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List circular backbone colouring
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A natural generalization of graph colouring involves taking colours from a metric space and insisting that the end-
points of an edge receive colours separated by a minimum distance dictated by properties of the edge. In the q-
backbone colouring problem, these minimum distances are either q or 1, depending on whether or not the edge is in
the backbone. In this paper we consider the list version of this problem, with particular focus on colours in Zp – this
problem is closely related to the problem of circular choosability.

We first prove that the list circular q-backbone chromatic number of a graph is bounded by a function of the list
chromatic number. We then consider the more general problem in which each edge is assigned an individual distance
between its endpoints, and provide bounds using the Combinatorial Nullstellensatz. Through this result and through
structural approaches, we achieve good bounds when both the graph and the backbone belong to restricted families
of graphs.
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1 Introduction
All graphs considered in this paper are simple. Let G = (V,E) be a graph, and let H = (V,E(H)) be
a subgraph of G, called the backbone. A k-colouring of G is a mapping f : V → {1, 2, . . . , k}. Let f
be a k-colouring of G. It is a proper colouring if |f(u) − f(v)| ≥ 1. It is a q-backbone colouring for
(G,H) if f is a proper colouring of G and |f(u) − f(v)| ≥ q for all edges uv ∈ E(H). The chromatic
number χ(G) is the smallest integer k for which there exists a proper k-colouring of G. The q-backbone
chromatic number BBCq(G,H) is the smallest integer k for which there exists a q-backbone k-colouring
of (G,H).

If f is a proper k-colouring of G, then g defined by g(v) = q · f(v) − (q − 1) is a q-backbone
(q · k − q + 1)-colouring of (G,H) for any spanning subgraph H of G. Hence,

BBCq(G,H) ≤ q · χ(G)− q + 1. (1)
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In [4, 5], Broersma et al. showed that for any integer k there is a graph G with χ(G) = k and a spanning
tree T such that BBC2(G,T ) = 2k − 1.

One can generalize the notion of backbone colouring by allowing a more complicated structure of the
colour space. A natural choice is to impose a circular metric on the colours. We can see Zk as a cycle of
length k with vertex set {1, . . . , k} together with the graphical distance | · |k. Then |a−b|k ≥ q if and only
if q ≤ |a − b| ≤ k − q. A circular q-backbone k-colouring of G or q-backbone Zk-colouring of (G,H)
is a mapping f : V (G) → Zk such that c(v) 6= c(u) for each edge uv ∈ E(G) and |c(u) − c(v)|k ≥ q
for each edge uv ∈ E(H). The circular q-backbone chromatic number of a graph pair (G,H), denoted
CBCq(G,H), is the minimum k such that (G,H) admits a circular q-backbone k-colouring.

A backbone Zk-colouring is trivially a backbone k-colouring. On the other hand, a backbone k-
colouring yields a circular backbone Zk+q−1-colouring. Hence for every graph pair (G,H) (where H
is a subgraph of G), we have

BBCq(G,H) ≤ CBCq(G,H) ≤ BBCq(G,H) + q − 1. (2)

Inequalities 1 and 2 yield

CBCq(G,H) ≤ q · χ(G) for every subgraph H of G. (3)

This bound is tight if H contains a complete graph of size χ(G). In particular, it is the case when G is
bipartite, and H is non-empty. On the other hand, Broersma et al. [6] gave better upper bounds when
the backbone is a matching. We explore similar restrictions shortly, but first we define a list colouring
analogue. Such an analogue is motivated by the fact that backbone colouring models a special case
of radio channel assignment: in such problem, because of technical reasons or dynamicity, the set of
channels available (i.e. colours) very often varies from transmitter (i.e. vertex) to transmitter.

1.1 List backbone colourings
The notions of backbone and circular backbone colouring naturally generalize to list colouring. An S-list
assignment of a graph G is a mapping L which assigns to each vertex v ∈ V (G) a prescribed list of
colours L(v) ⊆ S, where S is a set of colours. For a list assignment L, an L-colouring is a colouring c
such that c(v) ∈ L(v) for every vertex. The list chromatic number of a graph G, denoted χ`(G), is the
least integer k such that for any list assignment L such that |L(v)| ≥ k, there is a proper L-colouring. The
graph pair (G,H) is said to be circularly q-backbone k-choosable if for any Zp-list assignment L such
that |L(v)| ≥ k, there is an L-colouring that is a q-backbone Zp-colouring. The list circular q-backbone
number of a pair (G,H), denoted CBC`q(G,H) is the least integer k such that (G,H) is circularly q-
backbone k-choosable.

The concept of circular choosability, introduced by Mohar [15] and Zhu [20], is closely related to list
circular backbone colouring. Indeed, the circular list chromatic number or circular choice number of G
may be defined as

cch(G) := inf{CBC`q(G,G)/q}.

Zhu [20] proved that cch(G) ≥ χ`(G)−1 for every graphG. This implies that CBC`q(G,G) ≥ q · χ`(G)−
q for every positive q. In view of this inequality and the fact that CBCq(G,G) = q · χ(G), it is natural to
ask whether CBC`q(G,G) can be bounded by a function of χ`(G). We answer in the positive in Section 2.
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However, the function we prove is exponential in χ`(G) – we believe that it is far from optimal, and pose
the following problem.

Problem 1 Let q be a positive integer. What is the minimum function mq such that for every k-choosable
graph G, CBC`q(G,G) ≤ mq(k)? In other words, what is mq(k) = max{CBC`q(G,G) | χ`(G) = k} ?

This is closely related to a conjecture of Zhu [20].

Conjecture 2 (Zhu [20]) There is a constant α such that, for every graph G, cch(G) ≤ α · χ`(G).

Note that if such an α exists then it is at least two, as for any positive integer m, χ`(Kk,mk) ≤ k + 1

because Kk,mk is k-degenerate, and cch(Kk,mk) ≥
(
2− 2k

m

)
k as shown by Zhu [20]. Conjecture 2

would be implied by the following.

Conjecture 3 Let q be a positive integer. There is a constantαq such that, for every graphG, CBC`q(G,G) ≤
αq · q · χ`(G).

