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We study time and message complexity of the problem of building a BFS tree by a spontaneously awaken node

in ad hoc network. Computation is in synchronous rounds, and messages are sent via point-to-point bi-directional

links. Network topology is modeled by a graph. Each node knows only its own id and the id’s of its neighbors in

the network and no pre-processing is allowed; therefore the solutions to the problem of spanning a BFS tree in this

setting must be distributed. We deliver a deterministic distributed solution that trades time for messages, mainly,

with time complexity O(D ·min(D,n/f(n)) · logD · log n) and with the number of point-to-point messages sent

O(n · (min(D,n/f(n))+f(n)) · logD · log n), for any n-node network with diameterD and for any monotonically

non-decreasing sub-linear integer function f . Function f in the above formulas come from the threshold value on node

degrees used by our algorithms, in the sense that nodes with degree at most f(n) are treated differently that the other

nodes. This yields the first BFS-finding deterministic distributed algorithm in ad hoc networks working in time o(n)

and with o(n2) message complexity, for some suitable functions f(n) = o(n/ log2 n), provided D = o(n/ log4 n).

Keywords: BFS tree, ad hoc network, distributed algorithm, message complexity

1 Introduction

We consider a message-passing distributed system consisting of n processes, also called nodes, with

pairwise different id’s. There is an underlying network of point-to-point connections between processes,

modeled by an undirected graphG = (V,E). Each node knows only its own id and the id’s of its neighbors

in the network; this knowledge is however required only for the purpose of distinguishing local ports

through which messages are sent. We do not make any specific assumption about the domain of ids, apart

that ids are pairwise disjoint and small enough to be contained in messages and to be processed locally.

We denote by D the diameter of the underlying network graph G. Computation and communication

is in synchronous rounds, each consisting of three parts: receiving messages that have been sent to the
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node in the previous round (if any), local computation, and sending messages via selected point-to-point

links. Each message may carry the original information and a polynomial number of additional bits (our

algorithms use in fact O(n2 log n) additional bits per message). The network is reliable, in the sense that

there are no failures or delays in local computations and point-to-point message propagation.

In this work we consider the task of finding a BFS tree (i.e., a spanning tree consisting of some shortest

paths from the root to other nodes) in the underlying network. The task occurs in an arbitrary node,

while all other nodes are not aware of it. During the computation the network topology does not change.

The resulting tree should be rooted at the node in which this task has occurred. Observe that due to

ad hoc setting with non-spontaneous wake-ups, i.e., all nodes except the initially awaken one could join

the computation only after receiving a message from some node already participating in the execution

assumed in this work, a solution to this problem must be distributed. We focus only on deterministic

solutions. We consider a single task of building a BFS tree, which occurs in an arbitrary single node.(i)

Our results and the structure of this work. We deliver a deterministic distributed BFS-finding algo-

rithm that trades time for messages. More precisely, our algorithm solves the problem with time com-

plexity O(D · min(D,n/f(n)) · logD · log n) and with the number of point-to-point messages being

O(n · (min(D,n/f(n))+ f(n)) · logD · log n), for any monotonically non-decreasing sub-linear integer

function f . This yields the first deterministic distributed BFS-finding algorithm in ad hoc networks work-

ing in time o(n) and with o(n2) message complexity, for some suitable function f(n) = o(n/ log2 n),
provided D = o(n/ log4 n). In our algorithm, function f defines the threshold value for node degree,

e.g., nodes with degree at most f(n) are treated differently than the other nodes.

Section 2 presents a flooding-like deterministic distributed procedure Shallow Tide, which propagates

information along paths of bounded length and bounded node degree, and then collects the information

backwards. We use this routine for designing three deterministic distributed algorithms computing a BFS

tree in the underlying network G, differing on input specification, c.f., Sections 3 and 4.

Previous and related work. A naive distributed implementation of an algorithm computing a BFS tree

in ad hoc network is by flooding a message along all edges of the network and choosing a parent arbitrarily

from the senders of the received messages. This approach however requires D rounds and |E| point-to-

point messages, which in case of dense graphs gives Θ(n2) message complexity (folklore result). BFS

tree can also be built layer by layer, each time by forwarding information about neighborhoods of the

front layer nodes to the root, which then computes BFS edges to connect the nodes in the next layer and

forwards this information to the nodes in the front layer. This method requires time Θ(D2) and Θ(nD)
messages to be sent, which for dense or shallow graphs can be smaller that |E| messages sent by the

flooding algorithm.

Another method of spanning a BFS tree is to apply a gathering type of algorithms that collect the

information about the underlying network topology in one node and compute a BFS tree locally (see e.g.,

the monographs Hromkovic et al. (2005); Peleg (2000)). For example, a distributed implementation of a

DFS search algorithm gathering such information about the underlying network topology requires Θ(n)
rounds and Θ(n) messages to be sent. This result, comparing with the previously described upper bounds,

raises the following question, addressed in this work: how the number of messages sent in the process of

spanning a BFS tree depends on time complexity.

