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The flower at a point x in a Steiner triple system (X,B) is the set of all triples containing x. Denote by J3
F (r) the set

of all integers k such that there exists a collection of three STS(2r+1) mutually intersecting in the same set of k+r

triples, r of them being the triples of a common flower. In this article we determine the set J3
F (r) for any positive

integer r ≡ 0, 1 (mod 3) (only some cases are left undecided for r = 6, 7, 9, 24), and establish that J3
F (r) = I3F (r)

for r ≡ 0, 1 (mod 3) where I3F (r) = {0, 1, . . . , 2r(r−1)
3

− 8, 2r(r−1)
3

− 6, 2r(r−1)
3

}.

Keywords: Steiner triple system, 3-way intersection, 3-way flower intersection, Pairwise balanced design, Group

divisible design, Latin square.

1 Introduction

A Steiner system S(2, k, v) is a pair (X,B) where X is a v-set and B is a family of k-subset of X called

blocks, such that each 2-subset of X is contained in exactly one block of B. If k = 3, then the Steiner

system S(2, 3, v) is called Steiner triple system of order v or briefly STS(v). It is well known that an

STS(v) exists if and only if v ≡ 1, 3 (mod 6) Hanani (1975).

A Kirkman triple system of order v (briefly KTS(v)) is a Steiner triple system of order v, (X,B)
together with a partition R of the set of triples B into subsets R1,R2, . . . ,Rn called parallel classes such

that each Ri (for i = 1, 2, . . . , n) is a partition of X . It is well known that a KTS(v) exists if and only if

v ≡ 3 (mod 6) Ray-Chaudhuri and Wilson (1971).

It can be easily checked that the number of triples contained in an STS(v) (or KTS(v)) is tv =
v(v − 1)/6. For each non-negative integer n, let S[n] denote the set of non-negative integers less than or

equal to n, with the exception of n− 1, n− 2, n− 3 and n− 5. Let I(v) = S[tv].
Two Steiner (or Kirkman) triple systems (X,B1) and (X,B2) are said to intersect in k triples, provided

|B1 ∩ B2| = k. Denote by J(v) (or JR(v)) the set of all integer numbers k such that there exists a pair of

STS(v) (or KTS(v)) intersecting in k triples.

Lindner and Rosa (1975) have completely determined the set J(v) and proved that J(3) = 1, J(7) =
{0, 1, 3, 7}, J(9) = {0, 1, 2, 3, 4, 6, 12} and J(v) = I(v) for v ≡ 1, 3 (mod 6) and v ≥ 13. Also Shen

(2001), Chang and Lo Faro (1999) have determined the set JR(v).
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For each non-negative integer n, let S3[n] denote the set of non-negative integers less than or equal to

n, with the exception of n− 1, n− 2, n− 3, n− 4, n− 5 and n− 7. Let I3(v) = S3[tv].

Milici and Quattrocchi (1987) generalized the intersection problem for STS(v)s and determined the set

J3(v) of all integer numbers k such that there exists a collection of three STS(v)s pairwise intersecting

in the same set of k blocks. The following theorem contains their results.

Theorem A Milici and Quattrocchi (1987) J3(v) = I3(v) for every v ≥ 19; J3(7) = {1, 7}, J3(9) =
{0, 1, 3, 4, 12}, J3(13) = I3(13) \ {14, 15, 16, 17, 18, 20} and J3(15) = I3(15) \ {24, 25, 26, 27}.

Amjadi and Soltankhah (2017) generalized the intersection problem for KTS(v)s and for sufficiently

large v determined the set J3
R(v) of all integer numbers k such that there exists a collection of three

KTS(v)s pairwise intersecting in the same set of k blocks. Just two cases are left undecided.

There are some other results on µ-way intersection problem, for example, Rashidi and Soltankhah

(2017) solved the 3-way intersection problem of S(2, 4, v) designs also Milici and Quattrocchi (1986)

found some results on the maximum number of STSs such that any two of them intersect in the same

block-set and Golalizadeh and Soltankhah (2019) found the maximum number of Steiner triple systems

which intersect in some special blocks.

The flower at a point x in a Steiner triple system, is the set of all triples containing x. The flower

intersection problem for STSs is the determination for each v = 2r + 1 ≡ 1, 3 (mod 6) of the set JF (r)
of all k such that there exists a pair of Steiner triple systems on the same v-set having k + r triples in

common, r of them being the triples of a common flower. Note that r ≡ 0, 1 (mod 3); we call such a

non-negative r admissible.

For each admissible r, let IF (r) = S[ 2r(r−1)
3 ]. Hoffman and Lindner (1987) have completely deter-

mined the set JF (r). The following theorem contains their results.

Theorem B Hoffman and Lindner (1987) For all admissible r, JF (r) = IF (r), except 1, 4 /∈ JF (4).

Also Zhang et al. (2014) solved the flower intersection problem of S(2, 4, v) designs; Milici and Quattroc-

chi (1990) solved the flower intersection problem for S(3, 4, v) designs for some values of v and Chang

and Lo Faro (2003) solved the flower intersection problem of KTS(v)s.

Let I3F (r) = S3[ 2r(r−1)
3 ] and J3

F (r) be the set of all integer numbers k such that there exists a collection

of three STS(2r + 1)s pairwise intersecting in the same k + r blocks, r of them being the triples of a

common flower. Here we determine J3
F (r) for all admissible values of r except for some small values of

r.

The necessary conditions are expressed in the following lemma and it is straightforward.

Lemma 1 For each admissible r, J3
F (r) ⊆ I3F (r), J

3
F (r) ⊆ {a − r| a ∈ J3(2r + 1), a ≥ r} and

J3
F (r) ⊆ JF (r).