As an evidence in support of the latter conjecture, we prove (Theorem 17) that for a graph G and a
matching M , CBC`2(G,M) ≤ 2 · χ`(G) + 1 and CBC`q(G,M) ≤ 2(1 + o(1))χ`(G), where o(1) is a
function tending to 0 when χ`(G) tends to infinity. These bounds generalize to any backbone H in an
upper bound in terms of χ`(G) and χ′(H), the chromatic index of H: CBC`2(G,H) ≤ 2χ

′(H)χ`(G) + 1
and for any q ≥ 3, CBC`q(G,H) ≤ 2χ

′(H)(1 + o(1))χ`(G).

In Section 3, we consider list circular backbone colouring of 2-choosable graphs. In [7], Erdős, Rubin,
and Taylor characterized such graphs as follows. The heart of a graphG is the maximal subgraph in which
there is no vertex of degree one. The graph consisting of two vertices connected with three internally
vertex-disjoint paths of length i, j and k is θi,j,k.

Theorem 4 (Erdős et al. [7]) A connected graph is 2-choosable if and only if its heart is either a single
vertex, an even cycle or θ2m,2,2 for some integer m ≥ 1.

Using this characterization, Havet et al. [10] proved that if G is 2-choosable, then CBC`q(G,G) ≤
5q/2. This upper bound was later improved by Norine, Wong, and Zhu [17] to 16q/7. In other words,
mq(2) ≤ 16q/7. They conjectured that mq(2) = 2q.

Conjecture 5 (Norine, Wong, and Zhu [17]) If G is 2-choosable, then CBC`q(G,G) = 2q.

This conjecture is trivial for trees and was proved by Norine [16] for even cycles (and so for all graphs
whose heart is an even cycle).

Theorem 6 (Norine [16]) If C is an even cycle, then CBC`q(C,C) = 2q for all q.

Norine, Wong, and Zhu [17] also verified Conjecture 5 for K2,3 = θ2,2,2.
Note that Conjecture 5 implies that if G is 2-choosable, then CBC`q(G,H) = 2q for any non-empty

subgraph H of G. We prove that this is the case if H is a matching (Theorem 28). We also show that if
H does not contain the heart of G, then CBC`q(G,H) ≤ 2q + 1.
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1.2 Edge-weighted backbones
In Section 4 we generalize the idea of a backbone colouring by giving every edge e a positive integer
weight w(e) dictating the minimum distance between the colours of its endpoints. This corresponds to
the general channel assignment problem (see e.g. [12, 13]), in which the minimum distance between the
channels assigned to two transmitters depends on these transmitters and how they can interfere with each
other. In this paper, we apply the technique developed in this section to prove a result on list circular
backbone colouring. However, as the technique is quite general, we believe that it could be used on other
channel assignment problems.

Formally, a colouring c of G of G is w-coherent if |c(u) − c(v)| ≥ w(uv) for every edge uv of G. A
graph G is w-coherent k-choosable if, given any list assignment L such that |L(v)| ≥ k for each vertex v
of G, there is a w-coherent L-colouring.

Similarly, a Zp-colouring c of G is w-circular if |c(u) − c(v)|p ≥ w(uv) for every edge uv of G. A
graphG is w-circular k-choosable if, given any Zp-list assignment L such that |L(v)| ≥ k for each vertex
v of G, there is a w-circular L-colouring. Clearly, every w-circular colouring is a w-coherent colouring,
and every w-coherent k-colouring induces a w-circular (k + maxe∈E(G) w(e)− 1)-circular colouring.

The w-degree of a vertex v is dw(v) =
∑
e3v(2w(e) − 1). The maximum w-degree of G, denoted

∆w(G), is max{dw(v) | v ∈ V (G)}. Clearly, using the (one-pass) greedy algorithm, every graph is
w-circular (∆w(G) + 1)-choosable.

The w-semi-degree of a vertex v is d̃w(v) =
∑
e3v w(e), and the maximum semi-degree of a graph

G is ∆̃w(G) = max{d̃w(v) | v ∈ V (G)}. Using the many-passes greedy algorithm, McDiarmid [14]
proved that every graph G is w-coherent (∆̃w(G) + 1)-choosable. Therefore every graph G is w-circular
(∆̃w(G) + maxe∈E(G) w(e))-choosable.

For a digraph D, we denote by E+
D(v) the set of arcs with v as their tails, and by E−D(v) the set of arcs

with v as their heads. Similarly, if D is a digraph, its w-outdegree is d+w(v) =
∑
e∈E+

D(v)(2w(e)− 1).
Extending a result of Norine, Wong and Zhu [17] (Theorem 33), which itself extended a famous result

of Alon and Tarsi [3] (Theorem 32), we use the Combinatorial Nullstellensatz to prove that if a graph
G admits an orientation D with certain property, then for any Zp-list assignment L such that |L(v)| ≥
d+w(v) + 1 for each vertex v, there is a w-circular L-colouring (Lemma 34). In particular, if D is an
orientation of G that contains no odd directed cycles, then it has the required property (Theorem 34).
From this we deduce that if G is bipartite, then it is w-circular (M + 1)-choosable for M =

∑
i(2i −

1)dMad(Gi)/2e, where Gi is the graph induced by the edges of weight i.

1.3 Restricted graph classes
Let G and H be two graph classes. For any parameter A among BBCq , CBCq and CBC`q , we define
A(G,H) as the maximum value of A(G,H) over all pairs (G,H) such that G ∈ G, H ∈ H and H is a
subgraph of G. Let P , F andM be the classes of planar graphs, forests, and matchings respectively.

In Section 5, we consider the case when G is in P and H is in one of the three classes P , F and
M. Inequality (1) and the Four-Colour Theorem imply BBCq(P,P) ≤ 3q + 1 and CBCq(P,P) ≤ 4q.
Moreover, BBCq(G,G) = 3q + 1 and CBCq(G,G) = 4q, for any 4-chromatic planar graph G. Thus

BBCq(P,P) = 3q + 1 and CBCq(P,P) = 4q.

