig. 1: The automaton A.

6 Pascal Caron, Edwin Hamel-De Le Court, Jean-Gabriel Luque, Bruno Patrou

∅ {0} {1}

{0, 1}

{0, 1, 2} {1, 2} {2}

{0, 2}

a, b
a, b a

b

a
b

a, b

a, b

b

a

a
b

Fig. 2: The automatonMirror(A).

For some usual operations on languages (Comp, Union, Inter, Xor, Conc, Star and SRoot), we
give one of their modifiers in Table 1. Thus these operations are describable.

3.2 Properties

We want to show that there exists non-describable operations (Example 4). Corollary 1 allows
us to show this fact. We also want to prove that there exists a modifier for the composition of
describable operations (Section 5). In order to do this, we use the fact that the composition of
two modifiers is a modifier (Proposition 2 and Corollary 2).

We thus investigate two kinds of properties:

• commutation with respect to alphabetic renaming and restriction,

• stability by composition.

For the first property, we consider three alphabets X,X′ and Y with X∩X′ = ∅, a bijectionϕ from
X to Y, naturally extended as an isomorphism of monoids from X∗ to Y∗, and η : 2(X∪X′)∗ → 2Y∗

defined by η(L) = ϕ(L ∩ X∗). We have

Claim 1 If A = (X ∪ X′,Q, i, F, δ) is a DFA recognizing a language L then η(L) is the regular language

recognized by (Y,Q, i, F, δ•) where δ
y
• = δ

ϕ−1(y) for any y ∈ Y.

Proposition 1 Let ⊗ be a k-ary describable operation. For any L ∈ (2(X∪X′)∗)k we have

⊗ (η(L1), · · · , η(Lk)) = η(⊗L).

Proof: Let A be a k-tuple of CDFA A j = (X ∪ X′,Q j, i j, F j, δ j) such that L(A j) = L j. Since ⊗
is describable, there exists a modifier m = (Q, ι, f, d) such that L(mA) = ⊗L. We have mA =
(X ∪ X′,QQ, ι(Q, i, F), f(Q, i, F), δ) with δa = d(i, F, δa). Then by Claim 1, the language η(⊗L)

is recognized by the CDFA A� = (Y,QQ, ι(Q, i, F), f(Q, i, F), δ�) with δa
�
= δϕ

−1(a) = d(i, F, δϕ
−1(a)).

Now, let A⋄ be the k-tuple of CDFA A⋄j
= (Y,Q j, i j, F j, δ⋄ j

) with δa
⋄ j
= δ

ϕ−1(a)

j
. Clearly, by Claim 1, A⋄ j

New tools for state complexity 7

recognizes η(L j). Since ⊗ is describable,mA⋄ = (Y,QQ, ι(Q, i, F), f(Q, i, F), δ⋄) with δa
⋄ = d(i, F, δ

a
⋄) =

d(i, F, δϕ
−1(a)) = δa

�
which ends the proof. �

Immediately as special cases of the previous proposition, we obtain:

Corollary 1 Let ⊗ be a k-ary describable operation and Y be an alphabet. Let L be a k-tuple of regular
languages over Y. Then

• If X ⊂ Y then ⊗(L1 ∩X∗, · · · , Lk ∩X∗) = ⊗L ∩ X∗.

• For any bijection σ : Y→ Y extended as an automorphism of monoids, we have⊗(σ(L1), · · · , σ(Lk))
= σ(⊗L).

Example 4 This result allows us to build examples of non-describable operations.

• We consider the binary operation defined by ⊗(L1, L2) = L1 · L−1
2
= {u | uv ∈ L1 for some v ∈ L2}.

This operation is not describable because it violates the first condition of Corollary 1. For instance,
let Y = {a, b, c}, L1 = {abc}, and L2 = {c}. We have ⊗(L1 ∩ {a, b}∗, L2 ∩ {a, b}∗) = ∅.∅−1 = ∅ while
⊗(L1, L2) ∩ {a, b}∗ = {ab}.

• We consider the unary operation defined by ⊗(L) = L \ {a} if the words a and a2 belong to L and
⊗(L) = L otherwise. This operation satisfies the first condition of Corollary 1 but it violates the
second one. Indeed, if Y = {a, b} then ⊗({a, a2}) = {a2} while ⊗({b, b2}) = {b, b2}. So it is not
describable.

Remark 1 There exist k-modifiers that can not be associated to operations. For instance, consider the
modifier Fto1 = (Q, ι, f, d) such that

• QQ = Q,

• ι(Q, i, F) = i.

• f(Q, i, F) = F,

• d(i, F, δa
1
)(q) = δa

1
(q) if q < F and d(i, F, δa

1
)(q) =

{
1 if 1 ∈ Q
δa

1
(q) otherwise

if q ∈ F.