(i) In general setting of many spontaneously arriving tasks, they can be run in parallel at nodes, and the cost of each such task can be

bounded as in this work.
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A BFS tree and other related problems were widely studied in an asynchronous setting, c.f., Awerbuch

(1987); Awerbuch and Gallager (1985, 1987); Awerbuch et al. (1990). In this model, however, there is

no scope for tradeoff between time and message complexity, because there is no notion of rounds. More

precisely, a lower bound Ω(|E|) on message complexity was proved in Awerbuch et al. (1990), and a

super-linear, in terms of n, lower bound Ω(n log n) was shown in Korach et al. (1989). The problem of

efficient maintaining of a BFS tree in dynamic networks was considered in Awerbuch et al. (2008), where

the amortized cost ofO(n) messages per single change in the topology was obtained. However, we are not

aware of any deterministic distributed or randomized solution for the BFS-finding problem (or the related

gathering problem) in the model of ad hoc networks with non-spontaneous wake-ups that would achieve

both: sublinear time complexity o(n) and subquadratic message complexity o(n2), for any network of

diameter o(n/ log4 n).
Another way of propagating/gathering information is by epidemic broadcast/convergecast Demers et al.

(1988). In this method, a node selects a small, typically random, sample among its neighbors to push/pull

the information; see also Kempe et al. (2004); Boyd et al. (2006) for other randomized communication

algorithms. The problem of finding a BFS tree was considered also in other network settings different

from the classic message-passing model. For example, in radio networks, where collisions among mes-

sages arriving at the same node at the same round are possible, the problem of deterministic broadcasting

(which is no more difficult than building a BFS tree) requires overlinear, in the number of nodes, time,

c.f., Chrobak et al. (2006); Clementi et al. (2001). Fault-tolerant communication in networks was also

studied in various models and scenarios, see for example Chlebus and Kowalski (2006) for results and

references regarding all-to-all communication in fully-connected message passing system with dynamic

crashes, Bienkowski et al. (2010) for recovering from crashes in networks of general topology, and Hedet-

niemi et al. (1988); Hromkovic et al. (2005); Pelc (1996) for a number of fault-tolerant communication

algorithms in general networks. In this context, our work can be viewed as recovering a communication

structure in network after accidental failures. Our algorithms are the first that span a tree in ad hoc setting,

without any pre-processing, in time o(n) and using o(n2) point-to-point messages, for D = o(n/ log2 n).

2 Procedure Shallow Tide

One of the common methods of propagating information, especially in case of deterministic protocols,

is by flooding, in which each node simply combines and re-sends a newly received information. This

method however is not efficient from the perspective of the number of generated point-to-point messages,

as in the worst-case scenario all point-to-point links may be used for propagating a single broadcast re-

quest. Our flooding-type procedure, called Shallow Tide, first propagates information by building a

partial BFS tree on some bounded and shallow part of the network, and then gathers the information

backwards toward the source node, all using relatively small number of messages. More precisely, proce-

dure Shallow Tide(s, ℓ, ψ, T ) triggered by a source node s, aims to

• wake-up nodes of distance at most ℓ from the source, unless such a node is separated from the

source by nodes of degree bigger than ψ that are not initially “known” by the source (i.e., by nodes

of degree larger than ψ that are not in the input instance of T );

• build, in a distributed way, a BFS tree rooted at source s on this part of the network;

• gather, in the source node s, the information about this tree and all the network links adjacent to

nodes in the tree.
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SHALLOW TIDE(s, ℓ, ψ, T ) — procedure for node v = s:

1. Round 0:

Receive: no message

Compute: initializeH ← ({s} ∪N(s), {{s, v} : v ∈ N(s)}) and counter← 0

Send: message (counter + 1, s, ℓ, ψ, T ,H) to all nodes in N(s)

2. Stay idle for 2ℓ rounds

3. Backward collection round:

Receive: all point-to-point messages (counter′, s, ℓ, ψ, T ′,H′) sent to node s in sending part of

the preceding round

Compute: update local copy of T by adding new nodes and edges from the received copies of

T ′;

update local copy ofH by adding new nodes and edges from the received copies ofH′;

Send: no message

OUTPUT: T ,H

Fig. 1: Procedure Shallow Tide(s, ℓ, ψ, T ): pseudo-code for node s.

The procedure is of “wake-up” type, i.e., the source itself triggers the procedure while all other nodes stay

dormant until they get a message generated by this procedure run at one of the neighboring nodes. We

call all nodes that receive such a message participating nodes. More details follow.

The input of procedure Shallow Tide contains the following parameters:

• the source node s initializing the procedure;

• upper bound ℓ on the maximal depth of flooding;

• threshold value ψ to be compared with the degree of a node in the network; if the degree is bigger

than ψ then the received and updated message is not re-sent by that node;

• tree T , rooted at node s, being a subgraph of the underlying network.

Additionally, a node v is equipped with set N(v) of neighbors in the underlying network, provided to it

as a part of the model setting.

Messages sent in this protocol carry the following information:

• round counter: it helps to set the local counter of receiving nodes, according to the round number

after starting the procedure at the source node s; initially set by source s to 0;

• all input parameters s, ℓ, ψ: in order to be able to initialize the procedure in new nodes;
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• variable T : an estimate (a subtree) of the BFS tree rooted at s; in the beginning of the protocol,

node s initializes it to the corresponding tree T from the input of the procedure;

• variable H: a graph being the current local estimate of the underlying network, initially set by

source s into ({s} ∪N(s), {{s, v} : v ∈ N(s)}).