Extending the celebrated planar 5-choosability proof due to Thomassen [19], Havet et al. [10] proved
the that if G is planar, then CBC`q(G,G) ≤ 8q − 3. On the other hand, they constructed planar graphs G
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for which CBC`q(G,G) ≥ 6q − 2. Therefore,

6q − 2 ≤ CBC`q(P,P) ≤ 8q − 3.

But the exact value of CBC`q(P,P) is still unknown.

Problem 7 What is the exact value of CBC`q(P,P) ?

This problem is very closely related to the one posed by Mohar [15].

Problem 8 (Mohar [15]) What is the best upper bound on circular choosability for planar graphs?

Clearly, BBCq(P,M) ≤ BBCq(P,F) ≤ BBCq(P,P) ≤ 3q + 1. However, better upper bounds
have been obtained for BBCq(P,M) and BBCq(P,F). Havet et al. [11] proved that for q ≥ 4,
BBCq(P,F) = q + 6. They also proved that BBC3(P,F) ≤ 9, and conjectured the following.

Conjecture 9 (Havet et al. [11] ) BBC3(P,F) = 8.

Inequality 1 and the Four-Colour Theorem imply that BBC2(P,F) ≤ 7. Broersma et al. [5] showed
BBC2(P,F) ≥ 6 and conjectured the following.

Conjecture 10 (Broersma et al. [5]) BBC2(P,F) = 6.

Havet et al. [11] showed that Conjecture 10 implies Conjecture 9.
They also proved that CBCq(P,F) ≤ 2q+ 4 and conjectured that this upper bound can be reduced by

at least one.

Conjecture 11 CBCq(P,F) ≤ 2q + 3.

It might even be possible that the bound 2q + 3 is not optimal.
Regarding matching backbones, Broersma et al. [6] proved that for BBCq(P,M) = q+3 for all q ≥ 3

and conjecture that the same holds for q = 2.

Conjecture 12 BBC2(P,M) = 5.

By Inequality (2), the fact that BBCq(P,M) ≤ q + 3 implies that CBCq(P,M) ≤ 2q + 2. The
missing case q = 2 of this inequality was proved by Broersma et al. [6].

Proposition 13 (Broersma et al. [6]) CBCq(P,M) ≤ 2q + 2.

They also show an example for which the bound is attained for q = 2, so CBC2(P,M) = 6. For larger
value of q, it is still open if the bound 2q + 2 is best possible.

Problem 14 Is it true that CBCq(P,M) ≤ 2q + 1, for all q ≥ 3 ?

We also believe that Conjecture 11 and Proposition 13 extend to list circular backbone colouring.

Conjecture 15 (i) CBC`q(P,F) ≤ 2q + 3;

(ii) CBC`q(P,M) ≤ 2q + 2.

In support of both parts of this conjecture, we derive from our result of Section 4, that if G is a bi-
partite planar graph and F a forest in G, then CBC`q(G,F ) ≤ 2q + 2. Observe that by (3), we have
CBCq(G,F ) ≤ 2q. We also show that CBC`q(P,M) ≤ 2q + 3 (Theorem 42). Our proof also uses the
approach of Thomassen’s 5-choosability proof [19].
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2 Bounding CBCq(G,H) and CBC`
q(G,H) in terms of χ′(H) and

χ`(G)

Theorem 16 LetMq(k) = 4(k2+1)2(2q−1)
log2 e

2 ·22k+1. Then CBC`q(G,H) ≤Mq(χ
`(G)) for any subgraph

H of G.

Proof: Because CBC`q(G,H) ≤ CBC`q(G,G) for any graph G, it is sufficient to prove the inequality for
CBC`q(G,G). Let G be a graph such that χ`(G) = k and CBC`q(G,G) > Mq(k). Let H be the smallest

subgraph of G such that CBC`q(H,H) > Mq(k). Then δ(H) >
Mq(k)−1

2q−1 = 4(k2+1)2

log2 e
2 · 22k. But Alon [1]

proved that if δ(G) > 4(k2+1)2

log2 e
2 · 22k, then χ`(G) > k. Therefore χ`(H) > k and so χ`(G) > k, a

contradiction. 2

We believe the boundMq(k) of Theorem 16 is far from being tight. In particular, whenH is a matching,
we can get an upper bound that is a lot smaller.

Theorem 17 Let G be a graph and M a matching in G. Then

(i) CBC`2(G,M) ≤ 2 · χ`(G) + 1,

(ii) for any q ≥ 3 and any α > 1, there is βq = βq(α) such that CBC`q(G,M) ≤ 2α · χ`(G) + βq .

In order to prove this theorem, we need some definitions. Let A and B be two subsets of N (resp. Zp).
We say that A and B q-interfere if there exists a ∈ A and b ∈ B such that a 6= b and |a − b| < q (resp.
|a− b|p < q).

For any pair of non-negative integers, we define fq(a, b) to be the smallest integer m such that for any
two subsets A and B of N of cardinality at least m, there exist two non-q-interfering sets A′ ⊂ A and
B′ ⊂ B such that |A′| = a, |B′| = b. Similarly, let gq(a, b) be the smallest integer m such that for any p
and any two subsetsA andB of Zp of cardinality at leastm, there exist two non-q-interfering setsA′ ⊂ A
and B′ ⊂ B such that |A′| = a, |B′| = b. These two functions are closely related.

Proposition 18
fq(a, b) ≤ gq(a, b) ≤ fq(a, b) + q − 1.

Proof: If two sets q-interfere in N, then they also q-interfere in Zr (for r sufficiently large). So fq(a, b) ≤
gq(a, b). Now let C and D be two sets in Zp of cardinality fq(a, b) + q − 1, and consider A = C \
{0, . . . , q− 2} and B = D \ {0, . . . , q− 2}. Then |A|, |B| ≥ fq(a, b), so there exist two sets A′ ⊂ A and
B′ ⊂ B of cardinality a and b respectively which do not q-interfere in N. But by the definitions of A and
B, A′ ⊂ C, B′ ⊂ D and A′ and B′ cannot q-interfere in Zp. 2

Let us define hq by hq(k) = gq(k, k). The function hq is useful for our purpose as shown by the
following lemma.