If A1 and A′
1

are two deterministic automata recognizing the same language then we have in general
L(Fto1(A1)) , L(Fto1(A′

1
)) because the recognized language depends on the labels of the states of A1 and

A′
1
. For instance, the two following automata recognize the same language a2a∗.

0 1 2
a a

a

0 2 1
a a

a

But applying Fto1 on the first one gives

0 1 2
a

a

a

8 Pascal Caron, Edwin Hamel-De Le Court, Jean-Gabriel Luque, Bruno Patrou

which recognizes (aa)+ while Fto1 lets the second automaton unchanged.

Modifiers can be seen as functions on automata and as such can be composed as follows:

m1 ◦ j m2(A1, . . . ,Ak1+k2−1) = m1(A1, . . . ,A j−1,m2(A j, . . . ,A j+k2−1),A j+k2
, . . . ,Ak1+k2−1).

We have

Proposition 2 The compositionm1 ◦ j m2 is a modifier.

Proof: Let m1 = (Q(1), ι(1), f(1), d(1)) be a k1-ary modifier and m2 = (Q(2), ι(2), f(2), d(2)) be a k2-ary
modifier. We define the (k1 + k2 − 1)-ary modifier (Q, ι, f, d) by

• QQ = Q(1)Q̂ with Q̂ = (Q1, . . . ,Q j−1,Q
(2)(Q j, . . . ,Q j+k2−1),Q j+k2

, . . . ,Qk1+k2−1)

• ι(Q, i, F) = ι(1)(Q̂,̂ i, F̂),

witĥ i = (i1, . . . , i j−1, ι
(2)((Q j, . . . ,Q j+k2−1), (i j, . . . , i j+k2−1), (F j, . . . , F j+k2−1)), i j+k2

, . . . , ik1+k2−1) and

F̂ = (F1, . . . , F j−1, f
(2)((Q j, . . . ,Q j+k2−1), (i j, . . . , i j+k2−1), (F j, . . . , F j+k2−1)), F j+k2

, . . . , Fk1+k2−1).

• f(Q, i, F) = f(1)(Q̂,̂ i, F̂).

• d(i, F, δa) = d(1) (̂i, F̂, δ̂))

with δ̂ = (δa
1
, . . . , δa

j−1
, d(2)((i j, . . . , i j+k2−1), (F j, . . . , F j+k2−1), (δa

j
, . . . , δa

j+k2−1
)), δa

j+k2
, . . . , δa

k1+k2−1
)

We check that (Q, ι, f, d) acts on automata as m1 ◦ j m2. �

Corollary 2 Let ⊗ be a k1-arym1-describable operation and⊕ be a k2-arym2-describable operation. Then
the operation ⊗ ◦ j ⊕ is a (k1 + k2 − 1)-ary (m1 ◦ j m2)-describable operation for any j ∈ {1, . . . , k1}.

Proof: Let L1, . . . , Lk1+k2−1 be regular languages recognized respectively by DFAs A1, . . . ,Ak1+k2−1.
Since ⊕ and ⊗ are describable, we have

⊗ ◦ j ⊕(L1, . . . , Lk1+k2−1)
= ⊗(L1, . . . , L j−1,⊕(L j, . . . , L j+k2−1), L j+k2

, . . . , Lk1+k2−1)
= L(m1(A1, . . .A j−1,m2(A j, . . . ,A j+k2−1),A j+k2

, . . . ,Ak1+k2−1))
= L(m1 ◦ j m2(A1, . . . ,Ak1+k2−1)).

From Proposition 2, m1 ◦ j m2 is a modifier. Therefore ⊗ ◦ j ⊕ is describable. �

4 Monsters

One-monster automata of size n are minimal DFAs having nn letters representing every function
from ~n� to ~n�. There are 2n different 1-monster automata depending on the set of their final
states. The idea of a k-monster is to have a common alphabet for k automata.

The idea of using combinatorial objects to denote letters has already been used by Sakoda and
Sipser [19] to obtain results for two-way automata, or by Birget [1] to obtain deterministic state
complexity.

New tools for state complexity 9

4.1 Definitions

Definition 3 A k-monster is a k-tuple of automata Mn,F = (M1, . . . ,Mk) where each M j = (Σ, ~n j�,

0, F j, δ j) is defined by

• the common alphabet Σ = ~n1�
~n1� × ~n2�

~n2� × · · · × ~nk�
~nk�,

• the set of states ~n j�,

• the initial state 0,

• the set of final states F j,

• the transition function δ j defined by δ j(q, g) = g j(q) for g = (g1, . . . , gk) ∈ Σ, i.e. δ
g
= g.

Example 5 (k-monster for k =1 and k = 2)

• The 1-monster M2,{1} is given by the following automaton

0 1

a, c
b, d

a, b

c, d

Each symbol codes a function {0, 1} → {0, 1}.

a = [01], b = [11], c = [00], and d = [10].