The idea of the procedure is as follows. The source sends a message to all its neighbors in the net-

work in round 0, then it is idle for the next 2ℓ rounds, and in round 2ℓ + 1 it processes the received

messages and updates its variables T ,H. In the first ℓ rounds, a process v 6= s that receives a message

(counter′, s, ℓ, ψ, T ′,H′) for the first time updates its knowledge about T ,H, sets its local counter, and

re-sends a message either to its children in T , if it is an internal node in T , or to all its neighbors which

were not included in the received graphs H′ otherwise. This round is called a joining round. Then the

node stays idle till the beginning of (2(ℓ− counter)+1)st round, when it receives messages from its chil-

dren and re-sends a single message combining the received variables to its selected parent. See Figure 1

for the pseudo-code of procedure Shallow Tide at node s and Figure 2 for the pseudo-code of procedure

Shallow Tide at node v 6= s.

2.1 Analysis of procedure Shallow Tide

First note that, by simple inductive argument and the update rule for counter (c.f., steps 1(a), 1(f) and 1(g)

in Figure 2), all nodes v 6= s that receive their first message in round i, for 1 ≤ i ≤ ℓ, set their variables

counter to i. Second, observe that all participating nodes, including the source, terminate in round at

most 2ℓ+ 1. Recall that we call a node participating in Shallow Tide(s, ℓ, ψ, T ) if it receives a message

(counter′, s, ℓ, ψ, T ′,H′) in some round.

Denote the initial tree T by Tin and the outputted one by Tout. Similarly, denote the outputted value

of variable H by Hout. For any given graph H, let V (H) denote the set of nodes of this graph. Let S
be the set of nodes of degree at most ψ for which there exists a path of length at most ℓ from source s
containing only nodes in S ∪ V (Tin). More precisely, define recursively: S0 = {s}; for any i ≥ 1, let

Si+1 be the set of nodes v of degree at most ψ in graph G such that there is a path from s to v of length

at most ℓ in the subgraph of G induced by the set of nodes Si ∪ V (Tin); let S be the stable point of this

construction, that is, set Si such that Si = Si+1 (it exists due to a finite number of nodes in G and by the

monotonicity of the recursive construction). to be the set of node Let S∗ be the set of nodes v such that

there is a path of length at most ℓ from s to v in the underlying network, containing nodes in V (Tin) or

other nodes of degree at most ψ in the network (end nodes s, v are allowed to have more than ψ neighbors

in the network). Note that S∗ is a union of set S ∪ V (Tin) and the set containing nodes v such that v is

a neighbor of some node in S ∪ V (Tin) and there is a path in the underlying network of length at most ℓ
from s to v through nodes in S ∪ V (Tin).

The correctness assumption and correctness guarantees for the procedure Shallow Tide(s, ℓ, ψ, T )
are defined as follows:

A. Tree Tin is a BFS tree on a subgraph of the network G induced by the subset of nodes of

distance at most m from the source s, for some m < ℓ.
G1. Tree Tout is a BFS tree of depth at most ℓ rooted at s in the subgraph of the underlying

network induced by nodes in S∗.

G2. The outputted value of variableH is the subgraph of the network containing nodes in S∗

together with the edges adjacent to any of these nodes.



106 Dariusz R. Kowalski, Krzysztof Krzywdziński

Shallow Tide(s, ℓ, ψ, T ) — procedure for node v 6= s:

Upon first arrival of message(s) to node v with status dormant:

1. Joining round:

Receive: all point-to-point messages (counter′, s, ℓ, ψ, T ′,H′) sent to node v in sending part of

the preceding round;

Compute: Do the following for the set of received messages containing some value counter′,

unless it is bigger than ℓ:

(a) counter← the smallest received counter′;

(b) create local variable T by adding nodes and edges from the received copies of T ′;

create local variableH by adding nodes and edges from the received copies ofH′;

(c) A← N(v) \ V (H);

(d) update H by adding nodes from {v} ∪N(v) and edges between v and N(v), if they are

not inH;

(e) if v in T then p(v)← the parent of v in T ;

else p(v)← the node with the smallest id among those from which v received a message

in the current round and add node v and edge {v, p(v)} to T ;

(f) if counter < ℓ and v is an internal node in T then message (counter + 1, s, ℓ, ψ, T ,H) is

scheduled to be sent to all children of v in T ;

(g) if counter < ℓ and v is not an internal node in T and |N(v)| ≤ ψ then message (counter+
1, s, ℓ, ψ, T ,H) is scheduled to be sent to nodes in A;

Send: all point-to-point messages scheduled to be sent in this round;

2. Stay idle for 2 · (ℓ− counter) rounds;

3. Backward propagation round:

Receive: all point-to-point messages (counter′, s, ℓ, ψ, T ′,H′) sent to node v in sending part of

the preceding round;

Compute: Do the following for the set of received messages:

(a) update local copy of T by adding new nodes and edges from the received copies of T ′;

update local copy ofH by adding new nodes and edges from the received copies ofH′;

(b) message (counter + 1, s, ℓ, ψ, T ,H) is scheduled to be sent to node p(v);

Send: point-to-point message scheduled to be sent in this round;

4. Stay idle for counter rounds.

Fig. 2: Procedure Shallow Tide(s, ℓ, ψ, T ): pseudo-code for node v 6= s.
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Theorem 1 If the initial tree T satisfies the correctness assumption A then

(i) Shallow Tide(s, ℓ, ψ, T ) satisfies the correctness guarantees G1 and G2,

(ii) all participating nodes terminate in 2ℓ+ 2 rounds after starting the procedure at source s, and

(iii) the number of point-to-point messages sent by nodes running the procedure isO(|V (Tin)|+|V (Tout)\
Vint(Tin)| · ψ), where Vint(Tin) is the set of internal nodes in Tin.