Lemma 19 Let G be a graph and M a matching in G. Then

CBC`q(G,M) ≤ hq(χ`(G)).
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Proof: Let k = χ`(G). Let L be an hq(k)-list assignment in Zp. By definition of hq , for every edge
uv ∈ M , we can find two k-sets L′(u) ⊂ L(u) and L′(v) ⊂ L(v) that do not q-interfere. Since G is
k-choosable, there is an L′-colouring c of G.

We now show that c is a q-backbone colouring of (G,M). First, for any edge xy ∈ E(G), c(x) 6= c(y).
For any edge uv ∈M , c(u) 6= c(v). In addition, sinceL′(u) andL′(v) do not q-interfere, |c(u)−c(v)|p ≥
q. 2

Notation For two integers a and b, we denote by [a, b]p, the set {a, a + 1, . . . , b}, where the numbers
are modulo p. For every integer a, we denote by [a]pq the set [a− q+ 1, a+ q− 1]p. Very often p is either
clear from the context or implicit and we omit the superscript p.

For a real number α and a positive integer q, we define the sequence ψq,α(i) by ψq,α(0) = 1 and
ψq,α(i + 1) = bα · ψq,α(i) + 1c. Observe that ψq,α(i) ≥ αi. Thus if α > 1, then ψq,α(i) − (q + 1)i
tends to infinity when i tends to infinity. Let i∗ = i∗(q, α) be the smallest positive integer such that
(q − 1)i∗ < ψq,α(i∗) and set R(q, α) = (2q − 3)ψq,α(i∗)− 1.

Lemma 20 (i) f2(a, b) ≤ a+ b.

(ii) For any integer q ≥ 3 and any real number α ≥ 1, we have fq(a, b) ≤ α(a+ b) +R(q, α).

Proof: (i) We prove the result by induction on a+ b, the result holding trivially when a = 0 or b = 0. Let
A and B be two sets of integers of size a+ b, and let x be the minimum of A ∪B.

Suppose first x ∈ A∩B. Let C = A\{x, x+ 1}, and D = B \{x, x+ 1}. Then |C|, |D| ≥ a+ b−2,
so by the induction hypothesis, there exist two non-2-interfering sets C ′ ⊂ C and D′ ⊂ D such that
|C ′| = a− 1, |D′| = b− 1. Setting A′ = C ′ ∪ {x} and B′ = D′ ∪ {x}, we obtain the desired sets.

Suppose now x /∈ A ∩ B. Then x is only in one of these two sets, say A. Let C = A \ {x}, and
D = B \ {x + 1}. Then |C|, |D| ≥ a + b − 1, so by the induction hypothesis, there exist two non-2-
interfering sets C ′ ⊂ C and D′ ⊂ D such that |C ′| = a − 1, |D′| = b. Setting A′ = C ′ ∪ {x} and
B′ = D′, we obtain the desired sets.

(ii) We prove the result by induction on a+ b. Let A and B be two sets of integers of size α(a+ b) +
R(q, α).

Assume a < ψq,α(i∗). Then one can choose any a-subset A′ of A. It forbids at most a × (2q − 2)
elements to be chosen in B. So since B is of cardinality at least b+ a+R(q, α) ≥ b+ (2q− 2)a, we can
find a b-subset B′ that does not q-interfere with A′.

We get the result similarly if b < ψq,α(i∗). Henceforth we now assume that a and b are both greater or
equal to ψq,α(i∗).

Let x be the smallest element of A ∪ B. Without loss of generality, we may assume that x ∈ A.
Consider C1 = A \ {x} and D1 = B \ [x, x+ q − 1]. If |B ∩ [x, x+ q − 1]| ≤ α · ψq,α(0), then C1 and
D1 are both of cardinality at least α(a + b − 1) + R(q, α). Hence by the induction hypothesis, we can
find an (a− 1)-set C ′ in C1 and a b-set B′ in D1 which do not q-interfere. Then, A′ = C ′ ∪ {x} and B′

are the desired sets. Hence we may assume that at least ψq,α(1) elements of B are in [x, x+ q − 1].
We now extend the argument by removing the ψq,α(1) smallest elements of B. For any k, let A(k)

(resp. B(k)) be the set of the k smallest elements in A (resp. B). Consider D2 = B \ B(ψq,α(1)) and
C2 = A\ [x, x+2(q−1)]. If |A∩ [x, x+2(q−1)]| ≤ α ·ψq,α(1), then C2 andD2 are both of cardinality
at least α(a+b−ψq,α(1))+R(q). Hence by the induction hypothesis, we can find an a-setA′ in C2 and a
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(b−ψq,α(1))-set D′ in D2 which do not q-interfere. Then, A′ and B′ = D′ ∪B(ψq,α(1)) are the desired
sets. (They do not interfere because, as we proved in the last paragraph, B(ψq,α(1)) ⊆ [x, x + q − 1]).
Hence we may assume that A(ψq,α(2)) ⊆ [x, x+ 2(q − 1)].

We continue to extend the argument for ψq,α(i), with 2 ≤ i ≤ i∗, alternating the roles of A and B, as
follows. If i is odd, consider Ci = A\A(ψq,α(i−1)) andDi = B \ [x, x+ i(q−1)]. If |B∩ [x, x+ i(q−
1)]| ≤ α · ψq,α(i− 1), then Ci and Di are both of cardinality at least α(a+ b− ψq,α(i− 1)) +R(q, α).
Hence by the induction hypothesis, we can find an (a − ψq,α(i − 1))-set C ′ in Ci and a b-set B′ in
Di which do not q-interfere. Then, A′ = C ′ ∪ A(ψq,α(i − 1)) and B′ are the desired sets. Hence we
may assume that B(ψq,α(i)) ⊂ [x, x + i(q − 1)]. If i is even, consider Di = B \ B(ψq,α(i − 1)) and
Ci = A\ [x, x+i(q−1)]. If |A∩ [x, x+i(q−1)]| ≤ α ·ψq,α(i−1), thenCi andDi are both of cardinality
at least α(a+ b− ψq,α(i− 1)) +R(q, α). Hence by the induction hypothesis, we can find an a-set A′ in
Ci and a (b − ψq,α(i − 1))-set B′ in Di which do not q-interfere. Then, A′ and B′ = D′ ∪ B(ψq,α(i))
are the desired sets. Hence we may assume that A(ψq,α(i)) ⊂ [x, x+ i(q − 1)].