• The 2-monster M(2,2),({1},{1}) is given by the following pair of automata on an alphabet with 22× 22 =

16 symbols where ai,_ (respectively a_, j) denotes the set of transitions ai,x (respectively ax, j) for
x ∈ {1, . . . , 4}:

0 1 0 1

a1,_, a3,_
a2,_, a4,_ a1,_, a2,_

a3,_, a4,_

a_,1, a_,3
a_,2, a_,4

a_,3, a_,4

a_,1, a_,2

Each symbol codes a pair of functions, denoted by the word of their image.

a1,1 = [01, 01] a1,2 = [01, 11] a1,3 = [01, 00] a1,4 = [01, 10]
a2,1 = [11, 01] a2,2 = [11, 11] a2,3 = [11, 00] a2,4 = [11, 10]
a3,1 = [00, 01] a3,2 = [00, 11] a3,3 = [00, 00] a3,4 = [00, 10]
a4,1 = [10, 01] a4,2 = [10, 11] a4,3 = [10, 00] a4,4 = [10, 10].

10 Pascal Caron, Edwin Hamel-De Le Court, Jean-Gabriel Luque, Bruno Patrou

For instance, a1,2 = [01, 11] means that the symbol a1,2 labels a transition from 0 to 0 and a transi-
tion from 1 to 1 in the first automaton and a transition from 0 to 1 and a transition from 1 to 1 in
the second automaton.

4.2 Using monsters to compute state complexity

If an operation is describable, it is sufficient to study the behavior of its modifiers over monsters
to compute its state complexity.

Theorem 1 Let m be a modifier and ⊗ be an m-describable operation. We have

sc⊗n = max{#Min(mMn,F) | F ⊂ ~n1� × . . . × ~nk�}.

Proof: Let A be a k-tuple of automata having n states and having F as set of final states
recognizing a k-tuple of languages L over an alphabet Σ. Up to a relabelling, we assume
that Ai = (Σ, ~ni�, 0, Fi, δi) for i ∈ {1, . . . , k}.
Let δA be the transition function ofmA, and δM the transition function ofmMn,F. By definition of

a modifier, the states of mA and of mMn,F are the same. For any letter a, and any state q of mA,

we have:

δa
A(q) = d((0, . . . , 0), F, δa)(q) = d((0, . . . , 0), F, δ

δa

M
)(q) = δ

δa

M
(q).

And so, for any word w over alphabet Σ:

δw
A(q) = δ

δw

M
(q).

Therefore, all states accessible in mA are also accessible in mMn,F, and, for any word w over

the alphabet Σ, δw
A

(q) ∈ f((~n1�, . . . , ~nk�), (0, . . . , 0), F) if and only if δ
δw

M
(q) ∈ f((~n1�, . . . , ~nk�),

(0, . . . , 0), F), which implies that all pairs of states separable in mA are also separable in mMn,F.

Therefore,

#MinmA ≤ #MinmMn,F.

�

Example 6 (Mirror modifier of a 1-monster) Let us now compute the automatonMirror(Mn1,{n1−1})
as in Example 3.

We show that the automatonMirror(Mn1,{n1−1}) is minimal when n1 > 1. Indeed,

• Each state is accessible. Let gE be the symbol that sends each element of a set E ⊂ ~n1� to n1 − 1
and the others (~n1� \ E) to 0. Then, we have δgE (n1 − 1) = g−1

E (n1 − 1) = E (Notice that it also
works with E = ∅).

• States are pairwise non-equivalent. Let E and E′ be two distinct states of Mirror(Mn1,{n1−1}). We
assume there exists i ⊂ E \ E′. Let g be the symbol sending 0 to i and the other states to j , i. The
state δg(E) is final because {0} = g−1(i) ⊂ δg(E) while δg(E′) ⊂ ~n1� \ {0}.

New tools for state complexity 11

{0}

∅{0, 1}

{1}

c b

d

a

a, b, c, d
d

a

b
c

a, b, c, d

Fig. 3: The automatonMirror(M2,{1}).

We can describe in an algorithm the way to compute the state complexity of an operation
using monsters and modifiers.

1. Describing the transformation with the help of a modifier whose states are represented by
combinatorial objects;

2. Applying the modifier to well-chosen k-monsters. We will have to discuss the final states;

3. Minimizing the resulting automaton and estimating its size.

5 Applications

5.1 The Star of intersection example

In this section, we illustrate our method on an operation, the star of intersection, the state
complexity of which is already known [20]. After having checked the upper bound, we show
that this bound is tight and that the modifier of the monster (Star ◦ Inter)M is a witness for this
operation.