Proof: Assume that the initial tree Tin satisfies the correctness assumption A. Consider the set of nodes

V (Tout) of the tree outputted by the procedure. Note that the initial tree is a subgraph of the outputted

tree, by step 1(e) in Figure 2. It also follows by a straightforward inductive argument based on joining

rounds (step 1 in in Figure 2) that all nodes v ∈ S∗ receive a message by the end of round ℓ. Therefore,

they add themselves to the tree T (step 1(e) in Figure 2) and to the graph H (step 1(d) in Figure 2; in

case of H, also the adjacent edges are added) during one of these rounds, mainly, in the first round they

receive a message (joining round). The path along which the message has been propagated from s to v is

the shortest one via the subgraph induced by nodes in V (Tin) ∪ S, by the fact that Tin is a BFS tree on a

subgraph induced by some set of nodes, while node v itself is in set S∗ (which contains set V (Tin)∪S and

some of its adjacent nodes). It remains to note that in rounds ℓ+ 1, . . . , 2ℓ, the information is propagated

backwards from such nodes v to the source. Hence it reaches the source, which updates both variables.

This completes the proof of correctness guarantees G1 and G2.

Suppose that the correctness assumption is satisfied. Observe that the total number of point-to-point

messages sent in an execution of the procedure Shallow Tide(s, ℓ, ψ, T ) by the participating nodes is

O(|V (Tin)| + |V (T2) \ Vint(Tin)| · ψ). (Recall that Vint(Tin) denotes the set of internal nodes in Tin.)

Indeed, the number of point-to-point messages sent by internal nodes in Tin is at most 2|V (Tin)|, c.f., steps

1(f) and 3(b) in Figure 2. The number of messages sent by other nodes is at most (|S∗|−|Vint(Tin)|) ·ψ+
(|S∗| − |Vint(Tin)|) ≤ 2 · |V (Tout) \ Vint(Tin)| · ψ; here the first and the second parts follow from steps

1(g) and 3(b) in Figure 2, respectively. Since |S∗| = |V (Tout)|, and since the number of messages sent

by the source s in round 0 is at most |V (Tout)| = |Vint(Tin)|+ |V (Tout) \ Vint(Tin)|, by the correctness

guarantee G1, we get the desired formula for the message complexity. ✷

3 BFS Algorithm

The main tool delivered in this paper is a deterministic distributed algorithm finding a BFS tree in ad

hoc network with non-spontaneous wake-ups. We first give an algorithm parametrized by an additional

integer ψ, which illustrates the main ideas developed in this paper. Next we analyze the correctness and

complexity of this algorithm, with respect to network parameters n,D and the input parameter ψ. Finally,

we extend this algorithm so that instead of independent parameter ψ there is a function f as a part of the

input, which in turn gets rid of parameter ψ from the complexity formulas.

3.1 Parametrized BFS algorithm

We call our first algorithm BFS by Tides; Figure 3 shows the pseudo-code of BFS by Tides(s, ψ).
There are two input parameters of this algorithm: a source s, and an integer parameter ψ. The algorithm

uses the following variables:
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BFS by Tides(s, ψ)

1. κ← 0, T ← ({s} ∪N(s), {{s, v} : v ∈ N(s)}), termination← false;

2. Repeat

(a) λ← 0, C ← ∅;

(b) Repeat

i. λ← λ+ 1;

ii. Execute Shallow Tide(s, κ+ 2λ, ψ, T );
letH stand for the outputted graph and let T be the outputted tree;

iii. If V (T ) = V (H) then termination← true
else C ← {v : v ∈ V (H) \ Vint(T ) & |NH(v)| > ψ};

Until C 6= ∅ or termination

(c) If termination = false then

i. Compute locally κ: the distance from s to the nearest node in C counted in the graphH;

ii. Compute locally T : a BFS tree of depth κ+ 1 in graphH;

Until termination = true

OUTPUT: T

Fig. 3: Algorithm BFS by Tides(s, ψ): pseudo-code for the source node s; all other nodes only participate in the

runs of procedure Shallow Tide triggered by s during the execution of BFS by Tides(s, ψ).

• termination — a boolean variable, initially set to false, indicating whether a certain termination

condition holds; it is checked by the source node s;

• κ— a non-negative integer; its value is not decreasing, and intuitively it stores the depth until which

the underlying network is fully known by the source s;

• λ — a non-negative integer, which, when increased by 1, doubles the range for learning new nodes

and links in the network;

• T — a tree, monotonically non-decreasing (in the sense of inclusion), which is used as starting

point to improve the estimate of the final BFS tree; initialized to node s and its neighbors with the

edges connecting the neighbors with s;

• H— local estimate of the final network topology;

• C — a set of newly visited nodes during the current run of procedure Shallow Tide, of degree

bigger than ψ in the underlying network.

The output is the BFS tree T on the whole network, rooted at s, and graph H illustrating the whole

topology of the underlying network. They are initialized by the source node and they are modified in the
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course of the algorithm so that their final values in the termination round are returned as the output at the

source node s.

The idea of the algorithm is as follows. The external loop (step 2 in the pseudo-code in Figure 3) is

run until no new node is discovered, i.e., variable termination is set to true. Within a single run of this

loop, an internal loop is executed (step 2(b) in the pseudo-code), which runs the procedure Shallow Tide

on subsequently increased depths ℓ = κ+ 2λ, until the algorithm discovers a new node in T with degree

bigger than ψ, i.e., when C 6= ∅. Then the range κ — within which the source knows the full topology

of the network — is updated to be the distance to the closest of such discovered nodes (measured in the

current topology-estimate graph H), as so the estimate of the BFS tree T becomes up to depth κ + 1;

all these changes are done in step 2(c), provided there are still unvisited nodes (i.e., V (T ) 6= V (H)).
Figure 4 contains an illustration of three major subsequent steps of the computation.