So, depending on the parity of i∗, [x, x+ i∗(q− 1)] contains at least ψq,α(i∗) vertices of either A or B.
But this is impossible, because [x, x+ i∗(q − 1)] has cardinality less than ψq,α(i− 1) by definition of i∗.
2

Corollary 21 (i) g2(a, b) ≤ a+ b+ 1.

(ii) for any q ≥ 3 and any α > 1, gq(a, b) ≤ α(a+ b) +R(q, α) + q − 1.

Remark 22 a + b + 1 may not be replaced by a + b, even if a = b, in Corollary 21 (i). Just consider
a = b and Z4a with A the set of even numbers and B the set of odd numbers. One can check that any pair
of two a-sets A′ ⊂ A and B′ ⊂ B 2-interfere.

Theorem 17 derives directly from Corollary 21 and Lemma 19. It can also be generalized to any
subgraph H . Indeed in the very same way as Lemma 19, we can prove the following.

Lemma 23 Let G be a graph, H a subgraph of G and M a matching in H . Then

CBC`q(G,H) ≤ hq(CBC`q(G,H −M)).

Hence by induction, we get the following theorem, where χ′(H) denotes the chromatic index of H .

Theorem 24 LetG be a graph andH a subgraph ofG and let q ≥ 2 be an integer. Then CBC`q(G,H) ≤
2χ
′(H)(1 + o(1))χ`(G).

Remark 25 In the case q = 2, one can get rid of the o(1) term and show that CBC`2(G,H) ≤ 2χ
′(H)χ`(G)+

1. It suffices to observe that we can remove one fixed colour so that the colours behave like on N. Then for
each matchingM of a proper edge-colouring, we must divide the list by 2 so that there is no 2-interference
between vertices linked by an edge in M .

3 2-choosable graphs
In this section we study list backbone colouring of 2-choosable graphs.

Let t and q be two positive integers. The (t, q)-kernel of (G,H) is the maximal subset K of V (G) such
that dG[K](v) + (2q − 2)dH[K](v) ≥ t for every vertex v ∈ K. Observe that if t ≥ 2q, then the graph
G[K] is a subgraph of the heart of G.

By convention, CBC`q(N,N) = 1 if N is the null graph.
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Lemma 26 Let t and q be two positive integers, and let G be a graph and M a matching in G, and let K
be its (t, q)-kernel. Then CBC`q(G,M) ≤ t if and only if CBC`q(G[K],M [K]) ≤ t.

Proof: Clearly, CBC`q(G[K],M [K]) ≤ CBC`q(G,M), so we only need to prove that CBC`q(G,M) ≤ t
if CBC`q(G[K],M [K]) ≤ t.

Let L be an t-list assignment on G in Zr. It is easy to see that for any subgraph G′ of G, if there is a
vertex v such that dG′(v)+(2q−2)dH′(v) < t, whereH ′ = H[V (G′)], then any q-backbone L-colouring
of (G′ − v,H ′ − v) can be extended into a q-backbone L-colouring of (G′, H ′).

Now by definition of K, there exists a sequence v1, . . . , vp of V (G) \K such that for all 1 ≤ i ≤ p,
dGi

(v)+(2q−2)dHi
(v) < t, whereGi = G[K∪{v1, . . . , vi}] andHi = H[K∪{v1, . . . , vi}]. Therefore

any q-backbone L-colouring of (G[K],M [K]) can be iteratively extended into a q-backbone L-colouring
of (G1, H1), (G2, H2), . . . (Gp, Hp) = (G,H).

2

Lemma 26 and Theorem 6 immediately imply the following.

Corollary 27 Let G be a graph and H a nonempty subgraph of G. If the heart of G is a single vertex or
an even cycle, then CBC`q(G,H) = 2q.

Theorem 28 If G is a 2-choosable graph and M a matching, then CBC`q(G,M) = 2q.

Proof: Clearly, it is enough to prove the statement for connected graphs. So we may assume that G is
connected.

LetH be the heart ofG, and letN = M [V (H)]. Observe that ifH is a θ2m,2,2 for some integerm ≥ 1,
with x and y its two vertices of degree three, thenH−{x, y} has three connected components of odd order.
Hence, there is a vertex v ofH \{x, y} that is not matched inN , and for which dH(v)+(2q−2)dN (v) =
dH(v) < 2q.

By Theorem 4, it follows that the (2q, q)-kernel of (G,M) is either the empty set, or a set K such that
G[K] is an even cycle andM [K] a perfect matching ofG[K]. Hence, by Theorem 6, CBC`q(G[K],M [K]) ≤
2q, and so by Lemma 26, CBC`q(G,M) ≤ 2q. 2

Remark 29 In the above proof, Theorem 6 is not necessarily required as it is easy to see that CBC`q(G,M) ≤
2q for an even cycle G and a matching M .

Theorem 30 If G is a 2-choosable graph and H is a subgraph of G not containing its heart, then
CBC`q(G,H) ≤ 2q + 1.

Proof: Again it is enough to prove the statement for G connected. If H does not contain the heart of G,
then, using Theorem 4, one easily sees that the (2q + 1, q)-kernel of (G,H) is either the empty graph or
an even cycle. Therefore Theorem 6 and Lemma 26 yield the result. 2



98 Frédéric Havet and Andrew D. King

4 Weighted circular list colouring via the Combinatorial Nullstel-
lensatz

In this section we shall use the following theorem, called the Combinatorial Nullstellensatz, to establish
some results on circular backbone colouring.

