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Following the track of polyominoes, in particular the column-by-column construction of Temperley and its interpre-

tation in terms of functional equations due to Bousquet-Mélou, we introduce a generic method for the enumeration of

classes of directed polycubes the strata of which satisfy some property P . This method is applied to the enumeration

of two new families of polycubes, the s-directed polycubes and the vertically-convex s-directed polycubes, with re-

spect to width and volume. The case of non-directed polycubes is also studied and it is shown that the generic method

can be applied in this case too. Finally the general case of d-dimensional polycubes, with d ≥ 4, is investigated, and

the generic method is extended in order to handle the enumeration of classes of directed d-polycubes.

Keywords: Directed polycubes, enumeration, generating function, dimension 3, dimension d

1 Introduction

In the Cartesian plane N2, a polyomino is a finite connected union of elementary cells (unit squares)

without cut point and defined up to a translation. Even if they have been studied for a long time in

combinatorics, no exact formula is known for counting general polyominoes but many results have been

found concerning certain classes of polyominoes, see for instance [BM96] or [Fer04]. There also exist

several classical tools to enumerate polyominoes. Among them, let us cite, for instance, the Temperley

methodology [Tem56], the DSV methodology [DV84], the q-grammars [DF93], or the methodology of

Bousquet-Mélou [BM96].

Polyominoes also have a 3-dimensional equivalent: the 3-dimensional polycubes (or polycubes for short)

[Lun71] (see Figure 1). If we consider, now, that an elementary cell is a unit cube, then a polycube

is a face-connected finite set of elementary cells defined up to a translation in N3. As polyominoes,

polycubes appear in statistical physics, more precisely in the phenomenon of percolation (see [BH57] for

example). A lot of studies have led to count polycubes with respect to their number, n say, of cells. The

first values were found in 1972 up to n = 6 [Lun71] and the last one (to our knowledge) in 2006, up to

n = 18 [AB09].
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The notion of polycube can be extended to dimension d, with d ≥ 3; d-dimensional polycubes (or d-

polycubes for short) are used in an efficient model of real-time validation [LG08], as well as in the repre-

sentation of finite geometrical languages [CDJ09, Jea10].

A particular class of polycubes, the plane partitions, has been studied for a long time (see [CLP98,Bre99,

Sta01] for instance). Very recently, we have studied two new classes of polycubes: the plateau polycubes,

that appear in a particular model of real-time validation, have been enumerated with respect to volume

and width whereas there is only an asymptotic result for the parallelogram polycubes [CDJ10]. No other

subclass of polycubes seems to have been examined.

In the next section, we define extensions of classes of directed polyominoes to the 3-dimensional case.

Then, in Section 3, we present a new generic method to enumerate various classes of directed polycubes

the strata of which satisfy a given property. In Section 4 this method is applied to enumerate two classes of

directed polycubes: the s-directed polycubes and the vertically-convex s-directed polycubes. We show in

Section 5 that it can also be applied to certain families of non-directed polycubes, such as the vertically-

convex pseudo-directed polycubes. Finally, Section 6 is devoted to the general case of d-dimensional

polycubes, d ≥ 3; the generic method is applied to a family of d-dimensional polycubes that generalize

the 3-dimensional s-directed ones.

Figure 1: An ordinary polycube.

2 Preliminaries

A polyomino is said to be row-convex (resp. column-convex) if its intersection with any horizontal (resp.

vertical) strip is convex. It is said to be directed if each of its cells can be reached from a distinguished

cell, called root, by a path only made of East and North steps.

Let (0,~i,~j,~k) be an orthonormal coordinate system where~i and ~k are horizontal vectors and ~j the only

vertical vector. As for polyominoes, several parameters can be defined for a polycube. The volume is the

number of elementary cells, the width (resp. height, depth) is the difference between the greatest and the

smallest indices of the polycube according to~i (resp. ~j, ~k). A polycube is said to be horizontally-convex

if its intersection with any horizontal plane (~i,~k) is a row-convex polyomino; it is said to be vertically-

convex if its intersection with any vertical plane (~i,~j) is a column-convex polyomino. An example of

horizontally-convex polycube is given in Figure 2. Similarly, a polycube is said to be antihorizontally-

convex if its intersection with any horizontal plane (~i,~k) is a column-convex polyomino; it is said to be

antivertically-convex if its intersection with any vertical plane (~j,~k) is a column-convex polyomino.

