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The flower at a point z in a Steiner triple system (X, B) is the set of all triples containing z. Denote by J3 (r) the set
of all integers k such that there exists a collection of three ST'S(2r + 1) mutually intersecting in the same set of k +r
triples, 7 of them being the triples of a common flower. In this article we determine the set J3 (1) for any positive
integer » = 0, 1 (mod 3) (only some cases are left undecided for » = 6, 7, 9, 24), and establish that J3(r) = I's(r)
for r = 0,1 (mod 3) where I3(r) = {0, 1,..., ZT(T;D -8, 27‘(7{371) — 6, zr(gfl) 1.
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1 Introduction

A Steiner system S(2, k,v) is a pair (X, B) where X is a v-set and B is a family of k-subset of X called
blocks, such that each 2-subset of X is contained in exactly one block of B. If k£ = 3, then the Steiner
system S(2, 3, v) is called Steiner triple system of order v or briefly ST'S(v). It is well known that an
ST S(v) exists if and only if v = 1,3 (mod 6) Hanani (1975).

A Kirkman triple system of order v (briefly KT'S(v)) is a Steiner triple system of order v, (X, B)
together with a partition R of the set of triples B into subsets R1, Ro, . .., R, called parallel classes such
that each R; (fori =1,2,...,n) is a partition of X. It is well known that a K'T'S(v) exists if and only if
v = 3 (mod 6) Ray-Chaudhuri and Wilson (1971).

It can be easily checked that the number of triples contained in an ST'S(v) (or KT'S(v)) is t, =
v(v — 1)/6. For each non-negative integer n, let S[n| denote the set of non-negative integers less than or
equal to n, with the exceptionof n — 1, n — 2, n — 3 and n — 5. Let I(v) = S|t,].

Two Steiner (or Kirkman) triple systems (X, B1) and (X, Bs) are said to infersect in k triples, provided
|B1 N Bz| = k. Denote by J(v) (or Jg(v)) the set of all integer numbers k such that there exists a pair of
ST S(v) (or KT'S(v)) intersecting in k triples.

Lindner and Rosa (1975) have completely determined the set J(v) and proved that J(3) = 1, J(7) =
{0,1,3,7}, J(9) = {0,1,2,3,4,6,12} and J(v) = I(v) for v = 1,3 (mod 6) and v > 13. Also Shen
(2001), Chang and Lo Faro (1999) have determined the set Jg(v).
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For each non-negative integer n, let S3[n] denote the set of non-negative integers less than or equal to
n, with the exceptionof n — 1,n —2,n —3,n —4,n — 5and n — 7. Let I3(v) = S3[t,].

Milici and Quattrocchi (1987) generalized the intersection problem for ST'S(v)s and determined the set
J3(v) of all integer numbers k such that there exists a collection of three ST'S(v)s pairwise intersecting
in the same set of k blocks. The following theorem contains their results.

Theorem A Milici and Quattrocchi (1987) J3(v) = I3(v) for every v > 19; J3(7) = {1,7}, J3(9) =
(0,1,3, 4,12}, J3(13) = I3(13) \ {14, 15,16, 17, 18,20} and J3(15) = I3(15) \ {24,25,26, 27}.

Amjadi and Soltankhah (2017) generalized the intersection problem for K'T'S(v)s and for sufficiently
large v determined the set J3(v) of all integer numbers k such that there exists a collection of three
KTS(v)s pairwise intersecting in the same set of k blocks. Just two cases are left undecided.

There are some other results on p-way intersection problem, for example, Rashidi and Soltankhah
(2017) solved the 3-way intersection problem of S(2,4,v) designs also Milici and Quattrocchi (1986)
found some results on the maximum number of S7'Ss such that any two of them intersect in the same
block-set and Golalizadeh and Soltankhah (2019) found the maximum number of Steiner triple systems
which intersect in some special blocks.

The flower at a point = in a Steiner triple system, is the set of all triples containing . The flower
intersection problem for ST Ss is the determination for each v = 2r + 1 = 1, 3 (mod 6) of the set Jp(r)
of all k such that there exists a pair of Steiner triple systems on the same v-set having k + r triples in
common, r of them being the triples of a common flower. Note that r = 0,1 (mod 3); we call such a
non-negative r admissible.

For each admissible 7, let Ip(r) = S [@] Hoffman and Lindner (1987) have completely deter-
mined the set Jz (7). The following theorem contains their results.

Theorem B Hoffman and Lindner (1987) For all admissible v, Jp(r) = Ip(r), except 1,4 ¢ Jp(4).

Also Zhang et al. (2014) solved the flower intersection problem of S(2, 4, v) designs; Milici and Quattroc-
chi (1990) solved the flower intersection problem for S(3, 4, v) designs for some values of v and Chang
and Lo Faro (2003) solved the flower intersection problem of KT'S(v)s.