(a) (b) (c) (d)

Fig. 4: An example of three steps of an execution of algorithm BFS by Tides: (a) tree T before executing procedure

Shallow Tide in step 2(b).ii of the pseudo-code; (b) messages (directed) sent during the succeeding execution of

Shallow Tide, for distance parameter ℓ = κ + 2λ and tree T from picture (a); (c) newly learnt graph H with non-

empty set C of newly discovered nodes of degree bigger than ψ (black nodes); here κ is the distance from the source

s to the closest node in C (c.f., step 2(c).i of the pseudo-code); (d) newly defined tree T , based on graph H and

parameter κ+ 1 (step 2(c).ii of the pseudo-code).

3.2 Analysis of algorithm BFS by Tides

We argue about correctness, termination and complexity of algorithm BFS by Tides(s, ψ), for any node

s and positive integer ψ. Before starting the actual analysis, observe that the computation specified in

points 2(b)iii and 2(c) is actually done by the root, and is based on the graph H returned by the last
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execution of routine Shallow Tide.(ii)

Correctness is guaranteed by the following properties. If the algorithm terminates, it must have V (T ) =
V (H) confirmed in step 2(b).iii. By Theorem 1, the execution of Shallow Tide(s, κ + 2λ, ψ, T ) in

the preceding step 2(b).ii satisfies correctness guarantees G1 and G2, provided the correctness assump-

tion A holds. This is assured by a straightforward induction argument on the number of executions of

Shallow Tide. By guarantee G2 and by V (T ) = V (H), there are no other edges outgoing from the set

of nodes V (T ) in the underlying network, and therefore the outputted T is a spanning tree. It is also a

BFS tree on the set of (all) nodes V (T ), by the guarantee G1. By definition of κ and guarantee G2, tree

T obtained in step 2(c).ii is a BFS tree of depth κ+ 1 in the whole graph G. Therefore, by induction, the

assumption A holds in every iteration. This completes the proof of correctness.

Termination follows from the following two observations. First, each internal loop 2(b) terminates even-

tually, since in each iteration parameter λ increases by one, and thus, by the correctness of the algorithm

and the routine Shallow Tide(s, κ + 2λ, ψ, T ) (c.f., Theorem 1), the outputted tree T spans the whole

network. This results in V (T ) = V (H) and consequently termination being set to true, unless the loop

has finished earlier by the condition C 6= ∅ being satisfied. Moreover, after each such termination, an

integer variable κ is increased by at least 1. Since κ cannot be bigger than D, as otherwise we would get

V (T ) = V (H) after an execution of subroutine Shallow Tide, the number of iterations of the external

loop is bounded.

Hence we proved the following.

Lemma 2 Algorithm BFS by Tides(s, ψ) is correct and terminates.

Theorem 3 If the number of nodes in network G is n and the diameter of the network is D then

(i) the algorithm BFS by Tides(s, ψ) computes a BFS tree, rooted at s, on the whole network,

(ii) all nodes terminate in O(D · min(D,n/ψ) · logD) rounds after starting the algorithm at source s,
and

(iii) the number of point-to-point messages sent by nodes running the algorithm is O(n ·min(D,n/ψ) ·
logD + nψ logD).

Theorem 3 follows from Lemma 2 and from Lemmas 5 and 6. Figure 5 illustrates an example of tree

T , graphH, set C, distances κ and ℓ = κ+ 2λ during an execution of BFS by Tides on network G.

For the purpose of the complexity analysis, we introduce the following terminology:

• let Tk,i be the tree T computed by the subroutine Shallow Tide(s, κ, ψ, T ) (step 2(b).ii of the

pseudo-code) when κ = k and λ = i;

• let Hk,i be the graph H computed by the subroutine Shallow Tide(s, κ, ψ, T ) (step 2(b).ii of the

pseudo-code) when κ = k and λ = i.

3.2.1 Time complexity

We give more accurate estimate of the time complexity of algorithm BFS by Tides.

Lemma 4 The number of single runs of the external loop of algorithm BFS by Tides(s, ψ) is bounded

above by min(D, 3n/ψ), where n is the actual number of nodes and D is the diameter of the network.

(ii) Note that the source can easily propagate the topology of the computed BFS tree to all nodes at the costs not bigger than the costs

of algorithm BFS by Tides.
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Fig. 5: An example of variables κ, ℓ = κ+2λ, T , H and C in a single round of execution BFS by Tides on network

G at source node s. Here ψ = 4. Recall that T is a subgraph of H and H is a subgraph of G.

Proof: It is enough to estimate the number of exits from the internal loop, and more precisely, the num-

ber of different BFS levels on which a node of degree bigger than ψ is discovered. (Note that setting

termination to true in step 2(b).iii automatically results in finishing the algorithm after the next few lines

of local computation.) In one way, the number of different BFS levels in the network, starting from

the source node s, containing nodes with degree bigger than ψ (in the network) is bounded naturally by

network diameter D.