2 Recursive constructions

In this section we give several recursive constructions for finding the 3-way flower intersection numbers

of Steiner triple systems. The concept of PBDs, GDDs and Latin squares play an important role in these

constructions. Let us give their formal definition.

Let v be a positive integer and K be a set of positive integers. A pairwise balanced design (briefly a

PBD) B(K,λ, v) is a pair (X,A) where X is a v-set and A is a set of subsets (called blocks) of X such



The 3-way flower intersection problem for Steiner triple systems 3

that |B| ∈ K for each B ∈ A and each pair of distinct elements of X is contained in exactly λ blocks of

A.

Let X be a finite set containing v points, G a family of distinct subsets of X , called groups which

partition X , and A a collection of subsets of X , called blocks. Let K be a set of positive integers. A

design (X,G,A) is called a group divisible design (GDD) K-GDD if

1. {|B| : B ∈ A} ⊆ K;

2. |G ∩B| ≤ 1 for every G ∈ G and every B ∈ A;

3. Every pair of points from distinct groups occurs in exactly a unique block of A.

If G contains t1 groups of size m1, t2 groups of size m2, . . . , and ts groups of size ms, we call

mt1
1 mt2

2 . . .mts
s the group type (or type) of the GDD. A K-GDD with group type mt1

1 mt2
2 . . .mts

s is

actually a pairwise balanced design and it is denoted by B(K ∪M, 1, v) (or (v,K ∪M, 1)−PBD), where

M = {m1,m2, . . . ,ms}. We usually write {k}-GDD as k-GDD and B({k}, 1, v) as B(k, 1, v) (or

(v, k, 1)-BIBD).

A Latin square of order n is an n × n array L = (ℓij) on n symbols in which every row and every

column of L contains no repeated symbols. Two Latin squares L and L′ of the same order are orthogonal

if ℓab = ℓcd and ℓ′ab = ℓ′cd, implies a = c and b = d. A set of Latin squares L1, L2, . . . , Lm are mutually

orthogonal, or a set of MOLS, if for every 1 ≤ i < j ≤ m, Li and Lj are orthogonal.

We use the results of 3-way intersection problem for Latin squares to determine J3
F (r). The 3-way

intersection problem for Latin squares is the problem of determining, for all orders n, the set of integers k
for which there exist three Latin squares of order n having precisely k identical cells, with their remaining

n2 − k cells different in all three Latin squares.

Denote by J ′3(n) the set of integers k for which there exist three Latin squares of order n which have

precisely k cells where all three squares have identical entries and n2 − k cells where all three squares

contain different entries. Let for n ≥ 4, I ′3(n) = [0, n2−15]∪{n2−12, n2−9, n2} and I ′3(3) = {0, 9}.

Adams et al. (2002) completely solve the 3-way intersection problem. The following theorem contains

their results. Let [i, j] denote the set of integers {i, i+ 1, i+ 2, . . . , j − 1, j}, where i < j.

Theorem C Adams et al. (2002) J ′3(3) = I ′3(3) = {0, 9},

J ′3(4) = I ′3(4) \ {7} = {0, 1, 4, 16},

J ′3(5) = I ′3(5) \ {8, 9, 13, 16} = [0, 7] ∪ {10, 25},

J ′3(6) = I ′3(6) \ {20, 21, 24} = [0, 19] ∪ {27, 36},

J ′3(7) = I ′3(7) \ [31, 34] = [0, 30] ∪ {37, 40, 49},

J ′3(n) = I ′3(n) for n ≥ 8.

Before expressing the next theorem we need to introduce some notations. For sets of integers X and Y ,

let X + Y = {x+ y| x ∈ X, y ∈ Y }. Also for any integer n, let nX = {nx| x ∈ X}.

Let J ′′3(n) denotes the set of integers k for which there exist three Latin squares of order n with the

same constant secondary diagonal which have precisely k = k′+n cells (n of these are cells of secondary

diagonal) where all three squares have identical entries and n2−n−k′ cells where all three squares contain

different entries. The following theorem is similar to Lemma 2.2 of Adams et al. (2002).

Theorem 1 J ′3(n) + (n+ 1){[0, n− 3] ∪ {n}}+ (2n+ 1){[1, n− 2] ∪ {n+ 1}} ⊆ J ′′3(2n+ 1).
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Proof: The proof is exactly the same as described in the Lemma 2.2 of Adams et al. (2002), just it is

enough to use permutations which do not change the secondary diagonal of the Latin square. ✷

We use four constructions of STSs from smaller STSs which are adapted from constructions used in

Billington et al. (2008), Hoffman and Lindner (1987) and Lindner and Rosa (1975).

Construction 1 (STS(3v) fromSTS(v)). We define Steiner triple system S on the set X = {1, 2, . . . , v}×
{1, 2, 3}. Let L = (ℓij) be a Latin square on symbols V = {1, 2, . . . , v}. Let Vi = V ×{i} for i = 1, 2, 3
and (V1,B1), (V2,B2) and (V3,B3) be three Steiner triple systems S1, S2 and S3 respectively. It is easy to

see that (X,B1∪B2∪B3∪B) is an STS(3v), where B = {{(i, 1), (j, 2), (s, 3)}| ℓij = s, 1 ≤ i, j, s ≤ v}.