Theorem 31 Let F be an arbitrary field, and let P = P (x1, . . . , xn) be a polynomial in F [x1, . . . , xn].
Suppose that the degree deg(P ) of P is

∑n
i=1 ti, where each ti is a non-negative integer, and suppose the

coefficient of
∏n
i=1 x

ti
i in P is non-zero. Then, if S1, . . . , Sn are subsets of F with |Si| > ti, there are

s1 ∈ S1, . . . , sn ∈ Sn so that
P (s1, . . . , sn) 6= 0.

LetG be a graph with vertex set {v1, . . . , vn}. The graph polynomial fG ofG is defined by fG(x1, . . . , xn) =∏
{(xi − xj) | i < j, vivj ∈ E(G)}. Alon and Tarsi [3] applied the Combinatorial Nullstellensatz to the

graph polynomial to obtain the following theorem on choosability.

Theorem 32 (Alon and Tarsi [3]) Let D be an orientation of a graph G, and let ee(D) and oe(D) re-
spectively the numbers of even and odd eulerian spanning subdigraphs of D. If ee(D) 6= oe(D), then for
any list assignment L such that |L(v)| ≥ d+(v) + 1 for all v, the graph G is L-choosable.

Let G be a graph with vertex set {v1, v2, . . . , vn} and let p and q be two positives integers. Its (p, q)-
circular polynomial of G is

CPGp,q(x1, x2, . . . , xn) =
∏

vjvj′∈E(G)

j<j′

q−1∏
k=−q+1

(xj − exp(2πik/p)xj′).

Let γ : {0, . . . , p−1} → C be the function defined by γ(k) = exp(2πik/p). It is obvious that a mapping
c : V (G)→ {0, . . . , p− 1} is a (p, q)-colouring of G if and only if

CPGp,q(γ(c(v1)), γ(c(v2)), . . . , γ(c(vn)) 6= 0.

Applying the Combinatorial Nullstellensatz to the (p, q)-circular polynomials, Norine, Wong and Zhu [17]
established a generalization of Theorem 32, from which they deduced the following.

Theorem 33 (Norine, Wong and Zhu [17]) Suppose G is a graph and D is an orientation of G which
contains no odd directed cycles. Let L be a Zp-list assignment forG such that |L(v)| = (2q−1)d+D(v)+1
for each vertex v. Then G is L-(p, q)-colourable.

In this section, we shall extend Theorem 33 to w-circular colouring. We will prove the following
theorem.

Theorem 34 Suppose G is a graph with a positive integer edge weighting w. Suppose moreover that D
is an orientation of G which contains no odd directed cycles. If L is a Zp-list assignment for G such that
|L(v)| = d+w(v) + 1 for each vertex v, then G is w-circularly L-colourable.
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Let G be a graph with vertex set {v1, v2, . . . , vn}, w an edge weight of G, and p a positive integer. The
(p, w)-circular polynomial of G is

CPGp,w(x1, x2, . . . , xn) =
∏

vjvj′∈E(G)

j<j′

w(vjvj′ )−1∏
k=−w(vjvj′ )+1

(xj − exp(2πik/p)xj′).

Observe that when w(e) = q for all e ∈ E(G), then CPGp,w = CPGp,q . Let γ : Zp → C be defined as
γ(l) = exp(2πil/p) for l ∈ Zp. It is obvious that a mapping c : V → Zp is a w-circular colouring of G
if and only if

CPGp,w(γ(c(v1)), γ(c(v2)), . . . , γ(c(vn))) 6= 0.

Thus, the graphG isw-circularlyL-colourable if and only if there exist s1 ∈ L(v1), s2 ∈ L(v2), . . . , sn ∈
L(vn) such that CPGp,w(γ(s1), γ(s2), . . . , γ(sn)) 6= 0.

The degree of CPGp,w is
∑
e∈E(2w(e) − 1) =

∑n
j=1 d

+
w(vj). Thus by Theorem 31, if there is an

orientation D such that the coefficient of the monomial
∏n
j=1 x

d+w(vj)
j is nonzero, the graph G is w-

circularly L-colourable for any Zp-list assignment L such that |L(v)| = d+w(v) + 1 for all v ∈ V (G).
Let D be an orientation of G. A non-negative integer mapping φ : E(D) → Z is w-consistent if

0 ≤ φ(e) ≤ 2w(e)− 1 for all e ∈ E(D). It is eulerian if for every vertex v,∑
e∈E+

D(v)

φ(e) =
∑

e∈E−D(v)

φ(e).

A mapping that is consistent and eulerian is said to be nice. A mapping φ is called even (respectively,
odd) if

∑
e∈E(D) φ(e) is even (respectively, odd).

For an arc (vj , vj′) of D of weight q and for 0 ≤ φ(e) ≤ 2q − 1, the coefficient of x2q−1−φ(e)j x
φ(e)
j′ in∏q−1

k=−q+1(xj − exp(2πik/p)xj′) is equal to∑
J⊆{−q+1,...,q−1}

|J|=φ(e)

∏
j∈J

(− exp(2πij/p)) = (−1)φ(e)aφ(e)(p, q),

where
aφ(e)(p, q) =

∑
J⊆{−q+1,...,q−1}

|J|=φ(e)

∏
j∈J

exp(2πij/p).

It is easy to see that a w-consistent mapping φ makes a contribution to the monomial
∏n
j=1 x

d+w(vj)
j if and

only if it is nice. Moreover, such a mapping contributes for an amount

A(p, w, φ) =
∏

e∈E(D)

(−1)φ(e)aφ(e)(p, w(e)).
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Therefore, the coefficient of
n∏
j=1

x
d+w(vj)
j in CPGp,w is

∑
φ nice

∏
e∈E(D)

(−1)φ(e)aφ(e)(p, w(e)) =
∑

φ nice and even
A(p, w, φ)−

∑
φ nice and odd

A(p, w, φ).

Hence, we get the following lemma.

Lemma 35 Suppose a graph G has an orientation D for which∑
φ nice and even

A(p, w, φ) 6=
∑

φ nice and odd
A(p, w, φ).

If L is a Zp-list assignment for G such that |L(v)| = d+w(v) + 1 for each vertex v, then G is w-circularly
L-colourable.