On the other hand, let L1, L2, . . . , Lx be a sequence of different BFS levels containing nodes with

degree bigger than ψ in the network. Let sj , for 1 ≤ j ≤ x, be such a node in Lj of degree bigger than

ψ. Observe that any node can be a neighbor of at most three such nodes sj , mainly the one located in the

same BFS layer and the other two located in the preceding and in the succeeding layers, if any. Hence, the

sum |N(s1)|+ |N(s2)|+ . . .+ |N(sx)| is bounded above by 3n. Consequently, the number x of different

levels containing nodes with degree bigger than ψ is bounded from above by 3n/ψ. ✷

Lemma 5 Time complexity of algorithm BFS by Tides is O(D ·min(D,n/ψ) · logD), where n is the

actual number of nodes and D is the diameter of the network.

Proof: By Lemma 4, the number of single runs of the external loop of algorithm BFS by Tides(s, ψ) is

bounded above by min(D, 3n/ψ).
It remains to estimate the number of rounds taken by subsequent executions of the internal loop in

step 2. Note that a single run of the internal loop takes 2 · (κ+2λ)+2, by Theorem 1. It follows from the

structure of the internal loop, mainly from the fact that the parameter 2λ grows exponentially and it cannot

be bigger than D, that there are at most logD of executions of procedure Shallow Tide, with different

parameters, within one execution of the internal loop 2(b). Each such execution takes O(D) rounds, since

again the value of 2 · (κ+2λ)+2 is O(D) (otherwise we get V (T ) = V (H) and terminate immediately).
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Therefore, a single run of the external loop takes O(D logD) rounds, which combined with Lemma 4

completes the proof. ✷

3.2.2 Message complexity

Lemma 6 The total number of point-to-point messages sent during the algorithm BFS by Tides(s, ψ)
is O(n ·min(D,n/ψ) · logD+ nψ logD), where n is the actual number of nodes and D is the diameter

of the network.

Proof: Partition the set of point-to-point messages sent during the execution of BFS by Tides(s, ψ) into

two categories. First category contains messages that are sent in steps 1f and 3b of routine

Shallow Tide(s, ℓ, ψ, T ) by nodes v (c.f., Figure 2), which is executed in step 2(b).ii of the pseudo-code.

We call this type of messages tree messages. Second category consists of messages that are sent in step

1g of routine Shallow Tide(s, ℓ, ψ, T ) by nodes v 6= s (c.f., Figure 2), which is executed in step 2(b).ii

of the pseudo-code. We call this type of messages searching messages.

First we estimate the number of tree messages. By Lemma 4, the number of single runs of the external

loop of algorithm BFS by Tides(s, ψ) is O(min(D,n/ψ)). The number of iterations in the internal

loop is at most logD, by the upgrade rule for λ and the upper bound D on 2λ (otherwise we would

get V (T ) = V (H) and terminate). Hence, the total number of executions of routine Shallow Tide in

step 2(b).ii is bounded from above by O(min(D,n/ψ) · logD). Each tree message corresponds to a

single edge from tree T being the input of the routine Shallow Tide during which the message was sent.

Observe that in a single execution of Shallow Tide in step 2(b).ii each edge from tree T is used twice: in

step 1f and in step 3b. Hence, the total number of tree messages used during a single execution of routine

Shallow Tide is O(n), and consequently, the total number of tree messages in the whole execution of

BFS by Tides(s, ψ) is O(n ·min(D,n/ψ) · logD).
In the remainder of the proof we bound the total number of searching messages. Observe that in each

step 1g of routine Shallow Tide(s, ℓ, ψ, T ) a node sends at most ψ point-to-point messages and in step 3b

only one message. We show that any node v sends searching messages in at most logD rounds in the

execution, i.e., at most logD times node v executes step 2(b).ii of the pseudo-code of BFS by Tides,

triggering routine Shallow Tide. This will automatically imply the upper bound O(n · ψ · logD) for the

total number of searching messages.

Note that node s does not send searching messages, as tree T always contains all its adjacent edges in

networkG. Consider node v 6= s. Let kj , ij , for a positive integer j, be the values of variables κ, λ, respec-

tively, when v sends searching messages for the j-th time during the execution of BFS by Tides(s, ψ).
More precisely, each such j-th sending of searching messages by node v happens when it participates

in the execution of the routine Shallow Tide(s, kj + 2ij , ψ, T ) in step 2(b).ii of the pseudo-code of

BFS by Tides(s, ψ), when it runs its step 1g of the routine. Observe that there is at most one run of

step 1g by a node in any execution of routine Shallow Tide. Moreover, only nodes that are not internal

in the input instance of T may send any searching message within routine Shallow Tide.

We first argue that the sequence (kj)j is increasing. Indeed, it is non-decreasing by the fact that the

value of variable κ is non-decreasing in time. Suppose, to the contrary, that kj = kj+1, for some i. It

follows that 1 ≤ ij < ij+1 ≤ D. Moreover, the routine Shallow Tide(s, kj+1 + 2ij+1 , ψ, Tkj+1,ij+1
)

is executed after Shallow Tide(s, kj + 2ij , ψ, Tkj ,ij ) but within the same execution of step 2(b) of the

pseudo-code, and therefore tree Tkj+1,ij+1
contains the tree outputted by the routine Shallow Tide(s, kj+

2ij , ψ, Tkj ,ij ). In particular, Tkj+1,ij+1
contains node v as internal node, by specification of step 1g



On the complexity of distributed BFS in ad hoc networks with non-spontaneous wake-ups 113

(mainly, the fact that counter < ℓ = kj + 2ij ) run during the execution of Shallow Tide(s, kj +
2ij , ψ, Tkj ,ij ). It follows that v cannot send a searching message in the following executions of

Shallow Tide for parameter κ = kj+1, in particular for λ = ij+1, as it is an internal node in their input

instances of tree T ; thus we get a contradiction, which completes the proof that the sequence (kj)j is

increasing.