Construction 2 (STS(3v + 1) from STS(v + 1)). We define Steiner triple system S on the set X =
({1, 2, . . . , v} × {1, 2, 3}) ∪ {∞}. Let L be a Latin square on symbols V = {1, 2, . . . , v}. Let Vi =
V × {i} for i = 1, 2, 3 and (V1 ∪ {∞},B1), (V2 ∪ {∞},B2) and (V3 ∪ {∞},B3) be three STS(v + 1)
S1, S2 and S3 respectively. It is easy to see that (X,B1 ∪ B2 ∪ B3 ∪ B) is an STS(3v + 1), where

B = {{(i, 1), (j, 2), (s, 3)}| ℓij = s, 1 ≤ i, j, s ≤ v}.

Construction 3 (STS(3v + 3) from STS(v + 3)). We define Steiner triple system S on the set X =
({1, 2, . . . , v}×{1, 2, 3})∪{∞1,∞2,∞3}. Let L = (ℓij) be a Latin square on symbols V = {1, 2, . . . , v}.

Let Vi = V × {i} for i = 1, 2, 3 and (V1 ∪ {∞1,∞2,∞3},B1), (V2 ∪ {∞1,∞2,∞3},B2) and

(V3 ∪ {∞1,∞2,∞3},B3) be three STS(v + 3) S1, S2 and S3 respectively, which each of them con-

tains triple {∞1,∞2,∞3}. It is easy to see that (X,B1 ∪ B2 ∪ B3 ∪ B) is an STS(3v + 3), where

B = {{(i, 1), (j, 2), (s, 3)}| ℓij = s, 1 ≤ i, j, s ≤ v}.

Recall that a 1-factor of a graph G is a spanning subgraph of G that is regular of degree 1. A 1-

factorization of a graph G is a set F = {F1, . . . , Fk} of edge-disjoint 1-factors of G whose edge-sets

partition the edge-set of G. Colbourn and Dinitz (2006)

Construction 4 (STS(2v + 1) from STS(v)). Let X = {a1, a2, . . . , av} and (X,B) be an STS(v).
Put v + 1 = 2n and let F = {Fi| i = 1, 2, ..., 2n− 1} be a 1-factorization of K2n with the vertex set

V (K2n) = Y where X ∩ Y = ∅, (K2n is complete graph with 2n vertices). Put X∗ = X ∪ Y and

B∗ = B ∪C where C = {{ai, x, y}| [x, y] ∈ Fi, i = 1, 2, ..., 2n− 1}. It is easy to see that (X∗,B∗) is an

STS(2v + 1).

Theorem 2 For all admissible r, if there exist three Latin squares on same 2r+ 1 symbols with the same

constant secondary diagonal agreeing pairwise on exactly b+2r+1 cells (2r+1 of these are cells of the

secondary diagonal), and if ai ∈ J3(2r+1) for i = 1, 2 and a ∈ J3
F (r), then a1+a2+a+b ∈ J3

F (3r+1).

Proof: We use Construction 1 to construct a collection of three STS(6r + 3)s with flower intersection

number a1+a2+a+b. For this purpose, start with three Latin squares L′, L′′ and L′′′ of order 2r+1, with

the same constant secondary diagonal of 1’s and agreeing pairwise on exactly b cells off the secondary

diagonal. For i = 1, 2, let S′
i, S

′′
i and S′′′

i be a collection of three systems on {1, 2, . . . , 2r+1}×{i} with

exactly ai triples in common. Let S′
3, S′′

3 and S′′′
3 be a collection of three systems on {1, 2, . . . , 2r+1}×

{3} with the same r triples containing (1, 3) (a flower at element (1, 3)), and a further triples in common.

Then by using Construction 1 for v = 2r+1, we construct a collection of three Steiner triple systems S′,

S′′ and S′′′ of order 6r+3 with a1 + a2 + a+ b+(3r+1) triples in common, 3r+1 of them are flower

at element (1, 3). ✷
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Remark 1 Theorem 2 is true also when Latin squares have same row or same column instead of same

constant secondary diagonal. the proof is similar to the proof of Theorem 2.

Theorem 3 For all admissible r, if b ∈ J ′3(2r) and ai ∈ J3
F (r) for i = 1, 2, 3, then a1 + a2 + a3 + b ∈

J3
F (3r).

Proof: We use Construction 2 to construct a collection of three STS(6r + 1)s with flower intersection

number a1 + a2 + a3 + b. For this purpose, start with three Latin squares L′, L′′ and L′′′ of order 2r
with 3-way intersection number b. For i = 1, 2, 3, let S′

i, S
′′
i and S′′′

i be a collection of three systems on

({1, 2, . . . , 2r} × {i})∪ {∞} with the same r triples containing ∞ (a flower at ∞), and ai further triples

in common. Then by using Construction 2 for v = 2r, we construct a collection of three Steiner triple

systems S′, S′′ and S′′′ of order 6r + 1 with a1 + a2 + a3 + b + 3r triples in common, 3r of them are

flower at ∞. ✷

Theorem 4 For r ≡ 0, 2 (mod 3), if b ∈ J ′3(2r) and ai ∈ J3
F (r+1) for i = 1, 2, 3, then a1+a2+a3+b ∈

J3
F (3r + 1).

Proof: We use Construction 3 to construct a collection of three STS(6r + 3)s with flower intersection

number a1 + a2 + a3 + b. For this purpose, start with three Latin squares L′, L′′ and L′′′ of order 2r
with 3-way intersection number b. For i = 1, 2, 3, let S′

i, S
′′
i and S′′′

i be a collection of three systems on

({1, 2, . . . , 2r} × {i}) ∪ {∞1,∞2,∞3} which contain triple {∞1,∞2,∞3} and with the same r + 1
triples containing ∞1 (a flower at ∞1), and ai further triples in common. Then by using Construction 3

for v = 2r, we construct a collection of three Steiner triple systems S′, S′′ and S′′′ of order 6r + 3 with

a1 + a2 + a3 + b+ (3r + 1) triples in common, 3r + 1 of them are flower at ∞1. ✷

Theorem 5 For all admissible r, if k ∈ J3
F (r) then k + (s − 1)(r + 1) ∈ J3

F (2r + 1) for every s =
1, 2, . . . , 2r − 2, 2r + 1.