LetI3(r) = S3 [@] and J3.(r) be the set of all integer numbers k such that there exists a collection
of three ST'S(2r 4+ 1)s pairwise intersecting in the same k + r blocks, r of them being the triples of a
common flower. Here we determine J3(r) for all admissible values of r except for some small values of
T

The necessary conditions are expressed in the following lemma and it is straightforward.

Lemma 1 For each admissible r, J3.(r) C I3.(r), Jp(r) C {a—7r|a € J32r+1), a > r} and
Ti(r) € Je(r).

2 Recursive constructions

In this section we give several recursive constructions for finding the 3-way flower intersection numbers
of Steiner triple systems. The concept of PBDs, GDDs and Latin squares play an important role in these
constructions. Let us give their formal definition.

Let v be a positive integer and K be a set of positive integers. A pairwise balanced design (briefly a
PBD) B(K, \,v) is a pair (X, A) where X is a v-set and A is a set of subsets (called blocks) of X such
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that | B| € K for each B € A and each pair of distinct elements of X is contained in exactly A blocks of
A.

Let X be a finite set containing v points, G a family of distinct subsets of X, called groups which
partition X, and A a collection of subsets of X, called blocks. Let K be a set of positive integers. A
design (X, G, A) is called a group divisible design (GDD) K-GDD if

1. {I|B] : Be A} CK;
2. |GNB| < 1forevery G € G andevery B € A;
3. Every pair of points from distinct groups occurs in exactly a unique block of A.

If G contains t; groups of size mi, to groups of size mo, ..., and t5 groups of size m,, we call
t1,.t2 ta t

mi'ms? ... m's the group type (or type) of the GDD. A K-GDD with group type m’il My ... Mg 1S
actually a pairwise balanced design and it is denoted by B(K UM, 1, v) (or (v, K UM, 1)—PBD), where
M = {mi,ma,...,ms}. We usually write {k}-GDD as k-GDD and B({k},1,v) as B(k,1,v) (or
(v, k, 1)-BIBD).

A Latin square of order n is an n x n array L = (¢;;) on n symbols in which every row and every
column of L contains no repeated symbols. Two Latin squares L and L’ of the same order are orthogonal
ifbgp = legand ¥/ oy = ¢/ q, implies a = cand b = d. A set of Latin squares L1, Lo, . . . , Ly, are mutually
orthogonal, or a set of MOLS, if forevery 1 < i < j < m, L; and L; are orthogonal.

We use the results of 3-way intersection problem for Latin squares to determine J3.(r). The 3-way
intersection problem for Latin squares is the problem of determining, for all orders n, the set of integers k
for which there exist three Latin squares of order n having precisely k identical cells, with their remaining
n? — k cells different in all three Latin squares.

Denote by J'3(n) the set of integers k for which there exist three Latin squares of order n which have
precisely k cells where all three squares have identical entries and n? — k cells where all three squares
contain different entries. Let forn > 4, I'3(n) = [0,n% —15]U{n?—12,n?—9,n?} and I"*(3) = {0,9}.
Adams et al. (2002) completely solve the 3-way intersection problem. The following theorem contains
their results. Let [i, j] denote the set of integers {é,4 + 1,44+ 2,...,5 — 1,5}, where i < j.

Theorem C Adams et al. (2002) J3(3) = I'3(3) = {0, 9},
JB(4) =13(4)\ {7} ={0,1,4, 16},

JB3(5) = I"(5) \ {8,9,13,16} = [0,7] U {10, 25,

J3(6) = I"(6) \ {20,21,24} = [0,19] U {27, 36},

JB(7) = I'3(7) \ [31,34] = [0,30] U {37, 40, 49},

J3(n) = I'3(n) forn > 8.

Before expressing the next theorem we need to introduce some notations. For sets of integers X and Y,
let X +Y ={x+y|z € X, y €Y} Alsoforany integer n, let nX = {nz|z € X}.

Let J"3(n) denotes the set of integers k for which there exist three Latin squares of order n with the
same constant secondary diagonal which have precisely k = k' +n cells (n of these are cells of secondary
diagonal) where all three squares have identical entries and n? —n— k&’ cells where all three squares contain
different entries. The following theorem is similar to Lemma 2.2 of Adams et al. (2002).

Theorem 1 J"3(n) + (n+ 1){[0,n —3]U{n}} + 2n+ 1){1,n—2]U{n+1}} C J"3(2n +1).
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Proof: The proof is exactly the same as described in the Lemma 2.2 of Adams et al. (2002), just it is
enough to use permutations which do not change the secondary diagonal of the Latin square. O

We use four constructions of ST'Ss from smaller S7'S's which are adapted from constructions used in
Billington et al. (2008), Hoffman and Lindner (1987) and Lindner and Rosa (1975).