Consider the 2-modifier Star ◦ Inter = (Q, ι, f, d). This modifier satisfies (using Table 1 and
Proposition 2)

• Q(Q1,Q2) = 2Q1×Q2 ,

• ι(Q, i, F) = ∅,

• f(Q, i, F) = {E ∈ 2Q1×Q2 | E ∩ (F1 × F2) , ∅} ∪ {∅},

• For d(i, F, δa) we have

d(i, F, δa)(E) =


{(δa

1
(i1), δa

2
(i2))}

F1×F2,(i1,i2)
if E = ∅

(δa
1
, δa

2
)(E)

F1×F2,(i1,i2)
otherwise.

12 Pascal Caron, Edwin Hamel-De Le Court, Jean-Gabriel Luque, Bruno Patrou

For the following of the paper, we will assume that Q1 = ~n1�, Q2 = ~n2� for some n1, n2 ∈ N,
and i1 = i2 = 0. We can see elements of 2~n1�×~n2� as boolean matrices of size n1 × n2. Such a
matrix will be called a tableau. We denote by Tx,y the value of the tableau T at row x and column
y. The number of 1s′ in a tableau T will be denoted by #T.

As a consequence of Corollary 2, for any pair of regular languages (L1, L2) over the same
alphabet and any pair of complete deterministic automata A = (A1,A2) such that L1 = L(A1) and
L2 = L(A2) we have (L1 ∩ L2)∗ = L((Star ◦ Inter)A).

Now, let n1 and n2 be two positive integers and let (F1, F2) be a subset of ~n1� × ~n2�. An
upper bound of the state complexity of the composition of star and inter operations is obtained

by maximizing the number of states of M̂F1,F2
where M̂F1,F2

is the automaton deduced from
(Star ◦ Inter)Mn,(F1,F2) by removing tableaux having a 1 in (x, y) ∈ F1 × F2 but no 1 in (0, 0).

Indeed, from Table 1 the initial state of InterMn,(F1,F2) is (0, 0) and its set of final states is F1 × F2.

Furthermore, again from Table 1, if A = (Σ,Q, q0, F, δ), the accessible states ofStar(A) are subsets
E ⊂ Q satisfying E ∩ F , ∅ ⇒ q0 ∈ E. Combining these two facts, the accessible states of
(Star ◦ Inter)Mn,(F1,F2) are subsets E ⊂ ~n1� × ~n2� satisfying E ∩ (F1 × F2) , ∅ ⇒ (0, 0) ∈ E.

We first remark that the initial state of InterMn,(0,0) is the only final state. This implies

that L((Star ◦ Inter)Mn,(0,0)) = L(InterMn,(0,0))
∗ = L(InterMn,(0,0)), which in turn implies that

#Min(M̂0,0) ≤ #Min(InterMn,(0,0)) ≤ n1n2.

Notice also that if #(F1 × F2) = 0, then M̂F1,F2
recognizes the empty language, which trivially

implies that #Min(M) ≤ 1.

Lemma 1 The maximal number of states of M̂F1,F2
with F1 × F2 < {{(0, 0)}, ∅} is when #(F1 × F2) = 1.

Proof:
#M̂F1,F2

= #2~n1�×~n2� − #{T ∈ 2~n1�×~n2� | (∃(x, y) ∈ F1 × F2 s.t. Tx,y = 1) ∧ T0,0 = 0}
= 2n1n2 − (#{T ∈ 2~n1�×~n2� | T0,0 = 0}

− #{T ∈ 2~n1�×~n2� | ∀(x, y) ∈ F1 × F2,Tx,y = 0 ∧ T0,0 = 0})

=

{
2n1n2 − (2n1n2−1 − 2n1n2−#F1#F2−1) if (0, 0) < F1 × F2

2n1n2 − (2n1n2−1 − 2n1n2−#F1#F2) otherwise

In conclusion, the maximal number of states of #M̂F1,F2
with F1 × F2 < {{(0, 0)}, ∅} is reached

when #F1 × #F2 = 1 and is 3
4 2n1n2 . �

Corollary 3 #Min((Star ◦ Inter)Mn,(F1,F2)) ≤
3
4 2n1n2

Proof: From Lemma 1, we maximize the number of tableaux when #F1 × #F2 = 1. So the upper
bound is 2n1n2 − (2n1n2−1 − 2n1n2−1−1) = 3

4 2n1n2 . �

Now we show that this upper bound is the state complexity of the combination of the star and
the intersection operations.

Let F1, F2 be {n1 − 1}, {n2 − 1} and let M̂ = M̂F1,F2
.

Lemma 2 All states of M̂ are accessible.

New tools for state complexity 13

Proof: Let T be a state of M̂. Let us define an order < on tableaux as T < T′ if and only if
(1) #(T) < #(T′) or

(2) (#(T) = #(T′) and Tn1−1,n2−1 = 1 and T′
n1−1,n2−1

= 0) or

(3) (#(T) = #(T′) and Tn1−1,n2−1 = T′
n1−1,n2−1

and T0,0 = 1 and T′0,0 = 0).