Definition 2.1 A polycube is said to be convex if it is both horizontally, antihorizontally, vertically and

antivertically convex.
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Figure 2: A horizontally-convex polycube.

The 2-dimensional notion of step is extended as follows. An East (resp. North, Ahead) step is a movement

of one unit in~i-direction (resp. ~j-direction, ~k-direction). So, a polycube is said to be directed if each of its

cells can be reached from a distinguished cell, called root, by a path only made of East, North and Ahead

steps.

The 2-dimensional notion of column is extended as follows. A stratum is a polycube of width 1. Hence

a stratum can be directed or horizontally (resp. vertically, antihorizontally, antivertically) convex. Two

examples of strata are given in Figure 3. The notion of stratum allows us to define two new families of

polycubes.

Definition 2.2 A polycube is said to be s-directed if the two following conditions are satisfied:

(1) its strata are directed,

(2) its strata are glued together so that the polycube is directed.

Definition 2.3 A polycube is said to be vertically convex s-directed if the two following conditions are

satisfied:

(1) its strata are vertically convex directed,

(2) its strata are glued together so that the polycube is directed.

(1) (2)

Figure 3: An ordinary stratum (1) and a directed stratum (2).
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3 A generic method to enumerate families of directed polycubes

The method that is presented here to enumerate families of directed polycubes is based on the column-

by-column decomposition of polyominoes, known as “Temperley methodology”, and on its interpretation

in terms of functional equations due to Bousquet-Mélou [BM96]. These two techniques are extended to

a slice-by-slice construction of polycubes. After a recall of notation and definitions, we describe how to

decompose a directed polycube into its strata; we then show how to translate this decomposition into a

functional equation and how to solve it.

3.1 Definitions and notation

Let R [[s, t, p, q]] be the algebra of formal power series in the variables s, t, p and q, with real coefficients.

Let X(s, t, p, q) be such a series, then we use ∂X
∂q (s, t, p, q) to denote its derivative with respect to q. If E

is an expression depending on q, the value of E at q = i is denoted by E|q=i. Let A be the sub-algebra

of the series S of R [[s, t, p, q]].
The height of a stratum S is denoted by h(S), its volume by v(S) and the area of its rightmost face by

a(S). These notations can be extended to polycubes. Moreover, the width of a polycube P , i.e. the

number of strata is denoted by l(P ).
The generating series of a set E of directed polycubes is the following formal power series, which lies in

A:
∑

P∈E

sh(p)tl(P )pv(P )qa(P ).

3.2 The generic method

Given a property P , let CP be the class of directed polycubes the strata of which satisfy the property P .

The generic method allows us to enumerate the class CP .

The first step consists in enumerating directed strata satisfying the property P . Let Q(p, q) be the ge-

nerating function of this family of directed strata with respect to volume and area of the rightmost face.

Sincea stratum is obtained by substituting each unit square of a polyomino by a unit cube, if it statisfies

a property P in dimension 3, the corresponding polyomino also statisfies the property P in dimension 2
(see Fig. 4) .

To begin with, we have to provide an expression for the generating function P (q) of directed polyomi-

noes satisfying the property P with respect to area. The expression Q(p, q) follows from P (q) by noting

that the area of a polyomino is equal to the volume of the corresponding stratum. Note that the area of the

rightmost face of the stratum is also equal to the area of the corresponding polyomino, as can be seen in

Figure 4.

Finally, an expression for Q(p, q) is given by:

Q(p, q) = P (pq).

Let us now focus on the enumeration of directed polycubes the strata of which satisfy the property P . Let

R(t, p) be the generating function of the class CP , with respect to width and volume. Given a polycube

C ∈ CP , two cases have to be distinguished:

• The polycube C is reduced to a stratum: this case is enumerated by tQ(p, 1).
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Figure 4: From a polycube to a stratum.