Construction 1 (S7S(3v) from ST'S(v)). We define Steiner triple system S on the set X = {1,2,... v}x
{1,2,3}. Let L = ({;;) be a Latin square on symbols V.= {1,2, ..., v}. Let V; =V x {i} fori = 1,2,3
and (V1,B1), (Va, B2) and (V3, Bs) be three Steiner triple systems S1, So and Ss respectively. It is easy to
see that (X, B1UB2UB3UB) is an ST'S(3v), where B = {{(i,1), (j,2), (s,3)}| li; = s, 1 < 4,7, < v}.

Construction 2 (STS(3v + 1) from ST S(v + 1)). We define Steiner triple system S on the set X =
({1,2,...,v} x {1,2,3}) U {oco}. Let L be a Latin square on symbols V.= {1,2,...,v}. Let V; =
V x {i} fori=1,2,3 and (V1 U {0}, By), (Vo U {oo}, Ba) and (V3 U {oo}, Bs) be three ST S(v + 1)
Sy, So and Ss respectively. It is easy to see that (X,B1 U Ba U B3 U B) is an STS(3v + 1), where
B={{(i,1),(4,2),(s,3)} £i; = s, 1 <i,j,s < v}

Construction 3 (ST'S(3v + 3) from STS(v + 3)). We define Steiner triple system S on the set X =
({1,2,...,v}x{1,2,3})U{co1, 009, 003}. Let L = ({;;) be a Latin square on symbols V.= {1,2, ..., v}.
Let V; = V x {i} for i = 1,2,3 and (V1 U {001,002,003},B1), (Vo U {o01,009,003}, Ba) and
(V3 U {001, 002,003}, B3) be three STS(v + 3) S1, So and Ss respectively, which each of them con-
tains triple {001, 002,003}. It is easy to see that (X,B, U By U Bs U B) is an STS(3v + 3), where
B={{(i,1),(4,2),(s,3)} £i; = s, 1 <i,j,s < v}

Recall that a 1-factor of a graph G is a spanning subgraph of G that is regular of degree 1. A 1-
factorization of a graph G is a set F = {F},..., F}} of edge-disjoint 1-factors of G whose edge-sets
partition the edge-set of (G. Colbourn and Dinitz (2006)

Construction 4 (STS(2v + 1) from STS(v)). Let X = {a1,aq,...,a,} and (X,B) be an STS(v).
Putv+1=2nandlet F = {F;| i = 1,2,...,2n — 1} be a 1-factorization of K, with the vertex set
V(Kan) =Y where X NY = 0, (Ka, is complete graph with 2n vertices). Put X* = X UY and
B* = BUC where C = {{a;,x,y}| [z,y] € Fi, i = 1,2,...,2n— 1}. It is easy to see that (X*,B*) is an
STS(2v+1).

Theorem 2 For all admissible r, if there exist three Latin squares on same 2r + 1 symbols with the same
constant secondary diagonal agreeing pairwise on exactly b+ 2r + 1 cells (2r + 1 of these are cells of the
secondary diagonal), and if a; € J3(2r+1) fori = 1,2and a € J3.(r), then a1 +as+a+b € J3(3r+1).

Proof: We use Construction 1 to construct a collection of three ST'S(6r + 3)s with flower intersection
number a1 +as +a+b. For this purpose, start with three Latin squares L', L and L' of order 2r+1, with
the same constant secondary diagonal of 1’s and agreeing pairwise on exactly b cells off the secondary
diagonal. Fori = 1,2, let S, S and S}” be a collection of three systems on {1,2,...,2r+1} x {i} with
exactly a; triples in common. Let S5, S5 and S5’ be a collection of three systems on {1,2,...,2r+1} X
{3} with the same r triples containing (1, 3) (a flower at element (1, 3)), and a further triples in common.
Then by using Construction 1 for v = 2r + 1, we construct a collection of three Steiner triple systems .S/,
S" and S of order 6r + 3 with a1 + a2 + a + b+ (3r + 1) triples in common, 3r + 1 of them are flower

at element (1, 3). O
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Remark 1 Theorem 2 is true also when Latin squares have same row or same column instead of same
constant secondary diagonal. the proof is similar to the proof of Theorem 2.

Theorem 3 For all admissible r, ifb € J'>(2r) and a; € Ji(r) fori = 1,2,3, thenay +az + a3 +b €
J3(3r).

Proof: We use Construction 2 to construct a collection of three ST'S(6r + 1)s with flower intersection
number a; + as + a3 + b. For this purpose, start with three Latin squares L', L” and L of order 2r
with 3-way intersection number b. For i = 1,2, 3, let S/, S/’ and S be a collection of three systems on
({1,2,...,2r} x {i}) U {oo} with the same r triples containing co (a flower at co), and a; further triples
in common. Then by using Construction 2 for v = 2r, we construct a collection of three Steiner triple
systems S’, S” and S”" of order 67 + 1 with a1 + as + as + b + 3r triples in common, 3r of them are
flower at co. O

Theorem 4 Forr = 0,2 (mod 3), ifb € J"3(2r) and a; € J3(r+1) fori = 1,2,3, then ay+as+az+b €
J3(3r 4+ 1).