Let us prove the assertion by induction on non-empty tableaux of M̂ for the partial order <

(the empty tableau is the initial state of M̂, and so it is accessible):

The only minimal tableau for non-empty tableaux of M̂ and the order < is the tableau with only
one 1 at (0, 0). This is accessible from the initial state ∅ by reading the letter (Id, Id). Let us notice
that each letter is a pair of functions of ~n1�

~n1� × ~n2�
~n2�.

Now let us take a tableau T′, and find a tableau T such that T < T′, and T’ is accessible from T.
We distinguish the cases below, according to some properties of T′. For each case, we define a
tableau T and a letter (f , g). For all cases, except the last one, we easily check that

(1) T0,0 = 1 (which implies that T is a state of M̂),

(2) δ(f ,g)(T) = (f , g)(T) = T′ (where (f , g)(T) = {(f (i), g(j)) | (i, j) ∈ T}), and

(3) T < T′.

• T′
n1−1,n2−1

= 0.

– T′
0,0
= 0. Let (i, j) be the index of a 1 in T′. Define (f , g) as ((0, i), (0, j)) where (0, i) and

(0, j) denote transpositions, and T = (f , g)(T′).

– T′0,0 = 1.

∗ There exists (i, j) ∈ {1, 2, ..., n1 − 1} × {1, 2, ..., n2 − 1} such that T′
i, j
= 1. Define (f , g)

as ((n1 − 1, i), (n2 − 1, j)), then T = (f , g)(T′).

∗ For all (i, j) ∈ {1, 2, ..., n1 − 1} × {1, 2, ..., n2 − 1}, T′
i, j
= 0, T′

0,n2−1
= 1 and T′

n1−1,0
= 1.

In that case, define (f , g) as (Id, (n2 − 1, 0)), and T as (f , g)(T′).

∗ For all (i, j) ∈ {1, 2, ..., n1 − 1} × {1, 2, ..., n2 − 1}, T′
i, j
= 0, T′

0,n2−1
= 1 and T′

n1−1,0
= 0.

Define (f , g) as
((

n1−1
0

)
, Id

)
. Then T is defined as



T0,n2−1 = 0
Tn1−1,n2−1 = 1
Ti, j = T′

i, j
if (i, j) < (0, n2 − 1), (n1 − 1, n2 − 1)

∗ For all (i, j) ∈ {1, 2, ..., n1 − 1} × {1, 2, ..., n2 − 1}, T′
i, j
= 0, T′

0,n2−1
= 0 and T′

n1−1,0
= 1.

This case is symmetrical to the case above.

∗ For all (i, j) ∈ {1, 2, ..., n1 − 1} × {1, 2, ..., n2 − 1}, T′
i, j
= 0, T′

0,n2−1
= 0 and T′

n1−1,0
= 0.

Let (i, j) , (0, 0) be a 1 in T′. Define (f , g) =
((

n1−1
i

)
,
(

n2−1
j

))
, and define T as follows



Ti, j = 0
Tn1−1,n2−1 = 1
Ti′, j′ = T′

i′, j′ if (i′, j′) < (i, j), (n1 − 1, n2 − 1)

14 Pascal Caron, Edwin Hamel-De Le Court, Jean-Gabriel Luque, Bruno Patrou

• T′0,0 = 1 and T′
n1−1,n2−1

= 1. Let (f , g) = ((n1 − 1, 0), (n2 − 1, 0)). Let T′′ be the matrix obtained

from T′ by replacing the 1 in (0, 0) by a 0. Let T = (f , g)(T′′). As (f , g) is a bijection over
~n1� × ~n2�, we have T0,0 = ((f , g)(T′′))0,0 = T′′

n1−1,n2−1
= 1, which means that T is a state

of M̂, and (f , g)(T) = (f , g)(f , g)(T′′) = T′′. As T′′
n1−1,n2−1

= 1, we have δ(f ,g)(T) = T′ in M̂.
Furthermore, #T < #T′ implies that T < T′.

�

Lemma 3 All states of M̂ are separable.

Proof: Let T and T′ be two different states of M̂. There exists (i, j) ∈ ~n1� × ~n2� such that
Ti, j , T′

i, j
. Suppose, for example, that Ti, j = 1 and T′

i, j
= 0. Let (f , g) ∈ ~n1�

~n1� × ~n2�
~n2� such

that :

f (x) =

{
n1 − 1 if x = i
0 otherwise

and g(x) =

{
n2 − 1 if x = j
0 otherwise

We have δ(f ,g)(T)n1−1,n2−1 = Ti, j = 1, and δ(f ,g)(T′)n1−1,n2−1 = T′
i, j
= 0. Therefore, T and T′ are

separable in M̂. �

Theorem 1 and the previous lemmas give us :

Theorem 2 The state complexity of the star of intersection is 3
4 2n1n2 .