= +

Figure 5: Decomposition of a polycube C ∈ CP .

• The polycube C can be decomposed into a stratum and a polycube of CP the root cell of which is

glued on the stratum: this construction is explained in Figure 5.

As a consequence, the number of possible stickings is equal to the number of unitary faces compos-

ing the area of the rightmost face of the stratum. This case is therefore enumerated by

t
∂Q

∂q
(p, q)R(t, p)

∣

∣

∣

∣

q=1

.

The factor t comes from the fact that we add a stratum; the term ∂Q
∂q (p, q) represents the number of

possibilities to glue the polycube on the rightmost face of the stratum and the factor R(t, p) is due

to the gluing of the polycube.

We finally obtain a functional equation satisfied by the generating function of the class CP .

Proposition 3.1 The generating function R(t, p) of directed polycubes the strata of which satisfy the

property P , with respect to width and volume, admits the following functional equation:

R(t, p) = tQ(p, 1) + t

(

∂Q

∂q
(p, q)R(t, p)

)
∣

∣

∣

∣

q=1

.
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It is possible to solve this equation according to the generating function P (q) of directed polyominoes

satisfying the property P . As a consequence, we obtain the following theorem:

Theorem 3.1 The generating function of the class CP with respect to width and volume is given by:

R(t, p) =
tP (p)

1− t∂P∂q (p)

In the following section, we examine two possibilities for the Property P: directed strata are first consid-

ered and then vertically convex directed ones.

4 Enumeration of two classes of polycubes

4.1 The s-directed polycubes

An s-directed polycube can be split into directed strata, as illustrated by Figure 5. Hence the generic

method applies, with an empty property P . We first have to look for the generating function of directed

polyominoes with respect to area. It is proved in [DPB82, GBV88, BP93] that this generating function is

equal to:

1

2

(

(

1−
4q

1 + q

)−1/2

− 1

)

.

Then, applying Theorem 3.1 to the case of s-directed strata, we get the following proposition:

Proposition 4.1 The generating function of s-directed polycubes with respect to width and volume is

given by:

DP (t, p) = −
1

2

t(1− 2tp− 3p2)(1−X(p))

tp−X(p)(1− 2p− 3p2)
,

where

X(p) =

√

1− 3p

1 + p
.

According to Proposition 4.1 and using Maple, the first values of DP (t, p) can easily be obtained. These

values are given in Table 1.

Let us set DP (t, p) =
∑

n,m≥0 dpn,mtnpm, where dpn,m is the number of s-directed polycubes of width

n and volume m. Then, from the values of Table 1, it is possible to extract some marginal values of

DP (t, p).

Proposition 4.2

1. dpn,n = 1;

2. dpn−1,n = 4n− 6;

3. dpn−2,n = 8n2 − 33n+ 32.

Proof: The proofs of these formulas are based on the following principle. We start from the polycube

of height 1, depth 1 and width n − i, with i ≥ 0, that is a box of volume n − i. Next, we build all the

polycubes of width n − i and volume n from this box by adding i cells, cutting and gluing them. Thus,

we only detail the proof of the value of dpn−2,n. Let us consider the box of volume n−2 and width n−2
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vol/width 1 2 3 4 5 6 7 8 9

1 1

2 2 1

3 5 6 1

4 13 28 10 1

5 35 115 67 14 1

6 96 441 369 122 18 1

7 267 1617 1808 839 193 22 1

8 750 5748 8188 4984 1589 280 26 1

9 2123 19971 35036 26765 11073 2683 383 30 1

Table 1: Number of s-directed polycubes with respect to width and volume.

and let us enumerate all the ways to inject two cells to obtain an s-directed polycube. There are two main

cases:

• We add two cells to a stratum.

Let us remark that, if we add two cells to a stratum (reduced to a cell), we obtain a directed stratum

of volume 3 and that there are 5 different such strata.