Proof: We use Construction 3 to construct a collection of three ST'S(6r + 3)s with flower intersection
number a1 + as + as + b. For this purpose, start with three Latin squares L/, L” and L""’ of order 2r
with 3-way intersection number b. For i = 1,2, 3, let S}, S/’ and S be a collection of three systems on
({1,2,...,2r} x {i}) U {001, 002, 003} which contain triple {co7, 002,003} and with the same 7 + 1
triples containing co; (a flower at 0o1), and a; further triples in common. Then by using Construction 3
for v = 2r, we construct a collection of three Steiner triple systems S’, S” and S of order 67 + 3 with
a1+ a2 + as + b+ (3r + 1) triples in common, 3r + 1 of them are flower at 0o . O

Theorem 5 For all admissible r, if k € J3(r) then k + (s — 1)(r + 1) € J3(2r + 1) for every s =
1,2,...,2r—2,2r + 1.

Proof: Let v = 2r + 1 and X, Y, X* and F be as in Construction 4. Let (X, B;) for i = 1,2,3 be
a collection of three ST'S(v)s, with 3-way intersection number k + r which r of them being the triples
of a common flower at point a;. For s = 1,2,...,;v — 3, v, let @1 and a9 be two permutations of X
fixing exactly s elements {a1,as,...,as} and for s + 1 < i < v, a1(a;) # az(a;). Now let C be as in
Construction 4, i.e.

C ={{ai,z,y}| [z,y] € Fi, i=1,2,...,v}, and put

a1(C) = {{a1(ai), z,y}| [z,y] € Fi, i =1,2,...,v},and

as(C) = {{az(ai), z, y}| [z, y] € Fi, i =1,2,...,v}.

Each 1-factor of F contains (v + 1)/2 = r + 1 edges, so C, a1 (C) and a2(C) pairwise have exactly
(s = 1)(r +1) + (r + 1) triples in common, which (r + 1) of them being the triples which contain a;.
So three ST'S(2v + 1)s, (X*,B1 UC), (X*, B2 U«a1(C)) and (X*, B3 U a2(C)) have 3-way intersection
number k + (s — 1)(r + 1) + 27 4+ 1 which 2r + 1 of them being the triples of a common flower at point
ar. Sok+(s—1)(r+1) € Ji(2r+1). O

Theorem D Colbourn and Dinitz (2006)(Section III-3-4), Todorov (2012) For n > 5 and n # 6, there
exist four mutually orthogonal Latin squares of order n except possibly for n € {10, 18,22}.
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Theorem 6 Lert > 5 andt ¢ {6,10, 18,22}, there exists a pairwise balanced design (PBD) of order 6t,
with six blocks of size t and t* blocks of size 6. (or a B({6,t},1,6t)).

Proof: LetV = {1,2,...,t}, we define a pairwise balanced design B({6,t}, 1, 6t) onset V' x{1,2,...,6}.
By Theorem D there exist four mutually orthogonal Latin squares of order ¢, where ¢ > 5 and t ¢
{6,10,18,22}. Let Ly, Lo, L3 and L4 be four mutually orthogonal Latin squares of order ¢, where
L,= (ﬂl{f}),i €V x{5},j €V x{6}and é;-{f} €V x{n} forn € {1,2,3,4}. Itis enough to consider
six blocks {V x {m}} form € {1,2,...,6} and t? blocks {{a1, az,as,as,%,j}| an € V x {n}, 1 <

n<4, i€V x{5},j eV x{6}},where (! = a, forl <n<4. O
The following theorem is similar to Theorem 4.1.3 of Lindner and Rodger (2008).

Theorem 7 Ifthere existsa B({ki, ka,... ki },1,7) forr = 0,1 (mod3), and if there exists an ST S(2k;+
1) for 1 < i < x, then there exists an STS(2r + 1).

Proof: Let (X, B) be a B({k1,k2,...,kz},1,7) with X = {1,2,...,r}. Definean STS(2r+1) (Y, A)
withY = {oo} U ({1,2,...,7} x {1,2}) as follows.

(1) For1 <i<r, {0, (,1),(:,2)} € A,

(2) Foreachblock B € B,let (Y(B), A(B)) be an ST'S(2|B|+1), where Y (B) = {oo}U(Bx{1,2})
and where the symbols have been named so that {o0, (i,1), (i,2)} € A(B) forall i € B, and let
A(B)\ {{oc, (i,1), (1,2)}| i € B} C A.