5.2 The square root example

In this section, we are interested in the square root of a language L defined by
√

L = {x | xx ∈ L}.
By a straightforward computation, we show easily that sc√ (2) = 2 and thus we investigate
only the case n > 2. Maslov [18] showed that the square root preserves regularity and he gave a
construction that can be summarized in terms of modifier bySRoot (see Table 1). We first remark
that this construction gives us an upper bound of nn for the state complexity of square root. We
also notice that in this case d is a morphism in the sense that d(0, F, δa) ◦ d(0, F, δb) = d(0, F, δa ◦ δb).
Therefore, the applicationφ→ d(0, F, φ) is a morphism of semigroups from ~n�~n� to d(0, F, ~n�~n�).
As ~n�~n� can be generated by 3 elements, d(0, F, ~n�~n�) can be too. Therefore, there exists a
witness with at most 3 letters. These two properties have been already noticed by Maslov in
[18].

Let us consider the automaton SRoot(Mn,F). We notice that all the states in SRoot(Mn,F) are
accessible. Indeed, the state labeled by the function g is reached from Id by reading the letter g.

For the separability, we consider a state ga,b defined as follows. Let a , b ∈ ~n� and ga,b(x) = a
if x ∈ F and ga,b(x) = b otherwise.

Lemma 4 For each pair a, b ∈ ~n� such that a , b, the two states ga,b and gb,a are not separable in
SRoot(Mn,F).

Proof: Let us prove that for any h, the functions h◦ ga,b and h◦ gb,a are both final or both non final.
In fact we have only two values of h to investigate: h(a) and h(b). If h(a), h(b) ∈ F or h(a), h(b) < F
then the two functions h ◦ ga,b and h ◦ gb,a are obviously both final or both non final. Without loss
of generality, suppose that h(a) ∈ F (and so h(b) < F). We have to examine two possibilities:

New tools for state complexity 15

• Either 0 ∈ F, in this case h(ga,b(0)) = h(a) ∈ F. Then ga,b(h(ga,b(0))) = a and h(ga,b(h(ga,b(0)))) =
h(a) ∈ F. But h(gb,a(0)) = h(b) < F. Hence, gb,a(h(gb,a(0))) = a, so h(gb,a(h(gb,a(0)))) ∈ F. This
implies that the two states are final.

• Or 0 < F, in this case h(ga,b(0)) = h(b) < F. Then ga,b(h(ga,b(0))) = b and h(ga,b(h(ga,b(0)))) =
h(b) < F. But we also have h(gb,a(0)) = h(a) ∈ F. Hence, gb,a(h(gb,a(0))) = b, so h(gb,a(h(gb,a(0))))
< F. This implies that the two states are not final.

We deduce that the two states are not separable. Notice that the number of transformations ga,b

is exactly 2
(n

2

)
. �

Corollary 4

sc√ (n) ≤ nn −
(
n

2

)

Notice that the state complexity is lower than the bound given by Maslov [18].

Lemma 5 Let F = {n − 1}, and P = {(g, g′) | g , g′ and ∀a, b ∈ ~n�, (g, g′) , (ga,b, gb,a)}. For any pair
of distinct states (g, g′) ∈ P, g and g′ are separable in SRoot(Mn,F).

Proof: Three cases have to be considered:

• Suppose that g(0) = g′(0).
Then there exists x ∈ ~n�\{0} such that g(x) , g′(x). We set h(g(0)) = x. Hence, h(g(h(g(0)) =
h(g(x)) and h(g′(h(g′(0)) = h(g′(x)). But, as g(x) , g′(x), it is always possible to choose h
such that h(g(x)) = n − 1 while h(g′(x)) , n − 1. Thus h ◦ g is a final state while h ◦ g′ is not.

• Suppose that g(0) , g′(0) and that #(Im(g) ∪ Im(g′)) > 2.
Without loss of generality, one assumes that there exists x ∈ Im(g) such that x < {g(0), g′(0)}.
So the values h(g(0)), h(g′(0)) and h(x) can be chosen independently each from the others.
We set h(g(0)) = y with g(y) = x, h(g′(0)) = 0 and h(x) = n − 1. We check that h ◦ g is a final
state while h ◦ g′ is not final.