To add two cells to a stratum different from the last one, there are n − 3 possible strata. Then,

we isolate the selected stratum and we substitue it by one of volume 3 (5 possibilities, see above).

Next, we glue the leftmost part of the initial polycube. There is only one possibility that keeps the

direction. Then, we glue the rightmost part of the initial polycube. There are 3 possibilities. Finally,

there are 15(n− 3) possibile constructions. An example of such a construction is given Figure 6.

If we insert the two cells to the last stratum (the rightmost one) of the box, we have 5 possibilities,

since there are only 5 strata of volume 3.

So, if we add two cells to a stratum, we obtain 15n− 40 different possibilities.

• If we add the two cells to two different strata, we must investigate again two cases:

– No cell is added to the last stratum. Then, there are
(

n−3
2

)

possible choices of strata and 2× 2

choices for each stratum, which gives (2× 2)2
(

n−3
2

)

possibilities.

– One cell is added to the last stratum, which lets 2 choices for this one. There are n−3 choices

for the second stratum, 2 possibilities to add a cell to it and 2 other possibilities to glue this

new stratum to the last part of the polycube. So, we have here 8(n− 3) different choices.
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Figure 6: Construction of an s-directed polycube of width 5 and volume 7.

Adding the number of all the possibilities, we obtain that dpn−2,n = 8n2 − 33n+ 32. ✷

Let us note that we have not been able to find a formula in the general case. However, it is possible to

state the following proposition:

Proposition 4.3 The coefficient dpn−i,n is a polynomial in Q[n] the highest-degree-term of which is equal

to
4i

i!
ni.

Proof: Proposition 4.3 is a particular case of Proposition 6.4 that is proved later. The main interest of the

following proof is that it takes into acount the specifics of the 3-dimensional case.

Let us consider the polycube of height 1, depth 1 and width n− i and let us add to it i cells to i different

columns (except for the last one). We have
(

n−i−1
i

)

different choices of columns. Then, for each selected

column, we have 2 possibilities to inject a cell and keep the property of direction and 2 ways to substitute

the initial stratum by the new one in order to obtain a polycube. As we perform this construction for i

columns, we finally obtain 4i
(

n−i−1
i

)

possibilities.

In all the other cases, we only have
(

n−i−1
i−j

)

possibilities to choose columns, with j > 1, leading to a term

of degree i− j. Since j > 1, the highest-degree-term in O(ni−j) is negligible in the presence of terms of

O(ni) order. So, the highest degree term in n is 4i

i! n
i. ✷

Computing a polynomial interpolation of DP (t, p) leads to the following results:
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Corollary 4.1

dpn−3,n =
32

3
n3 − 84n2 +

622

3
n− 155

dpn−4,n =
32

3
n4 − 136n3 +

3683

6
n2 −

2255

2
n+ 660

dpn−5,n =
128

15
n5 − 160n4 + 1138n3 − 3741n2 +

80452

15
n− 2212

dpn−6,n =
256

45
n6 −

736

5
n5 +

13604

9
n4 −

46313

6
n3 +

1778963

90
n2 −

317602

15
n

+ 2948

dpn−7,n =
1024

315
n7 −

1664

15
n6 +

69808

45
n5 −

33962

3
n4 +

2022853

45
n3 −

888669

10
n2

+
3801607

70
n+ 38106

dpn−8,n =
512

315
n8 −

7424

105
n7 +

58096

45
n6 − 12732n5 +

25964207

360
n4 −

13520417

60
n3

+
764855419

2520
n2 +

8527553

84
n− 500380

4.2 The vertically-convex s-directed polycubes

As for the case of s-directed polycubes, we start by providing an expression for the generating function

of vertically-convex s-directed polycubes with respect to volume and width and then, we state some

properties of these polycubes.

A vertically-convex s-directed polycube is such that each of its strata is vertically-convex and directed

(see Figure 7). Let us remark that such a stratum is in fact a column-convex directed polyomino in which

each unit square has been substituted by a unit cube. So, according to the method described in Section 3,

we first have to provide the generating function of column-convex directed polyominoes with respect to

area.