It is easy to see that (Y, .A) is an ST'S(2r + 1). O

Theorem 8 Let k = 0,1 (mod 3) for each k € K and r = 0,1 (mod 3). If there exists a B(K,1,r)
(X, B) such that kp € J3.(|B|) for each B € B, then' Y g g ks € J3(r).

Proof: Since » = 0,1 (mod 3) and for each & € K, k = 0, 1 (mod 3), we can use the construction which
has been explained in Theorem 7 to form a collection of three ST'S(2r+1)s (Y, A;), (Y, A2) and (Y, A3)
as follows. For each B € B, since kp € J3(|B|), then we may form a collection of three ST'S(2|B|+1)s
(Y(B), A1(B)), (Y(B), A2(B)) and (Y (B), A3(B)) such that their 3-way flower intersection number
is kp and with flower at co. Fori = 1, 2, 3, we define
A; = {{oo,z1,22}| * € By U{Upep{Ai(B) \ {{o0, 21, z2}| € B}}.

So (Y, A1), (Y, Az) and (Y, A3) are three ST'S(2r + 1)s with 3-way flower intersection number
> pep ks and the flower is on 0o. So Y- 5 gk € Ji(r). |

In the following, some auxiliary lemmas are expressed.
Lemma 2 For all admissible r > 4,0 € J3.(r).

Proof: Let (X, B) be an ST'S(2r + 1) and write B = F, U C, where F, is the flower at the point x. Let

Y=X—-{z}and G = {{a,b} : {a,b,x} € F,}. Then (Y,G,C) is a 3-GDD of type 2". Since the

maximum number of disjoint 3-GDDs of type 2" is 2(r — 2) and there exists a large set of 3-GDD of type

2" for r = 0,1 (mod 3) Cao et al. (2001), the result follows. O
2r(r

Lemma 3 For all admissible r, T_l) € J(r).
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Proof: It is enough to consider the same ST'S(2r 4 1) three times. O
The following lemma is similar to Lemma 1 of Hoffman and Lindner (1987).

Lemma4 Letv =2r +1=1,3(mod6), forr > 6 and k > M, ifk+re J3v), thenk € J3(r).

Proof: It is enough to assume a point x is contained in a triple of the first system that is not a triple of the
other systems, then obviously it must be contained in at least two such triples. A simple calculation now
shows that there must be at least one point « for which the triples through x are the same in all systems.
O

Corollary 1 For all admissible > 9, let k € I3(r) with k > 2203 then k € J3(r).

Proof: From Milici and Quattrocchi (1987), J3(v) = I3(v) for every v > 19. Lemma 4 completes the
proof. O

3 Small Cases

In this section we discuss some small admissible values of 7, needed for general constructions.
Foraw-set X, let (X, .A), (X, B) and (X, C) be three Steiner triple systems of order v. For convenience,
we introduce a notation in this section. |ANBNC|r = k, means that three ST'S(v)s, (X, A), (X, B) and
(X, C), have 3-way flower intersection number k.
The following theorem is obvious.

Theorem 9 J3.(1) = {0}.
Theorem 10 J3(3) = {4}.

Proof: By Theorem A, J3(7) = {1, 7}, so the only 3-way flower intersection number of ST'S(7) can be
4. Using Lemma 3 completes the proof. O

Theorem 11 J3(4) = {0, 8}.

Proof: By Theorem A, J3(9) = {0, 1, 3,4, 12}, so the only 3-way flower intersection numbers of S7'S(9)
can be {0, 8}. Lemmas 2 and 3 completes the proof. 0

Theorem 12 [0,5] U {7,20} C J(6) C [0,7] U {20}.

Proof: By Theorem A, J3(13) = I*(13)\ {14,15,16,17,18,20},s0 J3(6) C [0,7]U{20}. By Lemmas
2 and 3, {0,20} C J3(6). In Milici and Quattrocchi (1987), the ST'S(13)s which are given in Tables
1 -7, 1—8and 1 — 9 have 3-way flower intersection numbers 2, 3 and 4 respectively with flower at 1.
Also the ST'S(13)s which are given in Table 1 — 11 have 3-way flower intersection number 7 with flower
at 13. Let X = {1,2,...,13} and (X, .A) and (X, B) be the following ST'S(13)s.

1211 1313 1410 157 1612 189 236 249 2 512
A 2713 2810 347 3510 3812 3 911 458 4 611 41213
569 51113 6 710 6 813 7 811 7 912 91013 101112
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1211 1313 1410 157 1612 189 236 2413 2 512
B 279 2810 347 3510 3812 3911 458 4611 4 912
569 51113 6 710 6 813 7 811 71213 91013 101112

Consider the following permutations on X:
mo=(347)(13 10 5), m = (13 8)(12 4)(2 11)(3 9)(6 10),
m = (74 3)(5 10 13), 7, = (12 11 9)(2 8 6)(4 10)(5 7).
It is checked by computer programming that | AN (A) N7 (A)|r = 1 and [BNma(A)N7h(A)|F = 5.