It remains to argue that the sequence (ij)j is decreasing and within the range [1, logD]. The range

follows from the same argument as given in the estimate of the number of tree messages. Suppose that

ij = ij+1, for some j. We already argued that kj < kj+1. It follows from the fact that set C was empty

after the execution of Shallow Tide(s, kj + 2ij−1, ψ, Tkj ,ij−1) that kj+1 > kj + 2ij−1. It follows that

kj+1 + 2ij+1−1 = kj+1 + 2ij−1 > kj + 2ij−1 + 2ij−1 = kj + 2ij . On the other hand, the shortest path

from s to v in networkG is at most kj+2ij , since v participates in the execution of Shallow Tide(s, kj+
2ij−1, ψ, Tkj ,ij−1). These two facts together yield that node v must have been added to set T as an internal

node during Shallow Tide(s, kj + 2ij−1, ψ, Tkj ,ij−1), and consequently it could not send any message

during Shallow Tide(s, kj +2ij−1, ψ, Tkj ,ij−1). We obtained a contradiction, proving that the sequence

(ij)j is decreasing and within the range [1, logD]. Hence the number of rounds in which node v sends

searching messages is at most logD. ✷

4 BFS algorithm with complexity formula being a function of n

and D only

The complexity of algorithm BFS by Tides(s, ψ) depends on the input parameter ψ, which is indepen-

dent of the actual number of nodes n. We show how to modify algorithm BFS by Tides and then how to

iterate the obtained algorithm to adapt to the number n, in the sense that the complexity of the obtained

solution will be expressed only as a function on network parameters n,D. Recall that these parameters

are not a priori known to the nodes, therefore the resulting algorithm must estimate their values during the

execution and act accordingly.

Algorithm Bounded BFS. We first show how to modify algorithm BFS by Tides according to our

needs of further elimination of parameter ψ. This modification still uses ψ as parameter, however it helps

to control the number of discovered nodes and terminate as soon as this number becomes bigger than some

input parameter n∗. We call the modified algorithm Bounded BFS, and run with three input parameters:

s, ψ, n∗. The pseudo-code of the algorithm Bounded BFS(s, ψ, n∗) differs from the pseudo-code of

BFS by Tides(s, ψ) in two details. The first difference is in executing the following step instead of

step 2(b).iii :

2(b).iii* : If V (T ) = V (H) or |V (H)| > n∗ then termination← true
else C ← {v : v ∈ V (H) \ Vint(T ) & |NH(v)| > ψ};

It can be easily observed that the only difference between the original step 2(b).iii of algorithm

BFS by Tides(s, ψ) and its counterpart (the above step 2(b).iii*) in algorithm Bounded BFS(s, ψ, n∗)
is the additional alternative condition |V (H)| > n∗ yielding termination (i.e., setting variable termination

to true). The second difference between the two algorithms is that in Bounded BFS we also output the

topology-estimate graphH, as it can be further useful in the design of our final BFS algorithm.

We require from Bounded BFS(s, ψ, n∗) to satisfy the following conditional correctness guarantee:
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Correctness guarantee for Bounded BFS(s, ψ, n∗):
If n ≤ n∗ then the outputted H is the same as the underlying network topology G and the

outputted T is a BFS tree on G rooted at s.

Theorem 7 If the number of nodes in network G is n and the diameter of the network is D then

(i) the algorithm Bounded BFS(s, ψ, n∗) satisfies the correctness guarantee,

(ii) all nodes terminate in O(D ·min(D,n∗/ψ) · logD) rounds after starting the algorithm at source s,
and

(iii) the number of point-to-point messages sent in any execution by nodes running the algorithm is O(n ·
min(D,n/ψ) · logD + nψ logD) .

Proof: The correctness guarantee holds by Theorem 3, as in case n ≤ n∗ the executions of

Bounded BFS(s, ψ, n∗) and BFS by Tides(s, ψ) are the same when run on the same network. This is

because the condition |V (H)| > n∗ in step 2(b).iii* of Bounded BFS(s, ψ, n∗) is never satisfied, and

thus the computed estimate H contains all nodes, and thus all their adjacent edges, while T is a BFS tree

on this graph rooted at s.
Unlike in the limited correctness guarantee, we estimate the complexity of Bounded BFS(s, ψ, n∗)

for any execution on any network in the considered model, that is, even for executions that do not satisfy

the condition n ≤ n∗. This is because we will later apply Bounded BFS(s, ψ, n∗) to build a BFS tree in

any network, and thus we will need to argue about the complexity of used subroutine Bounded BFS in

any execution for any network.

Time complexity of Bounded BFS(s, ψ, n∗) is O(D · min(D,n∗/ψ) · logD). To prove it, first

note that the execution of Bounded BFS(s, ψ, n∗) up to the last checking of the condition in step

2(b).iii*, and thus up to the very last round, is the same as the corresponding prefix of the execution

of BFS by Tides(s, ψ) in the same network (note that the only difference between the two pseudo-codes

— the condition |V (H)| > n∗ — does not hold in the considered period). By Lemma 5 applied to this

prefix and by the fact that the time of the last execution of routine Shallow Tide within BFS by Tides

is O(D), we get that the time complexity of Bounded BFS(s, ψ, n∗) is

O(D ·min(D,n′/ψ) · logD) +O(D)

= O(D ·min(D,n∗/ψ) · logD) ,

where n′ ≤ n∗ is the number of nodes in variableH before the last execution of routine Shallow Tide.