Observe now that each al(p, q) is a real because it is equal to its conjugate. We can also see that
a0(p, q) = a2q−1(p, q) = 1. A result of Evans and Montgomery [8] implies that if p ≥ 2q, then the values
of al(p, q), for fixed p and q, are unimodal. It follows that all values of al(p, q) are at least 1 – Norine,
Wong and Zhu proved this from first principles for certain values of p and q [17].

Lemma 36 Let p and q be two positive integers such that p ≥ 2q. For any 0 ≤ l ≤ 2q − 1, al(p, q) ≥ 1.

From Lemmas 35 and 36, we now derive Theorem 34.

Proof Proof of Theorem 34: By Lemma 35, it suffices to show that∑
φ nice and even

A(p, w, φ) 6=
∑

φ nice and odd
A(p, w, φ).

For a nice mapping φ, let Dφ be the multi-digraph obtained from D by replacing each arc (vj , vj′) by
φ(e) parallel arcs from vj to vj′ . Since φ is eulerian, then Dφ is an eulerian multi-digraph. Each directed
cycle of Dφ corresponds to a directed cycle of D. Since D has no directed cycle of odd length, Dφ has
no directed cycle of odd length. Thus |E(Dφ)| is even, i.e.

∑
e∈E(D) φ(e) is even. So D has no odd nice

mapping, and so
∑
φ nice and oddA(p, w, φ) = 0.

Now Lemma 36 implies that all theA(p, w, φ) are positive. But there is at least one nice even mapping,
namely the one for which φ(e) = 0 for all e ∈ E(D). So

∑
φ nice and evenA(p, w, φ) > 0. 2

We shall now apply Theorem 34. We need the following simple lemma which was first proved by
Hakimi [9]. It also appears independently in several papers [18, 2, 3].

Lemma 37 A graphG has an orientationD with maximum outdegree at most ∆+ if and only if Mad(G)/2 ≤
∆+.

For a graph G and an edge weighting w, we define M(G,w) :=
∑
i∈N∗(2i− 1)dMad(Gi)/2e, where

Gi is the subgraph of G induced by the edges of weight i, for all i ∈ N∗.

Corollary 38 Let G be a graph and w an edge-weighting. Then G has an orientation D such that
d+w(v) ≤M(G,w) for all v ∈ V .
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Proof: It suffices to orient each Gi separately in such a way that the maximum outdegree is at most
dMad(Gi)/2e, which is possible by Lemma 37. The union of these orientations yields the desired one. 2

Theorem 34 and Corollary 38 immediately yield the following.

Theorem 39 Let G be a bipartite graph and w an edge weighting. Then G is w-circular (M(G,w) + 1)-
choosable.

Proof: By Corollary 38 , G admits an orientation D such that d+w(v) ≤ M(G,w) for all v ∈ V . Since
G is bipartite, it has no odd cycles and so D has no directed odd cycles. Hence by Theorem 34, G is
(M(G,w) + 1)-choosable. 2

5 A stronger result for planar graphs
If G is a bipartite planar graph then Mad(G) < 4, and if T is a tree then Mad(T ) < 2. Thus, Theorem 39
directly implies the following.

Corollary 40 If G is a bipartite planar graph and T a spanning tree of G, then CBC`q(G,T ) ≤ 2q + 2.

When the planar graph G is no longer required to be bipartite, we can use an acyclic orientation D with
maximum outdegree 5. Such an orientation exists because a planar graph is 5-degenerate. Considering
such an orientation, we derive the following, which corresponds to greedy colouring according to a linear
ordering extending D (i.e. an ordering < such that x < y whenever (y, x) is an arc in D).

Corollary 41 LetG be a planar graph andH be a subgraph inG. Then CBC`q(G,H) ≤ (2q−2)∆(H)+
6.

Proof: Let w be the edge-weight defined by w(e) = q if e ∈ E(H) and w(e) = 1 if e ∈ E(G) \ E(H).
Then for the orientationD with maximum outdegree 5, we have ∆+

w(D) ≤ (2q−2)∆(H)+5. SinceD is
acyclic, it contains no odd directed cycles, and so by Theorem 34, (G,w) is circular ((2q−2)∆(H)+6)-
choosable. 2

In particular, if G is a planar graph and M a matching, CBC`q(G,M) ≤ 2q + 4. Using a different
technique, we now prove a slightly stronger bound.

Theorem 42 Let G be a planar graph and M be a matching in G. Then CBC`q(G,M) ≤ 2q + 3.

We borrow the approach of Thomassen’s 5-choosability proof [19], and actually establish a slightly
stronger result.

Theorem 43 Let p and q be two positive integers such that p ≥ 2q + 3. Let G be a near triangulation
with outer cycle C, M a matching in G and let L be a list assignment such that:

• |L(v)| ≥ 3 for all v ∈ V (C) \ V (M);

• |L(v)| ≥ 2q + 1 for all v ∈ V (C) ∩ V (M);

• |L(v)| ≥ 2q + 3 otherwise.

Then any valid precolouring of two adjacent vertices of C can be extended to a circular q-backbone
L-colouring of (G,M).
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To prove this theorem, we need the following lemma.

Lemma 44 Let q be a positive integer and let S and T be two sets of size 2q and 2q + 3 respectively in
Zp. Then there exist two elements a and b of S such that |T \ ([a]q ∪ [b]q)| ≥ 3.

Proof: The result holds trivially when q = 1.

Let us now prove the case q = 2. If two elements a and b of S are consecutive in Zp, then [a]2∪[b]2 = 4,
and we trivially have the result. So we may assume that the elements of S are pairwise non-consecutive.
Let 1 ≤ s1 < s2 < s3 < s4 ≤ p be the elements of S and set I = [s1]2 ∪ [s2]2 and J = [s3]2 ∪ [s4]2.
Because the elements of S are pairwise non-consecutive, |I ∩ J | ≤ 2. But,

|I ∩ T |+ |J ∩ T | = |(I ∪ J) ∩ T |+ |(I ∩ J) ∩ T | ≤ |T |+ |I ∩ J | ≤ 9.