• Suppose that g(0) , g′(0) and that #(Im(g) ∪ Im(g′)) = 2.
If we suppose that for any non final state x, we have g(x) , g(n − 1) and g′(x) , g′(n − 1).
Since x is not final and #(Im(g) ∪ Im(g′)) = 2, we have g(x) = g(0) and g′(x) = g′(0) (recall
that 0 is not final). So, as g(0) , g′(0), this implies g(n − 1) , g′(n − 1). In other words,
g = ga,b and g′ = gb,a for some a, b. By contraposition, if (g, g′) , (ga,b, gb,a) for any a, b then
there exists x , n − 1 such that g(x) = g(n − 1) or g′(x) = g′(n − 1). Let us denote by m the
minimal element of ~n� having this property and without loss of generality assume that
g(m) = g(n − 1) (in particular, it means that for any p < m, g′(p) , g′(n − 1)). We have
two cases to consider. If m = 0 then we set h(g(0)) = n − 1 and h(g′(0)) = 0. Obviously,
h(g′(h(g′(0)))) = 0. On the other hand, h(g(h(g(0))) = h(g(n−1)) = h(g(0)) = n−1. Hence, h◦g
is final while h◦ g′ is not final. If m > 0 then we have g(m) = g′(0) (because there are exactly
two values in the image of g and g′). Furthermore, g′(n− 1) , g′(0) and so g′(n− 1) = g(0).
We set h(g(0)) = m and h(g′(0)) = n − 1. We have h(g(h(g(0)))) = h(g(m)) = h(g′(0)) = n − 1.

16 Pascal Caron, Edwin Hamel-De Le Court, Jean-Gabriel Luque, Bruno Patrou

On the other hand, h(g′(h(g′(0)))) = h(g′(n − 1)) = h(g(0)) = m , n − 1. It follows that h ◦ g
is final while h ◦ g′ is not final.

�

The following theorem follows directly from Corollary 4 and Lemma 5.

Theorem 3 sc√ (n) = nn − (n
2

)
.

In order to show some restriction for alphabets of size < 3, some lemmas will be given. We
assume that n > 2.

Lemma 6 Any submonoid of ~n�~n� generated by two distinct elements is a proper submonoid of ~n�~n�.

Proof: Suppose that ~n�~n� is generated by two elements f and g. Recall first that we need at
least two permutations for generating the symmetric group Sn (see [9]). We notice also that
~n�~n� \Sn is an ideal of ~n�~n�, that is if t ∈ ~n�~n� \Sn and t′ ∈ ~n�~n� then t◦ t′, t′◦ t ∈ ~n�~n� \Sn.
This shows that f , g ∈ Sn. But since Sn is a submonoid, it is stable by composition. It follows
that Sn = ~n�

~n�. Since this is absurd we deduce the result. �

Lemma 7 The monoid ~n�~n� is generated by the two permutations (0, 1) and (0, 1, . . . , n − 1) together

with any of the contractions
(

i
j

)
.

Proof: It is known (see [9]) that ~n�~n� is generated by (0, 1), (0, 1, . . . , n − 1) and
(

0
1

)
and that any

permutation is generated by (0, 1) and (0, 1, . . . , n − 1). Thus, let σ be a permutation sending 0 to

i and 1 to j. The result is just a consequence of the equality σ−1 ◦
(

i
j

)
◦ σ =

(
0
1

)
. �

Lemma 8 There exists i, j ∈ ~n� such that i , j and
(

i
j

)
< {gp,q | p, q ∈ ~n�, p , q}.

Proof: Since n > 2, either #F > 1 or n − #F > 1. Assume without loss of generality #F > 1.

Let i, i′ ∈ F and j ∈ ~n� \ F. We have
(

i
j

)
< {gp,q | p, q ∈ ~n�, p , q} otherwise we must have

gp,q(i) = p = j and gp,q(i′) = p = i′ which is impossible since j , i′. �

Proposition 3 For any regular language L over an alphabet with at most two letters, if sc(L) = n > 2

then sc(
√

L) < sc√ (n).

Proof: Let L be a language with sc(L) = n > 2 and A = ({a, b}, ~n�, {0}, F, ·) be a minimal CDFA
recognizing L. Since sc(L) = n > 2, the set of final states F is a proper subset of ~n�, otherwise
L = Σ∗ and sc(L) = 1. Since the application φ→ d(0, F, φ) is a morphism of semigroups, the set of
the states ofSRoot(A) is a submonoid M of ~n�~n� generated by two elements. Now, we just have
to prove that any submonoid of ~n�~n� generated by two elements has strictly less than nn − (n

2

)
elements. Suppose that #Min(SRoot(A)) = sc√ (n). Thus we have t < {gp,q | p, q ∈ ~n�, p , q}
implies t ∈ M. Obviously, we have (0, 1), (0, 1, . . . , n − 1) < {gp,q | p, q ∈ ~n�, p , q} and so
(0, 1), (0, 1, . . . , n − 1) ∈M. Furthermore, we have: From Lemma 8 there exists i, j ∈ ~n� such that

i , j and
(

i
j

)
∈M. So by Lemma 7, M = ~n�~n�. But, by Lemma 6, as M has only two generators,

New tools for state complexity 17

it is a proper submonoid of ~n�~n� which contradicts the previous sentence. So there exists a
transformation t < {gp,q | p, q ∈ ~n�, p , q} such that t < M and thus #Min(SRoot(A)) < nn − (n

2

)
=

sc√ (n). �

Let us notice that Krawetz et al. [17] found a very similar result not quite for square root, but
for the closely related operation Root(L) = {w | ∃n such that wn ∈ L}.