Proof: Let v = 2r + 1 and X , Y , X∗ and F be as in Construction 4. Let (X,Bi) for i = 1, 2, 3 be

a collection of three STS(v)s, with 3-way intersection number k + r which r of them being the triples

of a common flower at point a1. For s = 1, 2, . . . , v − 3, v, let α1 and α2 be two permutations of X
fixing exactly s elements {a1, a2, . . . , as} and for s + 1 ≤ i ≤ v, α1(ai) 6= α2(ai). Now let C be as in

Construction 4, i.e.

C = {{ai, x, y}| [x, y] ∈ Fi, i = 1, 2, ..., v}, and put

α1(C) = {{α1(ai), x, y}| [x, y] ∈ Fi, i = 1, 2, ..., v}, and

α2(C) = {{α2(ai), x, y}| [x, y] ∈ Fi, i = 1, 2, ..., v}.

Each 1-factor of F contains (v + 1)/2 = r + 1 edges, so C, α1(C) and α2(C) pairwise have exactly

(s − 1)(r + 1) + (r + 1) triples in common, which (r + 1) of them being the triples which contain a1.

So three STS(2v+ 1)s, (X∗,B1 ∪ C), (X∗,B2 ∪ α1(C)) and (X∗,B3 ∪ α2(C)) have 3-way intersection

number k + (s− 1)(r + 1) + 2r + 1 which 2r+ 1 of them being the triples of a common flower at point

a1. So k + (s− 1)(r + 1) ∈ J3
F (2r + 1). ✷

Theorem D Colbourn and Dinitz (2006)(Section III-3-4),Todorov (2012) For n ≥ 5 and n 6= 6, there

exist four mutually orthogonal Latin squares of order n except possibly for n ∈ {10, 18, 22}.
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Theorem 6 Let t ≥ 5 and t /∈ {6, 10, 18, 22}, there exists a pairwise balanced design (PBD) of order 6t,
with six blocks of size t and t2 blocks of size 6. (or a B({6, t}, 1, 6t)).

Proof: Let V = {1, 2, . . . , t}, we define a pairwise balanced designB({6, t}, 1, 6t) on set V×{1, 2, . . . , 6}.

By Theorem D there exist four mutually orthogonal Latin squares of order t, where t ≥ 5 and t /∈
{6, 10, 18, 22}. Let L1, L2, L3 and L4 be four mutually orthogonal Latin squares of order t, where

Ln = (ℓ
{n}
ij ), i ∈ V ×{5}, j ∈ V ×{6} and ℓ

{n}
ij ∈ V ×{n} for n ∈ {1, 2, 3, 4}. It is enough to consider

six blocks {V × {m}} for m ∈ {1, 2, . . . , 6} and t2 blocks {{a1, a2, a3, a4, i, j}| an ∈ V × {n}, 1 ≤

n ≤ 4, i ∈ V × {5}, j ∈ V × {6}}, where ℓ
{n}
ij = an for 1 ≤ n ≤ 4. ✷

The following theorem is similar to Theorem 4.1.3 of Lindner and Rodger (2008).

Theorem 7 If there exists a B({k1, k2, . . . , kx}, 1, r) for r ≡ 0, 1 (mod 3), and if there exists an STS(2ki+
1) for 1 ≤ i ≤ x, then there exists an STS(2r+ 1).

Proof: Let (X,B) be a B({k1, k2, . . . , kx}, 1, r) with X = {1, 2, . . . , r}. Define an STS(2r+1) (Y,A)
with Y = {∞} ∪ ({1, 2, . . . , r} × {1, 2}) as follows.

(1) For 1 ≤ i ≤ r, {∞, (i, 1), (i, 2)} ∈ A,

(2) For each block B ∈ B, let (Y (B),A(B)) be an STS(2|B|+1), where Y (B) = {∞}∪(B×{1, 2})
and where the symbols have been named so that {∞, (i, 1), (i, 2)} ∈ A(B) for all i ∈ B, and let

A(B) \ {{∞, (i, 1), (i, 2)}| i ∈ B} ⊆ A.

It is easy to see that (Y,A) is an STS(2r+ 1). ✷

Theorem 8 Let k ≡ 0, 1 (mod 3) for each k ∈ K and r ≡ 0, 1 (mod 3). If there exists a B(K, 1, r)
(X,B) such that kB ∈ J3

F (|B|) for each B ∈ B, then
∑

B∈B kB ∈ J3
F (r).

Proof: Since r ≡ 0, 1 (mod 3) and for each k ∈ K , k ≡ 0, 1 (mod 3), we can use the construction which

has been explained in Theorem 7 to form a collection of three STS(2r+1)s (Y,A1), (Y,A2) and (Y,A3)
as follows. For each B ∈ B, since kB ∈ J3

F (|B|), then we may form a collection of three STS(2|B|+1)s
(Y (B),A1(B)), (Y (B),A2(B)) and (Y (B),A3(B)) such that their 3-way flower intersection number

is kB and with flower at ∞. For i = 1, 2, 3, we define

Ai = {{∞, x1, x2}| x ∈ B} ∪ {∪B∈B{Ai(B) \ {{∞, x1, x2}| x ∈ B}}.

So (Y,A1), (Y,A2) and (Y,A3) are three STS(2r + 1)s with 3-way flower intersection number∑
B∈B kB and the flower is on ∞. So

∑
B∈B kB ∈ J3

F (r). ✷

In the following, some auxiliary lemmas are expressed.