Hence either I ∩ T or J ∩ T has size at most 4. Therefore either s1 and s2 or s3 and s4 are the desired
elements of S.

Suppose now that q ≥ 3. We prove the result by induction on p.
If two elements a and b of S are consecutive (in particular if p ≤ 4q− 1), then [a]q ∪ [b]q = 2q, and we

trivially have the result. Thus we may assume that the elements of S are pairwise non-consecutive.
Assume now that an element, say p, is not in S ∪ T . Then apply induction on Zp−1 with the same S

and T . It is easy to see that the two elements a and b such that |T \ ([a]p−1q ∪ [b]p−1q )| ≥ 3 also satisfy
|T \ ([a]pq ∪ [b]pq)| ≥ 3.

Let 1 ≤ s1 < s2 < · · · < s2q ≤ p be the vertices of S. For 1 ≤ i ≤ 2q − 1, let Ii = [si, si+1] and let
I2q = [s2q, p] ∪ [1, s1]. Set Ji = Ii \ S for each i. By the above arguments, each Ji contains at least one
vertex of T , so at most 3 vertices are in T ∩ S. Moreover a vertex of T is in exactly one Ii if it is in T \ S
and in exactly two Ii if it is in T ∩ S. Hence if q ≥ 4, there must be an Ii such that |T ∩ Ii| = 1. Then si
and si+1 satisfy |T \ ([si]q ∪ [si+1]q)| ≥ 3. If q = 3, then either there is an Ii such that |T ∩ Ii| = 1 and
we get the result, or S ∩ T is one of the two sets {s1, s3, s5} and {s2, s4, s6}. In that case, one can check
that |T \ ([s1]q ∪ [s2]q)| ≥ 3. 2

Proof Proof of Theorem 43: The proof is by induction on the number of vertices n. The result holds if
G is a triangle since there is at least 3 − 2 = 1 choice to colour the last vertex v if it is not matched, and
at least 2q + 1− 2q = 1 choice to colour the last vertex v if it is matched. Assume now that the result is
true for every near triangulation with at most n− 1 ≥ 3 vertices, and let G be a near triangulation with n
vertices. We let u1u2 . . . uk be the outer cycle of G, and u1 and u2 be the two precoloured vertices with
respective colours c1 and c2.

Case 1: G has a chord uiuj with i < j. We use the induction hypothesis on the near triangulation whose
outer cycle is u1u2 . . . uiujuj+1 . . . uku1. Next we use the induction hypothesis on the near triangulation
whose outer cycle is uiui+1 . . . ujui, the two precoloured vertices being ui and uj . The result follows
easily.

Case 2: G has no chord. Let v1, . . . , vd be the neighbours of uk that do not belong to C. Without
loss of generality, we can assume that uk−1v1v2 . . . vdu1 is a path. Set G′ = G − uk, noting that G′ is a
near-triangulation.

We shall distinguish four cases:
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• Subcase 1: uku1 ∈ M . Since L(uk) ≥ 2q + 1, there exist two colours a and b in L(uk) \ [c1]q .
We define the list assignment L′ of G′ by L′(v) := L(v) if v /∈ {v1, v2, . . . , vd} and L′(v) :=
L(v) \ {a, b} otherwise. Then |L′(vi)| ≥ 2q + 3 − 2 = 2q + 1 for each i. Thus we can apply the
induction hypothesis to G′ and L′. Now we complete the colouring of G by colouring uk with a if
c(uk−1) 6= a and with b otherwise.

• Subcase 2: uk−1uk ∈ M . Since L(uk) ≥ 2q + 1, there exist two colours a and b in L(uk) \ {c1}
such that |a − b|p ≥ q + 1. Thus |[a]q ∩ [b]q| ≤ 2q − 2. We define the list assignment L′

of G′ by L′(v) := L(v) if v /∈ {uk−1, v1, v2, . . . , vd}, and L′(v) := L(v) \ {a, b} otherwise.
For each 3-subset S of L(uk−1), we define the list assignment L′S of G′ by L′S(v) := L(v) if
v /∈ {uk−1, v1, v2, . . . , vd}, L′S(uk−1) = S and L′S(v) := L(v) \ {a, b} otherwise. Again since
|L′S(vi)| ≥ 2q + 3 − 2 = 2q + 1 for each i, we can apply the induction hypothesis to G′ and L′S .
Since this applies for any choice of S, for at least 2q − 1 distinct elements c of L(uk−1), there is
a circular q-backbone L′-colouring such that uk is assigned c. One of these values of c is not in
[a]q ∩ [b]q . Hence we can extend the corresponding colouring by colouring uk with a if c /∈ [a]q
and with b otherwise, to obtain a circular q-backbone L-colouring of G.

• Subcase 3: uk is matched to vj , 1 ≤ j ≤ d. Since L(uk) ≥ 2q + 1, by Lemma 44, there exist
two colours a and b in L(uk) \ {c1} such that |L(vj) \ ([a]q ∪ [b]q)| ≥ 3. We define the list
assignment L′ of G′ by L′(v) := L(v) if v /∈ {v1, v2, . . . , vd}, L′(vj) := L(vj) \ ([a]q ∪ [b]q)
and and L′(v) := L(v) \ {a, b} otherwise. Then |L′(vi)| ≥ 2q + 3 − 2 = 2q + 1 for each i 6= j.
Thus we can apply the induction hypothesis to G′ and L′. Now we complete the colouring of G by
colouring uk with a if c(uk−1) 6= a and with b otherwise.

• Subcase 4: uk is not matched. Since L(uk) ≥ 3, there exist two colours a and b in L(uk) \ {c1}.
We define the list assignment L′ of G′ by L′(v) := L(v) if v /∈ {v1, v2, . . . , vd} and L′(v) :=
L(v) \ {a, b} otherwise. Then |L′(vi)| ≥ 2q + 3 − 2 = 2q + 1 for each i. Thus we can apply the
induction hypothesis to G′ and L′. Now we complete the colouring of G by colouring uk with a if
c(uk−1) 6= a and with b otherwise.

2
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