O
The following construction is similar to construction used in Lemma 4 of Hoffman and Lindner (1987).
Let us call the following Latin square, L, of order 8 on symbols 0, 1, ..., 7, special of order 8, where A is
a Latin square of order 4 on symbols 4, 5, 6 and 7.
0o 112 3
1 03 2
2 3]0 1 A
3 2|1 0
L= 0o 112 3
T 1 0|3 2
A 2 310 1
3 2|1 0

Denote by K the set of integers & for which there exists a collection of three special Latin squares of order
8 which pairwise agree in exactly k of the 24 cells above the 2 x 2 diagonal blocks.

Lemma 5 {8,9,12} C K.

Proof: Let k € K, write k = a + b where a € J®(4) and b = 8 (the number of cells which contain
elements 2 and 3). By Theorem C, {0, 1,4} C J"3(4), s0 {8,9,12} C K. m

Lemma 6 {12,13,16} C J3(7).

Proof: Let K be the set of integers k for which there exists a collection of three special Latin squares

of order 8§, Ll(;) for n = 1,2,3, which pairwise agree in exactly k£ of the 24 cells above the 2 x 2
diagonal blocks. We construct a collection of three ST'S(15)s with 3-way flower intersection number h
for h € {12,13,16}. Write h = £ + k where £ € J3(3) and k € K. Let X; = {o0; : 1 <i < T},
Xo={1,2,...,8}and (X1, B,,) forn = 1,2, 3 be three ST'S(7)s with 3-way intersection number ¢ + 3
where three of these will constitute the flower at co1. It is not hard to check that (X; U X2, B, UC,,)

forn = 1,2, 3 are three ST'S(15)s, where C,, = {{c0s,1,j}| él(?) =5 1<i<j<8 1<s<T7}
which have 3-way intersection number ¢ + k + 7, seven of these will constitute the flower at co;. So
h=/{+k e J3(7). By Theorem 10, / = 4 and by Lemma 5, {8,9,12} C K. So {12,13,16} C J2(7).

O
Theorem 13 [0,8] U [10,13] U {16, 22,28} C J3(7) C [0,16] U {22, 28}.
Proof: By Theorem A, J3(15) = I3(15) \ {24, 25,26,27},s0 J3(7) C [0,16] U {22,28}. By Lemmas

2,3,4and 6, {0,12,13,16,22,28} C J3(7). In Lemma 2 of Amjadi and Soltankhah (2017), the three
KTS5(15)s which have intersection numbers 15 and 17 actually have 3-way flower intersection numbers
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8 and 10 respectively with a common flower at element 1. Also in Lemma 3 — 4 of Milici and Quattrocchi
(1987), the three ST'S(15)s which have intersection numbers 12 and 18 actually have 3-way flower inter-
section numbers 5 and 11 respectively with a common flower at element 4 (Tables 2 — 1,2 —4 and 2 — 5).
Now let X = {1,2,...,15} and (X, A), (X, B), (X,C), (X, D) and (X, &) be the following ST'S(15)s.

123 145 167 189 11011 11213 11415
41014 2 911 2 810 21315 21214 2 46 2 5 7
A 5813 3812 3 914 347 356 31115 31013
6 915 61314 41113 51114 4 815 5 910 4 912
71112 71015 51215 61012 7 913 7 814 6 811
123 145 167 189 11011 11213 11415
41015 2 911 2 810 21315 21214 2 4 6 2 5 7
B 5913 3811 3 910 347 356 31314 31215
6 915 6 813 41113 51114 4 812 51012 4 914
71115 71013 5 815 61014 7 912 7 814 61112
123 145 167 189 11011 11213 11415
4 815 2 911 2 810 21315 21214 2 46 2 5 7
C 5913 3812 3914 347 356 31113 31015
6 912 6 814 41314 51014 41112 51215 4 910
71114 71012 5 811 61013 7 915 7 813 61115
123 145 167 189 11011 11213 11415
4 813 2 911 2 810 21315 21214 2 4 6 2 5 7
D 5914 3811 3912 347 356 31314 31015
6 915 6 814 41114 51113 41215 51012 4 910
71115 71014 5 815 61013 7 913 7 812 61112
123 145 6 7 189 11011 11213 11415
41014 2 911 8§10 21315 21214 2 4 6 2 5 7
E 5813 3 811 910 347 356 31215 31314
6 915 61113 4 913 51114 4 812 5 912 4 913
71112 71013 51015 61012 7 914 7 815 6 814

W N =

Consider the following permutations on X:

= (5133 14 4 12 2 15)(6 10)(7 11), ;= (2 10)(3 11)(4 8 14)(5 9 15)(6 12)(7 13)
=(410 14 5 11 15), m = (15 11 5 14 10 4),
=(2101513 97311 14 12 8 6), w5 = (2 6)(3 7)(4 8)(5 9)(10 15 13 11 14 12)
=(246)(357), T =(642)(75 3),