Lemma 2 For all admissible r ≥ 4, 0 ∈ J3
F (r).

Proof: Let (X,B) be an STS(2r + 1) and write B = Fx ∪ C, where Fx is the flower at the point x. Let

Y = X − {x} and G = {{a, b} : {a, b, x} ∈ Fx}. Then (Y,G, C) is a 3-GDD of type 2r. Since the

maximum number of disjoint 3-GDDs of type 2r is 2(r− 2) and there exists a large set of 3-GDD of type

2r for r ≡ 0, 1 (mod 3) Cao et al. (2001), the result follows. ✷

Lemma 3 For all admissible r,
2r(r−1)

3 ∈ J3
F (r).
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Proof: It is enough to consider the same STS(2r+ 1) three times. ✷

The following lemma is similar to Lemma 1 of Hoffman and Lindner (1987).

Lemma 4 Let v = 2r + 1 ≡ 1, 3 (mod 6), for r ≥ 6 and k ≥ 2r(r−3)
3 , if k + r ∈ J3(v), then k ∈ J3

F (r).

Proof: It is enough to assume a point x is contained in a triple of the first system that is not a triple of the

other systems, then obviously it must be contained in at least two such triples. A simple calculation now

shows that there must be at least one point x for which the triples through x are the same in all systems.

✷

Corollary 1 For all admissible r ≥ 9, let k ∈ I3F (r) with k ≥ 2r(r−3)
3 , then k ∈ J3

F (r).

Proof: From Milici and Quattrocchi (1987), J3(v) = I3(v) for every v ≥ 19. Lemma 4 completes the

proof. ✷

3 Small Cases

In this section we discuss some small admissible values of r, needed for general constructions.

For a v-set X , let (X,A), (X,B) and (X, C) be three Steiner triple systems of order v. For convenience,

we introduce a notation in this section. |A∩B ∩C|F = k, means that three STS(v)s, (X,A), (X,B) and

(X, C), have 3-way flower intersection number k.

The following theorem is obvious.

Theorem 9 J3
F (1) = {0}.

Theorem 10 J3
F (3) = {4}.

Proof: By Theorem A, J3(7) = {1, 7}, so the only 3-way flower intersection number of STS(7) can be

4. Using Lemma 3 completes the proof. ✷

Theorem 11 J3
F (4) = {0, 8}.

Proof: By Theorem A, J3(9) = {0, 1, 3, 4, 12}, so the only 3-way flower intersection numbers of STS(9)
can be {0, 8}. Lemmas 2 and 3 completes the proof. ✷

Theorem 12 [0, 5] ∪ {7, 20} ⊆ J3
F (6) ⊆ [0, 7] ∪ {20}.

Proof: By Theorem A, J3(13) = I3(13)\{14, 15, 16, 17, 18, 20}, so J3
F (6) ⊆ [0, 7]∪{20}. By Lemmas

2 and 3, {0, 20} ⊆ J3
F (6). In Milici and Quattrocchi (1987), the STS(13)s which are given in Tables

1 − 7, 1− 8 and 1 − 9 have 3-way flower intersection numbers 2, 3 and 4 respectively with flower at 1.

Also the STS(13)s which are given in Table 1− 11 have 3-way flower intersection number 7 with flower

at 13. Let X = {1, 2, . . . , 13} and (X,A) and (X,B) be the following STS(13)s.

1 2 11 1 3 13 1 4 10 1 5 7 1 6 12 1 8 9 2 3 6 2 4 9 2 5 12
A 2 7 13 2 8 10 3 4 7 3 5 10 3 8 12 3 9 11 4 5 8 4 6 11 4 12 13

5 6 9 5 11 13 6 7 10 6 8 13 7 8 11 7 9 12 9 10 13 10 11 12
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1 2 11 1 3 13 1 4 10 1 5 7 1 6 12 1 8 9 2 3 6 2 4 13 2 5 12
B 2 7 9 2 8 10 3 4 7 3 5 10 3 8 12 3 9 11 4 5 8 4 6 11 4 9 12

5 6 9 5 11 13 6 7 10 6 8 13 7 8 11 7 12 13 9 10 13 10 11 12

Consider the following permutations on X :

π1 = (3 4 7)(13 10 5), π2 = (13 8)(12 4)(2 11)(3 9)(6 10),
π′
1 = (7 4 3)(5 10 13), π′

2 = (12 11 9)(2 8 6)(4 10)(5 7).
It is checked by computer programming that |A∩π1(A)∩π′

1(A)|F = 1 and |B∩π2(A)∩π′
2(A)|F = 5.

✷

The following construction is similar to construction used in Lemma 4 of Hoffman and Lindner (1987).
Let us call the following Latin square, L, of order 8 on symbols 0, 1, . . . , 7, special of order 8, where A is
a Latin square of order 4 on symbols 4, 5, 6 and 7.

L =

0 1 2 3

A
1 0 3 2
2 3 0 1
3 2 1 0

AT

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

Denote by K the set of integers k for which there exists a collection of three special Latin squares of order

8 which pairwise agree in exactly k of the 24 cells above the 2× 2 diagonal blocks.

Lemma 5 {8, 9, 12} ⊆ K .

Proof: Let k ∈ K , write k = a + b where a ∈ J ′3(4) and b = 8 (the number of cells which contain

elements 2 and 3). By Theorem C, {0, 1, 4} ⊆ J ′3(4), so {8, 9, 12} ⊆ K . ✷

Lemma 6 {12, 13, 16} ⊆ J3
F (7).