We argue that the message complexity of Bounded BFS(s, ψ, n∗) is O(n · min(D,n/ψ) · logD +
nψ logD). Similarly as for the time complexity analysis, we argue that the message complexity is the

same as in BFS by Tides(s, ψ) until the beginning of the last execution of Shallow Tide in

Bounded BFS(s, ψ, n∗), that is, O(n′ ·min(D,n′/ψ) · logD+ n′ψ logD) for some n′ ≤ n∗ being the

number of nodes in variable H before the last execution of routine Shallow Tide. The message cost of

the last execution of routine Shallow Tide in the execution of Bounded BFS(s, ψ, n∗) is O(n · ψ), by

Theorem 1. ✷

Main algorithm Final BFS. Our main algorithm Final BFS(s, f), where f is a non-decresing integer

function, is presented in Figure 6. The algorithm uses variable Nnodes to estimate the upper bound on

the number of nodes in the network; it is initiated to |N(s)| + 1 and updated to 2⌈log2 |V (H)|⌉ after each
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Final BFS(s, f)

1. Nnodes← |N(s)|+ 1;

2. Repeat

(a) Execute Bounded BFS(s, f(Nnodes),Nnodes);

(b) Nnodes← 2⌈log2 |V (H)|⌉;

Until V (T ) = V (H)

OUTPUT: T

Fig. 6: Algorithm Final BFS(s, f): pseudo-code for the source node s; all other nodes only participate in the

executions of Bounded BFS triggered by s during the execution of Final BFS(s, f).

execution of routine Bounded BFS(s, f(Nnodes),Nnodes). Recall that routine Bounded BFS outputs

tree T and an estimate of network topology H. This is repeated until the sets of nodes in outputted T
andH are equal, i.e., there is no edge adjacent to any node in V (T ) that leads to a node that is outside of

V (T ).

Theorem 8 If f is an integer function such that x
f(x) is a non-decreasing function of x, then for any net-

work of n nodes and diameter D
(i) the algorithm Final BFS(s, f) computes a BFS tree, rooted at s, on the whole network,

(ii) all nodes terminate in O(D · min(D,n/f(n)) · logD · log n) rounds after starting the algorithm at

source s, and

(iii) the number of point-to-point messages sent by nodes running the algorithm isO(n·(min(D,n/f(n))+
f(n)) · logD · log n).

Proof: The correctness of algorithm Final BFS, i.e., that it outputs a BFS tree on the whole network and

rooted at s, follows from the observation that when the condition V (T ) = V (H) holds, there is no edge

adjacent to any node in T that leads to a node outside of set V (T ). This is because H contains all nodes

in V (T ) together with all their adjacent edges and their end nodes.

Termination of algorithm Final BFS follows from the fact that Nnodes is an integer and it increases

by at least one in each execution of step 2(b). Therefore, unless finished earlier, in some round the

value of Nnodes will be at least n — the number of nodes in the network — and the next execution

of routine Bounded BFS will return a BFS tree on the whole network (c.f., correctness guarantee for

Bounded BFS), which in turn makes the stopping condition V (T ) = V (H) fulfilled.

In order to make more accurate estimate of time complexity, observe that the number of executions

of routine Bounded BFS is in fact O(log n), since each time a single iteration of the loop finishes

without termination, we have |V (H)| > |V (T )|, and moreover, |V (H)| > Nnodes, as otherwise the

routine Bounded BFS would return a BFS tree on the whole network and the algorithm Final BFS

would terminate. It follows that Nnodes will be at least doubled in step 2(b), which means that after

O(log n) iterations it will be at least n and we could apply the same argument as in proving termina-

tion to argue about stopping by the end of this iteration. It follows from the time complexity of algo-
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rithm Bounded BFS(s, f(n∗), n∗), where n∗ is a power of 2, that the time complexity of algorithm

Final BFS(s, f) is at most

O





logn
∑

j=0

(

D ·min(D, 2j/f(2j)) · logD
)



 ,

which is

O(D ·min(D,n/f(n)) · logD · log n)

in case of x
f(x) being a non-decreasing function of x. (iii)

Message complexity of algorithm Final BFS is

O ((n ·min(D,n/f(n)) · logD + nf(n) logD) · log n)

by the similar argument as used in the analysis of time complexity of Final BFS and by the fact that

x/f(x) is a non-decreasing function. ✷

5 Conclusion

We achieved o(n) time complexity and o(n2) message complexity for the problem of spanning a BFS

tree in ad hoc networks with diameter D = D(n) = o(n/ log4 n), e.g., by setting f(n) =
√

nD(n).
Our technique is even more general, and establishes a tradeoff between time and message complexity

functions. There is still a gap between our time-message complexity tradeoff and natural lower bound

D on time and Ω(n) on message complexity. As far as we know these are the best known lower bounds

on the corresponding complexity measures when considering them separately, but it is not clear whether

similar bounds can be matched simultaneously by a single algorithm. Recall that the former bound is

matched by a naive flooding, in the cost of Ω(n2) messages, while the latter bound is matched by a DFS-

like search algorithm collecting the whole knowledge about the underlying graph in linear time Θ(n)
(independent on D). Our final deterministic distributed solution is close to the lower bounds by factors

roughly O(f(n) polylog n) and O(n/f(n) polylog n), for some suitable functions f(·).
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