75 =(212 4 14 6)(3 13 5 15 7), T = (15 6 2)(3 14 7)(4 13)(5 12)(8 10)(9 11)
= (15 13 3)(2 14 12)(4 10 6)(5 11 7), 4 = (15 3 13)(2 12 14)(4 6 10)(7 11 5)

It is checked by computer programming that

|Bﬂ7T1(D)ﬁ7Ti(D)|F:1, |Bﬁ7T2(B)ﬂ7T2(B)|F—2 |Bﬁ7T3(D)ﬁ7T3(D)|F—3,
ENm(E)Nmy(E)r =4, [BNms(C)N7t(C)|lr =6, |ANmg(A)Nng(A)|p=7
with flower at 1. O

Theorem 14 73(9) \ {4,6,7,9,11,34,35} C J2(9).

Proof: By Theorem 3 for r = 3, and Theorems C and 10, [12,31] U {39,48} C J3(9). By Theorem
5 for r = 4, and Theorem 11, {5,8,10,33} C J3(9). By Lemma 2, 0 € J3(9) and by Corollary 1,
{36,37,38,40,42} C J3(9). In Milici and Quattrocchi (1987), the ST'S(19)s which are given in Table
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3 — 2 have 3-way flower intersection number 32 with flower at 19. Let X = {1,2,...,19} and (X, A)
be the following ST'S(19).

123 2914 3812 4819 7810 11819 41316 61419 91018 101719

145 2515 3919 5610 7 913 21113 41517 71519 91115 111417
167 2618 3517 5714 11011 21219 51112 71718 91217 111619
189 2716 3615 5818 11213 31013 51319 81314 101215 121418
469 2817 3711 5916 11415 31618 61216 81516 101416 131518

2410 3414 4712 6811 11617 41118 61317

Consider the following permutations on X:
= (4 16)(5 17)(10 8 12 6 14 2 18)(11 9 13 7 15 3 19),
= (2 10)(3 11)(12 14)(13 15)(17 7 9 5 18 16 6 8 4 19),
= (6 14)(7 15)(8 12 4 16 2 18)(9 13 5 17 3 19),
=(146421016 819 15 75 3 11 17 9 18),
(281018 4 12 6)(3 9 11 19 5 13 7),
=(264149 13 11)(3 75 15 8 12 10)(16 19 17 18).
It is checked by computer programming that | AN 7; (A) N7}l (A)|p =i fori = 1,2, 3 with flower at 1. O

-
To =
T3 =
-
T3 =

Theorem 15 J3.(10) = I3.(10).

Proof: By Corollary 1, [47,52] U {54,60} C J3(10). By Theorem 4 for r = 3, and Theorems C and 11,
[0,44] C J3.(10) and in Theorem 2 for 7 = 3, with the aim of Theorems A, 1 and 10, we can assume that
b=33,a1=1,a0 =7anda =4,s045 € J}?(lO). In Lemma 2.8 of Milici and Quattrocchi (1987), the
three systems with 3-way intersection number 56, actually have 3-way flower intersection number 46, so
46 € J3.(10). O

Let us call the following Latin square, L, of order 16 on symbols 0, 1, ..., 15, special of order 16,
where A and C are Latin squares of order 4 on symbol set {4,5,6,7} and B is a Latin square of order 8
on symbol set {8,9,...,15}.

0o 12 3
SITIEL
32100123 B
T LRIt
I— 32100123
SETTEEN
BT 32100123
o ol
3 2|1 0

Denote by M the set of integers m for which there exists a collection of three special Latin squares of
order 16 which pairwise agree in exactly m of the 112 cells above the 2 x 2 diagonal blocks.

Lemma7 M = [16,97] U {100,103, 112}.
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Proof: Let m € M, writte m = a + b+ ¢ + d where a,c € J"3(4), b € J3(8) and d = 16 (the
number of cells which contain elements 2 and 3). By Theorem C J"3(4) = {0,1,4,16} and J"*(8) =
[0,49] U {52, 55,64}, s0 m € [16,97] U {100,103, 112}. 0

Theorem 16 J3(15) = I3.(15).