= +

Figure 7: Decomposition of a vertically-convex s-directed polycube.
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In [DD93], Delest and Dulucq show that this generating function is equal to:

q(q − 1)

1− 3q + q2
.

So, using Theorem 3.1, we can deduce the following proposition:

Proposition 4.4 The generating function of vertically-convex s-directed polycubes with respect to width

and volume is given by:

V CD(t, p) =
tp(p− 1)(1− 3p+ p2)

1− 6p+ 11p2 − 6p3 + p4 − t(p− 2p2 + 2p3)
.

As for the case of s-directed polycubes, we can easily compute the first values of V CD(t, p). They are

given in Table 2.

vol/width 1 2 3 4 5 6 7 8 9 10

1 1

2 2 1

3 5 6 1

4 13 28 10 1

5 34 115 67 14 1

6 89 435 369 122 18 1

7 233 1554 1797 339 193 22 1

8 610 5234 8029 4968 1589 280 26 1

9 1597 17667 33640 26470 11052 2683 383 30 1

Table 2: Number of vertically-convex s-directed polycubes with respect to width and volume.

Let us set V CD(t, p) =
∑

n,m≥0 vcdn,mtnpm, where vcdn,m is the number of vertically-convex s-

directed polycubes of width n and volume m.

Let us note that all the strata of volume less than or equal to 3 are vertically-convex s-directed. Since

each stratum of a polycube of volume n and width n − i, with 0 ≤ i ≤ 2, has a volume less or equal

to 3, all of these polycubes are both s-directed and vertically-convex s-directed. So, for 0 ≤ i ≤ 2,

the properties satisfied by dpn−i,n given in Proposition 4.2 are also satisfied by vcdn−i,n. Hence the

following proposition:

Proposition 4.5

1. vcdn,n = 1;

2. vcdn−1,n = 4n− 6;

3. vcdn−2,n = 8n2 − 33n+ 32.

Let us note that according to Proposition 4.5 the three first diagonals of Table 1 and Table 2 are identical.

Moreover, with a similar proof as for Proposition 4.3 the following proposition can be stated:

Proposition 4.6 The expression vcdn−i,n is a polynomial in Q[n] the highest-degree-term of which is

equal to
4i

i!
ni.
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Finally, a polynomial interpretation of V CD(t, p) leads to the following corollary:

Corollary 4.2

vcdn−3,n =
32

3
n3 − 84n2 +

622

3
n− 155

vcdn−4,n =
32

3
n4 − 136n3 +

3683

6
n2 −

2265

2
n+ 684

vcdn−5,n =
128

15
n5 − 160n4 + 1138n3 − 3761n2 +

83512

15
n− 2723

vcdn−6,n =
256

45
n6 −

736

5
n5 +

13604

9
n4 −

46553

6
n3 +

1839173

90
n2 −

372577

15
n

+ 9508

vcdn−7,n =
1024

315
n7 −

1664

15
n6 +

69808

45
n5 − 11374n4 +

2081353

45
n3 −

3016127

30
n2

+
6993887

70
n− 27090

vcdn−8,n =
512

315
n8 −

7424

105
n7 +

58096

45
n6 −

38356

3
n5 +

26600687

360
n4 −

14901367

60
n3

+
1134385699

2520
n2 −

29729225

84
n+ 48250

5 The non-directed case

5.1 The vertically-convex pseudo-directed polycubes

5.2 The method

The generic method described in Section 3 can be extended to non-directed polycubes as far as their

decomposition into strata obey the following the rule: each stratum has to be glued to the previous one

using a distinguished cell that must coincide with some cell of the previous stratum. The distinguished

cell of a stratum can be, for instance, the lowest cell of the first column. In fact, the distinguished cell

plays the same role as the root in the case of directed polycubes. Even if the considered strata are not

directed, they are glued according to a similar rule. Let us call pseudo-directed polycube any polycube

obeying this rule.