Proof: Let K be the set of integers k for which there exists a collection of three special Latin squares

of order 8, L
(n)
ij for n = 1, 2, 3, which pairwise agree in exactly k of the 24 cells above the 2 × 2

diagonal blocks. We construct a collection of three STS(15)s with 3-way flower intersection number h
for h ∈ {12, 13, 16}. Write h = ℓ + k where ℓ ∈ J3

F (3) and k ∈ K . Let X1 = {∞i : 1 ≤ i ≤ 7},

X2 = {1, 2, . . . , 8} and (X1,Bn) for n = 1, 2, 3 be three STS(7)s with 3-way intersection number ℓ+3
where three of these will constitute the flower at ∞1. It is not hard to check that (X1 ∪ X2,Bn ∪ Cn)

for n = 1, 2, 3 are three STS(15)s, where Cn = {{∞s, i, j}| ℓ
(n)
ij = s, 1 ≤ i < j ≤ 8, 1 ≤ s ≤ 7}

which have 3-way intersection number ℓ + k + 7, seven of these will constitute the flower at ∞1. So

h = ℓ+ k ∈ J3
F (7). By Theorem 10, ℓ = 4 and by Lemma 5, {8, 9, 12} ⊆ K . So {12, 13, 16} ⊆ J3

F (7).
✷

Theorem 13 [0, 8] ∪ [10, 13]∪ {16, 22, 28} ⊆ J3
F (7) ⊆ [0, 16] ∪ {22, 28}.

Proof: By Theorem A, J3(15) = I3(15) \ {24, 25, 26, 27}, so J3
F (7) ⊆ [0, 16] ∪ {22, 28}. By Lemmas

2, 3, 4 and 6, {0, 12, 13, 16, 22, 28} ⊆ J3
F (7). In Lemma 2 of Amjadi and Soltankhah (2017), the three

KTS(15)s which have intersection numbers 15 and 17 actually have 3-way flower intersection numbers



The 3-way flower intersection problem for Steiner triple systems 9

8 and 10 respectively with a common flower at element 1. Also in Lemma 3−4 of Milici and Quattrocchi
(1987), the three STS(15)s which have intersection numbers 12 and 18 actually have 3-way flower inter-
section numbers 5 and 11 respectively with a common flower at element 4 (Tables 2− 1, 2− 4 and 2− 5).
Now let X = {1, 2, . . . , 15} and (X,A), (X,B), (X, C), (X,D) and (X, E) be the following STS(15)s.

1 2 3 1 4 5 1 6 7 1 8 9 1 10 11 1 12 13 1 14 15
4 10 14 2 9 11 2 8 10 2 13 15 2 12 14 2 4 6 2 5 7

A 5 8 13 3 8 12 3 9 14 3 4 7 3 5 6 3 11 15 3 10 13
6 9 15 6 13 14 4 11 13 5 11 14 4 8 15 5 9 10 4 9 12
7 11 12 7 10 15 5 12 15 6 10 12 7 9 13 7 8 14 6 8 11

1 2 3 1 4 5 1 6 7 1 8 9 1 10 11 1 12 13 1 14 15
4 10 15 2 9 11 2 8 10 2 13 15 2 12 14 2 4 6 2 5 7

B 5 9 13 3 8 11 3 9 10 3 4 7 3 5 6 3 13 14 3 12 15
6 9 15 6 8 13 4 11 13 5 11 14 4 8 12 5 10 12 4 9 14
7 11 15 7 10 13 5 8 15 6 10 14 7 9 12 7 8 14 6 11 12

1 2 3 1 4 5 1 6 7 1 8 9 1 10 11 1 12 13 1 14 15
4 8 15 2 9 11 2 8 10 2 13 15 2 12 14 2 4 6 2 5 7

C 5 9 13 3 8 12 3 9 14 3 4 7 3 5 6 3 11 13 3 10 15
6 9 12 6 8 14 4 13 14 5 10 14 4 11 12 5 12 15 4 9 10
7 11 14 7 10 12 5 8 11 6 10 13 7 9 15 7 8 13 6 11 15

1 2 3 1 4 5 1 6 7 1 8 9 1 10 11 1 12 13 1 14 15
4 8 13 2 9 11 2 8 10 2 13 15 2 12 14 2 4 6 2 5 7

D 5 9 14 3 8 11 3 9 12 3 4 7 3 5 6 3 13 14 3 10 15
6 9 15 6 8 14 4 11 14 5 11 13 4 12 15 5 10 12 4 9 10
7 11 15 7 10 14 5 8 15 6 10 13 7 9 13 7 8 12 6 11 12

1 2 3 1 4 5 1 6 7 1 8 9 1 10 11 1 12 13 1 14 15
4 10 14 2 9 11 2 8 10 2 13 15 2 12 14 2 4 6 2 5 7

E 5 8 13 3 8 11 3 9 10 3 4 7 3 5 6 3 12 15 3 13 14
6 9 15 6 11 13 4 9 13 5 11 14 4 8 12 5 9 12 4 9 13
7 11 12 7 10 13 5 10 15 6 10 12 7 9 14 7 8 15 6 8 14

Consider the following permutations on X :
π1 = (5 13 3 14 4 12 2 15)(6 10)(7 11), π′

1 = (2 10)(3 11)(4 8 14)(5 9 15)(6 12)(7 13),
π2 = (4 10 14 5 11 15), π′

2 = (15 11 5 14 10 4),
π3 = (2 10 15 13 9 7 3 11 14 12 8 6), π′

3 = (2 6)(3 7)(4 8)(5 9)(10 15 13 11 14 12),
π4 = (2 4 6)(3 5 7), π′

4 = (6 4 2)(7 5 3),
π5 = (2 12 4 14 6)(3 13 5 15 7), π′

5 = (15 6 2)(3 14 7)(4 13)(5 12)(8 10)(9 11),
π6 = (15 13 3)(2 14 12)(4 10 6)(5 11 7), π′

6 = (15 3 13)(2 12 14)(4 6 10)(7 11 5).