6 Conclusion

New tools for computing state complexity are provided. As there is a witness among monster
automata, one can focus on them to obtain a tight bound for state complexity. One of our future
works is to use these tools on operations where the bound is not tight or not known as cyclic
shift or star of xor. As these tools produce very large size alphabet, it remains to study how it is
possible to improve this size by obtaining in some cases a constant size alphabet.

The authors learned that Sylvie Davies has independently and in the same time obtained some
of the results presented in this paper. In particular, she described our monster approach as the
OLPA (One letter Per Action) one. Her work can be found in [7].

References

[1] Jean-Camille Birget. Intersection and union of regular languages and state complexity. Inf.
Process. Lett., 43(4):185–190, 1992.

[2] Janusz A. Brzozowski. In search of most complex regular languages. Intern. J. of Foundations
of Comp. Sc., 24(6):691–708, 2013.

[3] Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou. State complexity of
catenation combined with a boolean operation: A unified approach. Int. J. Found. Comput.
Sci., 27(6):675–704, 2016.

[4] Pascal Caron, Jean-Gabriel Luque, and Bruno Patrou. State complexity of catenation com-
bined with boolean operations. CoRR, abs/1707.03174, 2017.

[5] Pascal Caron, Jean-Gabriel Luque, and Bruno Patrou. State complexity of multiple catena-
tions. Fundam. Inform., 160(3):255–279, 2018.

[6] Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu. State complexity of two combined operations:
Catenation-union and catenation-intersection. Int. J. Found. Comput. Sci., 22(8):1797–1812,
2011.

[7] Sylvie Davies. A general approach to state complexity of operations: Formalization and
limitations. In Mizuho Hoshi and Shinnosuke Seki, editors, Developments in Language Theory
- 22nd International Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings,
volume 11088 of Lecture Notes in Computer Science, pages 256–268. Springer, 2018.

[8] Michael Domaratzki. State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics, 7(4):455–468, 2002.

18 Pascal Caron, Edwin Hamel-De Le Court, Jean-Gabriel Luque, Bruno Patrou

[9] Olexandr Ganyushkin and Volodymyr Mazorchuk. Classical finite transformation semigroups:
an introduction. Algebra and Applications. Springer, Dordrecht, 2008.

[10] Yuan Gao, Nelma Moreira, Rogério Reis, and Sheng Yu. A survey on operational state
complexity. Journal of Automata, Languages and Combinatorics, 21(4):251–310, 2017.

[11] Yuan Gao, Kai Salomaa, and Sheng Yu. The state complexity of two combined operations:
Star of catenation and star of reversal. Fundam. Inform., 83(1-2):75–89, 2008.

[12] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA, 1979.

[13] Jozef Jirásek, Galina Jirásková, and Alexander Szabari. State complexity of concatenation
and complementation. Int. J. Found. Comput. Sci., 16(3):511–529, 2005.

[14] Galina Jirásková. State complexity of some operations on binary regular languages. Theor.
Comput. Sci., 330(2):287–298, 2005.

[15] Galina Jirásková and Alexander Okhotin. State complexity of cyclic shift. ITA, 42(2):335–360,
2008.

[16] Galina Jirásková and Alexander Okhotin. On the state complexity of star of union and star
of intersection. Fundam. Inform., 109(2):161–178, 2011.

[17] Bryan Krawetz, John Lawrence, and Jeffrey Shallit. State complexity and the monoid of
transformations of a finite set. Int. J. Found. Comput. Sci., 16(3):547–563, 2005.

[18] A. N. Maslov. Estimates of the number of states of finite automata. Soviet Math. Dokl.,
11:1373–1375, 1970.

[19] William J. Sakoda and Michael Sipser. Nondeterminism and the size of two way finite
automata. In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC
’78, pages 275–286, New York, NY, USA, 1978. ACM.

[20] Arto Salomaa, Kai Salomaa, and Sheng Yu. State complexity of combined operations. Theor.
Comput. Sci., 383(2-3):140–152, 2007.

[21] Sheng Yu. State complexity of regular languages. Journal of Automata, Languages and Com-
binatorics, 6(2):221, 2001.

[22] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities of some basic opera-
tions on regular languages. Theoret. Comput. Sci., 125(2):315–328, 1994.