The generic method can be directly applied to pseudo-directed polycubes. This extension can be illustrated

by the enumeration of the vertically-convex pseudo-directed polycubes (see Figure 8) which are pseudo-

directed polycubes that can be split into vertically-convex strata. Other families of pseudo-polycubes

could be studied, for instance the pseudo-polycubes that can be split into convex strata.

5.3 The vertically-convex pseudo-directed polycubes

Since each stratum of a vertically-convex pseudo-directed polycube is vertically-convex, it is in fact a

column-convex polyomino in which each unit square has been substituted by a unit cube. In [Kla65], it is

proved that the generating function of column-convex polyominoes with respect to area is defined by:

V (q) =
q (1− q)

3

1− 5q + 7q2 − 4q3
.
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= +

Figure 8: Decomposition of vertically-convex pseudo-directed polycubes.

Thus, the generating function of vertically-convex strata with respect to volume and area of the rightmost

face is given by:

pq (1− pq)
3

1− 5pq + 7p2q2 − 4p3q3
.

Since the generic method can be applied to pseudo-directed polycubes, according to Theorem 3.1, we

obtain:

Proposition 5.1 The generating function V C(t, p) of vertically-convex pseudo-directed polycubes with

respect to width and volume, is given by:

V C(t, p) =
tp (1− p)

3 (
1− 5p+ 7p2 − 4p3

)

(1− 5p+ 7p2 − 4p3)
2
+ tp (1− 4p+ 8p2 − 6p3 + 4p4) (1− p)

2 .

Once again, using Maple, we easily obtain the first values of V C(t, p). These values are listed in the

Table 3.

Let us note that the two first diagonals of Table 3 are identical to the two first ones in Table 1. This is

because the vertically-convex pseudo-directed polycubes of volume n and width n or n− 1 are s-directed

polycubes. If we set V C(t, p) =
∑

n,m≥0 vcn,mtnpm, where vcn,m is the number of vertically-convex

pseudo-directed polycubes of width n and volume m, we directly obtain, from Proposition 4.2:

Proposition 5.2

1. vcn,n = 1,

2. vcn−1,n = 4n− 6.

Moreover, according to a proof similar as the one of Proposition 4.3 or of Proposition 4.6, it can be shown

that:

Proposition 5.3 The expression vcn−i,n is a polynomial in Q[n] the highest-degree-term of which is equal

to
4i

i!
ni.
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vol/width 1 2 3 4 5 6 7 8 9

1 1

2 2 1

3 6 6 1

4 19 32 10 1

5 61 155 74 14 1

6 196 702 467 132 18 1

7 629 3024 2659 1019 206 22 1

8 2017 12540 14060 6924 1875 296 26 1

9 6466 50490 70271 42952 14745 3099 402 30 1

Table 3: Number of vertically-convex pseudo-directed polycubes with respect to width and volume.

According to Proposition 5.1 and Proposition 5.3, a polynomial interpretation of V C(t, p) leads to the

following corollary:

Corollary 5.1

vcn−2,n = 8n2 − 30n+ 24

vcn−3,n =
32

3
n3 − 72n2 +

400

3
n− 45

vcn−4,n =
32

3
n4 − 112n3 +

1078

3
n2 − 277n− 204

vcn−5,n =
128

15
n5 − 128n4 +

1880

3
n3 − 864n2 −

5756

5
n+ 2380

vcn−6,n =
256

45
n6 −

576

5
n5 +

7184

9
n4 − 1756n3 −

126986

45
n2 +

73541

5
n

− 11404

vcn−7,n =
1024

315
n7 −

256

3
n6 +

35776

45
n5 −

7760

3
n4 −

180632

45
n3 + 42682n2

−
2623083

35
n− 21033

vcn−8,n =
512

315
n8 −

5362

105
n7 +

5824

9
n6 − 2944n5 −

158866

45
n4 +

1176386

15
n3

−
9883519

42
n2 +

6748955

42
n+ 131860

6 The higher dimensional case

We first generalize some parameters and definitions from 3-dimensional polycubes to d-dimensional ones,

with d ≥ 4. Then we extend the 3-dimensional enumerative method of Section 3 to higher dimensions. Fi-

nally, we apply the extended method to a new family of polycubes that we call the rs-directed d-polycubes.
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6.1 The extension to d-dimensional polycubes

Let us now consider Nd, with d ≥ 3. An elementary cell is a unitary d-cube. A d-polycube is then a

d-face connected finite set of elementary cells, defined up to a translation. The volume of a d-polycube is

the number of its elementary cells.