It is checked by computer programming that

|B ∩ π1(D) ∩ π′
1(D)|F = 1, |B ∩ π2(B) ∩ π′

2(B)|F = 2, |B ∩ π3(D) ∩ π′
3(D)|F = 3,

|E ∩ π4(E) ∩ π′
4(E)|F = 4, |B ∩ π5(C) ∩ π′

5(C)|F = 6, |A ∩ π6(A) ∩ π′
6(A)|F = 7.

with flower at 1. ✷

Theorem 14 I3(9) \ {4, 6, 7, 9, 11, 34, 35} ⊆ J3
F (9).

Proof: By Theorem 3 for r = 3, and Theorems C and 10, [12, 31] ∪ {39, 48} ⊆ J3
F (9). By Theorem

5 for r = 4, and Theorem 11, {5, 8, 10, 33} ⊆ J3
F (9). By Lemma 2, 0 ∈ J3

F (9) and by Corollary 1,

{36, 37, 38, 40, 42} ⊆ J3
F (9). In Milici and Quattrocchi (1987), the STS(19)s which are given in Table
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3 − 2 have 3-way flower intersection number 32 with flower at 19. Let X = {1, 2, . . . , 19} and (X,A)
be the following STS(19).

1 2 3 2 9 14 3 8 12 4 8 19 7 8 10 1 18 19 4 13 16 6 14 19 9 10 18 10 17 19
1 4 5 2 5 15 3 9 19 5 6 10 7 9 13 2 11 13 4 15 17 7 15 19 9 11 15 11 14 17
1 6 7 2 6 18 3 5 17 5 7 14 1 10 11 2 12 19 5 11 12 7 17 18 9 12 17 11 16 19
1 8 9 2 7 16 3 6 15 5 8 18 1 12 13 3 10 13 5 13 19 8 13 14 10 12 15 12 14 18
4 6 9 2 8 17 3 7 11 5 9 16 1 14 15 3 16 18 6 12 16 8 15 16 10 14 16 13 15 18
2 4 10 3 4 14 4 7 12 6 8 11 1 16 17 4 11 18 6 13 17

Consider the following permutations on X :

π1 = (4 16)(5 17)(10 8 12 6 14 2 18)(11 9 13 7 15 3 19),

π′

1 = (2 10)(3 11)(12 14)(13 15)(17 7 9 5 18 16 6 8 4 19),

π2 = (6 14)(7 15)(8 12 4 16 2 18)(9 13 5 17 3 19),

π′

2 = (14 6 4 2 10 16 8 19 15 7 5 3 11 17 9 18),

π3 = (2 8 10 18 4 12 6)(3 9 11 19 5 13 7),

π′

3 = (2 6 4 14 9 13 11)(3 7 5 15 8 12 10)(16 19 17 18).

It is checked by computer programming that |A∩πi(A)∩π′
i(A)|F = i for i = 1, 2, 3 with flower at 1. ✷

Theorem 15 J3
F (10) = I3F (10).

Proof: By Corollary 1, [47, 52]∪ {54, 60} ⊆ J3
F (10). By Theorem 4 for r = 3, and Theorems C and 11,

[0, 44] ⊆ J3
F (10) and in Theorem 2 for r = 3, with the aim of Theorems A, 1 and 10, we can assume that

b = 33, a1 = 1, a2 = 7 and a = 4, so 45 ∈ J3
F (10). In Lemma 2.8 of Milici and Quattrocchi (1987), the

three systems with 3-way intersection number 56, actually have 3-way flower intersection number 46, so

46 ∈ J3
F (10). ✷

Let us call the following Latin square, L, of order 16 on symbols 0, 1, . . . , 15, special of order 16,
where A and C are Latin squares of order 4 on symbol set {4, 5, 6, 7} and B is a Latin square of order 8
on symbol set {8, 9, . . . , 15}.

L =

0 1 2 3

A

B

1 0 3 2

2 3 0 1

3 2 1 0

AT

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

BT

0 1 2 3

C
1 0 3 2

2 3 0 1

3 2 1 0

CT

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

Denote by M the set of integers m for which there exists a collection of three special Latin squares of

order 16 which pairwise agree in exactly m of the 112 cells above the 2× 2 diagonal blocks.

Lemma 7 M = [16, 97] ∪ {100, 103, 112}.
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Proof: Let m ∈ M , write m = a + b + c + d where a, c ∈ J ′3(4), b ∈ J ′3(8) and d = 16 (the

number of cells which contain elements 2 and 3). By Theorem C J ′3(4) = {0, 1, 4, 16} and J ′3(8) =
[0, 49] ∪ {52, 55, 64}, so m ∈ [16, 97] ∪ {100, 103, 112}. ✷

Theorem 16 J3
F (15) = I3F (15).