Proof: Let M be the set of integers m for which there exists a collection of three special Latin squares
of order 16, LE;L) for n = 1,2, 3, which pairwise agree in exactly m of the 112 cells above the 2 x 2
diagonal blocks. We construct a collection of three ST'S(31)s with 3-way flower intersection number
h for h € [16,125] U {128,131,134,140}. Write h = £ + m where £ € J3(7) and m € M. Let
X1 ={o0;: 1 <i<15}, Xo={1,2,...,16} and (X3, B,,) forn = 1,2, 3 be three ST'S(15)s with 3-
way intersection number ¢+ 7 where seven of these will constitute the flower at co;. It is not hard to check
that (X7 U X, B,, UC,,) forn = 1,2, 3 are three ST'S(31)s, where C,, = {{00s, 1%, j}| ZE?) =s51<i<
Jj <16, 1 < s < 15} which have 3-way intersection number £ + m + 15, fifteen of these will constitute
the flower at co1. So h = £ +m € J3(15). By Theorem 13, ¢ € [0,8] U [10,13] U {16,22, 28} and by
Lemma 7, m € [16,97] U {100,103, 112}. So [16,125] U {128,131,134,140} C J3(15). By Theorem
5forr = 7,[0,15] C J3(15). Existence of the remaining flower intersection numbers is guaranteed by
Corollary 1. a

Theorem 17 I3.(24)\ [1,15] C J3.(24).

Proof: By Lemma 2, 0 € J3(24) and by Corollary 1, [336,360] U {362,368} C J3(24). There exists
a {4}-GDD of type 362 Kreher and Stinson (1997). All input designs required in Theorem 8 to achieve
remaining intersection numbers, is guaranteed by Theorems 10, 11 and 12. O

Theorem 18 J3.(60) = I3.(60).

Proof: By Corollary 1, [2280, 2352] U {2354, 2360} C J3.(60). There exists a {4}-GDD of type 6'° Wei
and Ge (2014). All input designs required in Theorem 8 to achieve remaining intersection numbers, is
guaranteed by Theorems 11 and 12. O

Theorem 19 J3(132) = I3.(132).

Proof: By Corollary 1, [11352,11520] U {11522,11528} C J3(132). There exists a {4}-GDD of type
91224! Wei and Ge (2013). All input designs required in Theorem 8 to achieve remaining intersection
numbers, is guaranteed by Theorems 11, 14 and 17. O

4 Main results

Now, we are in position to present the main theorem.

Theorem 20 (Main Theorem)

Let S3[m] denote the set of non-negative integers less than or equal to m, with the exception of m — 1,
m—2,m—3,m—4,m—>5andm — 7 and let I3(n) = S’ﬂ%].
Forn = 0,1 (mod 3), n > 10 but n # 24, J3(n) = I3(n). J3(3) = {4}, Ji(4) = {0,8}, [0,5] U
{7,20} C J3(6) C [0,7] U {20}, [0,8] U [10,13] U {16,22,28} C J3(7) C [0,16] U {22,28}, I3(9) \
{4,6,7,9,11,34,35} C J3.(9) and 13.(24) \ [1,15] C J3(24).
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Proof: The proof is based on recursive constructions where expressed before. For any admissible n,
consider the following five cases. It is worth mentioning that in all cases, to construct ST'S(2n + 1),
recursive constructions may use small S7'S's of order 2m + 1 where n and m are not congruent modulo
9.

1. n=1,4 (mod 9)
J3(1), J3(4) and J3(10) have been obtained in Theorems 9, 11 and 15, so let n > 13. Let

n = 3r + 1, clearly r is admissible, since n = 1,4 (mod 9). All required objects in Theorem 2, is
guaranteed by Theorems A and 1 and the 3-way flower intersection numbers of ST'S(2r + 1).

2. n=0,3 (mod9)

J3.(3) and J3.(9) have been obtained in Theorems 10 and 14, so let n > 12. Let n = 3r, clearly r
is admissible, since n = 0, 3 (mod 9). All required objects in Theorem 3, is guaranteed by Theorem
C and the 3-way flower intersection numbers of ST'S(2r + 1).

3. n="7(mod?9)
J%(?) has been obtained in Theorem 13, so let n > 16. Let n = 3r+ 1, clearly r = 0, 2 (mod 3) (it

means 7 + 1 is admissible), since n = 7 (mod 9). All required objects in Theorem 4, is guaranteed
by Theorem C and the 3-way flower intersection numbers of ST'S(2r + 3).

4. n = 15 (mod 18) (It means n = 9k + 6, where k is odd).

J%(lS) has been obtained in Theorem 16, so let n > 33. Let n = 2r + 1, clearly r is admissible,
since n = 15 (mod 18). All required objects in Theorem 5, is guaranteed by the 3-way flower
intersection numbers of ST'S(2r + 1).

5. n = 6 (mod 18) (It means for n = 9k + 6, where k is even).

J3(6), J3(24), J3(60) and J2(132) have been obtained in Theorems 12, 17, 18 and 19, so let
n > 42 and n ¢ {60,132}. Let n = 6t, clearly ¢t = 1 (mod 3), ¢ > 7 and ¢t ¢ {10,22}. By
Theorem 6, there exists a B({6,t},1,6t) and since ¢ and 6 are admissible, by Theorem 7, there
exists an ST'S(12t 4+ 1). All required objects in Theorem 8, is guaranteed by Theorem 12 and the
3-way flower intersection numbers of ST'S(2¢ + 1).
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