Let (0, ~i1, . . . , ~id) be an orthonormal coordinate system. The width (resp. height) of a d-polycube is

the difference between its greatest index and its smallest index according to ~i1 (resp. ~i2). A d-polycube

is said to be vertically-convex if its intersection with any hyperplane (~i2, . . . , ~id) is a vertically-convex

(d− 1)-polycube. It is said horizontally-convex if its intersection with any hyperplane (~i1, ~i3, ~i4, . . . , ~id)
is a horizontally-convex (d− 1)-polycube. Other convexities can be defined, but they are not useful here.

The notion of step is extended as follows. A step in direction j is a positive move of one unit along the axis
~ij . Then a directed d-polycube is such that each cell can be reached from a distinguished one, the root, by

a path only made of steps in direction j, with 1 ≤ j ≤ d. A d-stratum of a d-polycube is a d-polycube of

width 1. We will say stratum instead of d-stratum if there is no ambiguity. For d ≥ 3, the rightmost face

of the ith stratum is the d-face of this stratum on which is glued the (i+1)th stratum and its surface is the

number of its cells. The (i+ 1)th stratum is called the rightmost stratum of the ith one.

Due to these definitions, the generic method introduced in Section 4.1 can be extented for dimensions

higher than 3. Let CP be the class of directed d-polycubes the strata of which satisfy property P and

S(t, p) be the generating function for the class CP with respect to width and volume. Then, assuming that

P (q) is an expression for the generating function of strata in dimension d − 1 with respect to volume,

Theorem 3.1 can be applied, leading to the following proposition:

Proposition 6.1 The generating function S(t, p) is given by

S(t, p) =
tP (p)

1− t∂P∂q (p)

6.2 Enumeration of rs-directed d-polycubes

Let us consider the family of rs-directed d-polycubes recursively defined as follows. A rs-directed d-

polycube is:

• either an s-directed polycube if d = 3,

• or a directed d-polycube that can be split into strata that are rs-directed (d− 1)-polycubes, if d ≥ 4.

For d ≥ 4, let us denote by Cd(t, p) the generating function for rs-directed d-polycubes with respect to

width and volume.

We first investigate the case where d = 4, in order to illustrate how the extension works. From the

generating function of s-directed 3-polycubes computed in Section 4.1 and from Proposition 6.1, we can

state the following proposition.

Proposition 6.2 The generating function C4(t, p) is given by:

(1 + p)2X(p)(−X(p) + 2X(p)p+ 3X(p)p2 + p)(X(p)− 1)(−1 + 3p)t

2 (1 + p) ((−19p2 + 27p4 + 8p− 1)X(p) + 18p3 − 12p2 + 2p) + tp ((3p3 + 3p2 + p+ 1)X(p) + (27p3 − 9p+ 9p2 + 1))

where
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X(p) =

√

1− 3p

1 + p
.

The first values of C4(t, p) can be easily computed. Setting C4(t, p) =
∑

n,m≥0 c
4
n,mtnpm, where c4n,m

is the number of rs-directed 4-polycubes of width n and volume m, it is possible, for small values of i, to

compute c4n−i,n as a polynomial of order i. The following proposition holds:

Proposition 6.3 The coefficient c4n−i,n is a polynomial in Q[n] whose highest-degree-term is equal to

6i

i!
ni.

Proof: The proof is based on the same principle as in Proposition 4.3. It is detailed here since it is the

main step toward a generalization. Let us consider the 4-polycube P of width and volume equal to n− i.