Proof: Let M be the set of integers m for which there exists a collection of three special Latin squares

of order 16, L
(n)
ij for n = 1, 2, 3, which pairwise agree in exactly m of the 112 cells above the 2 × 2

diagonal blocks. We construct a collection of three STS(31)s with 3-way flower intersection number

h for h ∈ [16, 125] ∪ {128, 131, 134, 140}. Write h = ℓ + m where ℓ ∈ J3
F (7) and m ∈ M . Let

X1 = {∞i : 1 ≤ i ≤ 15}, X2 = {1, 2, . . . , 16} and (X1,Bn) for n = 1, 2, 3 be three STS(15)s with 3-

way intersection number ℓ+7 where seven of these will constitute the flower at ∞1. It is not hard to check

that (X1 ∪X2,Bn ∪ Cn) for n = 1, 2, 3 are three STS(31)s, where Cn = {{∞s, i, j}| ℓ
(n)
ij = s, 1 ≤ i <

j ≤ 16, 1 ≤ s ≤ 15} which have 3-way intersection number ℓ +m+ 15, fifteen of these will constitute

the flower at ∞1. So h = ℓ +m ∈ J3
F (15). By Theorem 13, ℓ ∈ [0, 8] ∪ [10, 13] ∪ {16, 22, 28} and by

Lemma 7, m ∈ [16, 97] ∪ {100, 103, 112}. So [16, 125] ∪ {128, 131, 134, 140} ⊆ J3
F (15). By Theorem

5 for r = 7, [0, 15] ⊆ J3
F (15). Existence of the remaining flower intersection numbers is guaranteed by

Corollary 1. ✷

Theorem 17 I3F (24) \ [1, 15] ⊆ J3
F (24).

Proof: By Lemma 2, 0 ∈ J3
F (24) and by Corollary 1, [336, 360] ∪ {362, 368} ⊆ J3

F (24). There exists

a {4}-GDD of type 3462 Kreher and Stinson (1997). All input designs required in Theorem 8 to achieve

remaining intersection numbers, is guaranteed by Theorems 10, 11 and 12. ✷

Theorem 18 J3
F (60) = I3F (60).

Proof: By Corollary 1, [2280, 2352]∪ {2354, 2360} ⊆ J3
F (60). There exists a {4}-GDD of type 610 Wei

and Ge (2014). All input designs required in Theorem 8 to achieve remaining intersection numbers, is

guaranteed by Theorems 11 and 12. ✷

Theorem 19 J3
F (132) = I3F (132).

Proof: By Corollary 1, [11352, 11520]∪ {11522, 11528} ⊆ J3
F (132). There exists a {4}-GDD of type

912241 Wei and Ge (2013). All input designs required in Theorem 8 to achieve remaining intersection

numbers, is guaranteed by Theorems 11, 14 and 17. ✷

4 Main results

Now, we are in position to present the main theorem.

Theorem 20 (Main Theorem)

Let S3[m] denote the set of non-negative integers less than or equal to m, with the exception of m− 1,

m− 2, m− 3, m− 4, m− 5 and m− 7 and let I3F (n) = S3[ 2n(n−1)
3 ].

For n ≡ 0, 1 (mod 3), n ≥ 10 but n 6= 24, J3
F (n) = I3F (n). J3

F (3) = {4}, J3
F (4) = {0, 8}, [0, 5] ∪

{7, 20} ⊆ J3
F (6) ⊆ [0, 7] ∪ {20}, [0, 8] ∪ [10, 13] ∪ {16, 22, 28} ⊆ J3

F (7) ⊆ [0, 16] ∪ {22, 28}, I3F (9) \
{4, 6, 7, 9, 11, 34, 35} ⊆ J3

F (9) and I3F (24) \ [1, 15] ⊆ J3
F (24).
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Proof: The proof is based on recursive constructions where expressed before. For any admissible n,

consider the following five cases. It is worth mentioning that in all cases, to construct STS(2n + 1),
recursive constructions may use small STSs of order 2m+ 1 where n and m are not congruent modulo

9.

1. n ≡ 1, 4 (mod 9)

J3
F (1), J

3
F (4) and J3

F (10) have been obtained in Theorems 9, 11 and 15, so let n ≥ 13. Let

n = 3r + 1, clearly r is admissible, since n ≡ 1, 4 (mod 9). All required objects in Theorem 2, is

guaranteed by Theorems A and 1 and the 3-way flower intersection numbers of STS(2r + 1).

2. n ≡ 0, 3 (mod 9)

J3
F (3) and J3

F (9) have been obtained in Theorems 10 and 14, so let n ≥ 12. Let n = 3r, clearly r
is admissible, since n ≡ 0, 3 (mod 9). All required objects in Theorem 3, is guaranteed by Theorem

C and the 3-way flower intersection numbers of STS(2r + 1).

3. n ≡ 7 (mod 9)

J3
F (7) has been obtained in Theorem 13, so let n ≥ 16. Let n = 3r+1, clearly r ≡ 0, 2 (mod 3) (it

means r + 1 is admissible), since n ≡ 7 (mod 9). All required objects in Theorem 4, is guaranteed

by Theorem C and the 3-way flower intersection numbers of STS(2r+ 3).

4. n ≡ 15 (mod 18) (It means n = 9k + 6, where k is odd).

J3
F (15) has been obtained in Theorem 16, so let n ≥ 33. Let n = 2r + 1, clearly r is admissible,

since n ≡ 15 (mod 18). All required objects in Theorem 5, is guaranteed by the 3-way flower

intersection numbers of STS(2r + 1).

5. n ≡ 6 (mod 18) (It means for n = 9k + 6, where k is even).

J3
F (6), J

3
F (24), J

3
F (60) and J3

F (132) have been obtained in Theorems 12, 17, 18 and 19, so let

n ≥ 42 and n /∈ {60, 132}. Let n = 6t, clearly t ≡ 1 (mod 3), t ≥ 7 and t /∈ {10, 22}. By

Theorem 6, there exists a B({6, t}, 1, 6t) and since t and 6 are admissible, by Theorem 7, there

exists an STS(12t+ 1). All required objects in Theorem 8, is guaranteed by Theorem 12 and the

3-way flower intersection numbers of STS(2t+ 1).

✷
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