Note that each stratum of P is reduced to one cell. Let us inject a cell into i different strata of P (different

from the last one): there are
(

n−i−1
i

)

different possibilities to choose these strata. Moreover, injecting

a cell into a stratum, that is a rs-directed 4-polycube, is equivalent to injecting a cell into a rs-directed

3-polycube. So, we have to inject a cell into a rs-directed 3-polycube reduced to one cell, the root. Since

there are 3 possible directions, there are 3 ways to glue a new cell to the root (see Figure 9).

Figure 9: The three ways to inject a cell on a stratum of volume 1.

The end of the proof is similar to the one of Proposition 4.3, leading to the result that the highest degree

term in n is 6i

i! n
i. ✷

A polynomial interpretation of C4(t, p) leads to the following corollary:

Corollary 6.1

c4n,n = 1

c4n−1,n = 6n− 9

c4n−2,n = 18n2 − 72n+ 66

c4n−3,n = 36n3 − 270n2 + 622n− 420

c4n−4,n = 54n4 − 648n3 + 2706n2 − 4504n+ 2352

c4n−5,n =
324

5
n5 − 1134n4 + 7416n3 − 22074n2 +

142566

5
n− 11445

c4n−6,n =
16384

45
n6 −

41984

5
n5 +

678464

9
n4 −

991868

3
n3 +

32619376

45
n2 −

10746878

15
n+ 226768

The case where d = 4 allowed us to show how the extension works. We also investigated the case of

higher dimensions where similar results could be reported. These investigations lead us to the following

proposition.
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Proposition 6.4 Let d ≥ 3 and Cd(t, p) =
∑

n,m≥0 c
d
n,mtnpm. Then, the expresssion cdn−i,n is a poly-

nomial in Q[n] whose highest-degree-term is equal to
2i(d− 1)i

i!
ni.

Proof: The proof is essentially based on the fact that adding a cell to a stratum of a rs-directed d-polycube

is equivalent to inject a cell into an rs-directed (d − 1)-polycube. As a consequence, there is a unique

possibility to add a cell to a d-stratum of volume 1 with respect to each of the d− 1 directions. Then, the

rightmost stratum initially glued to the modified stratum can be glued again in two different ways in order

to satisfy the property of direction of rs-directed d-polycubes. Note that the last stratum is not concerned

by this construction since it has no rightmost stratum. So, there are 2(d − 1) possible constructions for

the i selected strata, which leads to (2(d − 1))i
(

n−i−1
i

)

possibilities to realize this operation. If the last

stratum belongs to the set of selected strata, there are only 2i × (d− 1)i−1
(

n−i−2
i

)

possibilities. In all the

other cases, there are
(

n−i−1
i−j

)

or
(

n−i−2
i−j

)

(and j > 1) possibilities to choose strata, leading to a term of

degree i − j. Since j > 1, the highest-degree-term in O(ni−j) is negligible with respect to ni. Finally,

the highest-degree-term of cdn−i,n is equal to
2i(d− 1)i

i!
ni. ✷

7 Conclusion

A lot of results are known about the enumeration of polyominoes, at least for specific classes of polyomi-

noes. But the transition from dimension 2 to dimension 3 (or to a higher dimension) is known to be a hard

combinatorial problem and very few results are known about polycubes. This paper is a significant ad-

vance on this topic. It introduces a generic method that allows us to enumerate various classes of directed

d-polycubes, for d ≤ 3, as far as their strata satisfy a given property P . This method can be applied both

to directed polycubes, such as the s-directed 3-polycubes or the vertically-convex s-directed 3-polycubes,

and to non-directed polycubes, such as the vertically-convex pseudo-directed 3-polycubes. Moreover, it

can be applied in any dimension: an example is the class of s-directed d-polycubes, with d ≥ 3. For each

of the above-mentioned classes of d-polycubes, the generating function with respect to width and volume

is exhibited whereas the number of d-polycubes of volume n and width n − i is obtained by a simple

method and shown to be a polynomial of degree i. In the future, we intend to follow this track and to

investigate other ones in order to extend the enumeration to other classes of d-polycubes.
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