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A graph G is arbitrarily partitionable (AP for short) if for every partition (n1, n2, . . . , np) of |V (G)| there exists a
partition (V1, V2, . . . , Vp) of V (G) such that each Vi induces a connected subgraph of G with order ni. If, addition-
ally, k of these subgraphs (k ≤ p) each contains an arbitrary vertex of G prescribed beforehand, then G is arbitrarily
partitionable under k prescriptions (AP+k for short). Every AP+k graph on n vertices is (k + 1)-connected, and
thus has at least dn(k+1)

2
e edges. We show that there exist AP+k graphs on n vertices and dn(k+1)

2
e edges for every

k ≥ 1 and n ≥ k.

Keywords: arbitrarily partitionable graph, partition under prescriptions, Harary graph

1 Introduction
We denote by V (G) and E(G) the sets of vertices and edges, respectively, of a graph G. The order (resp.
size) of G is the cardinality of the set V (G) (resp. E(G)). If X is a subset of V (G), then G[X] denotes
the subgraph of G induced by X .

In the late 1970s, the following well-known result was proved.

Theorem 1 (Győri [5] and Lovász [7], independently). If G is a k-connected graph, then, given a se-
quence (v1, v2, . . . , vk) of k distinct vertices of G and a sequence (n1, n2, . . . , nk) of k positive integers
adding up to |V (G)|, there exists a partition (V1, V2, . . . , Vk) of V (G) such that vi ∈ Vi, the subgraph
G[Vi] is connected, and |Vi| = ni for every i ∈ {1, 2, . . . , k}.

In this paper, we consider a more general partition problem resulting from the combination of the notion
of arbitrarily partitionable graphs [1] with the constraint of prescribing a set of vertices from Theorem 1.
LetG be a connected graph of order n. A sequence τ = (n1, n2, . . . , np) of positive integers is admissible
for G if it performs a partition of n, that is if

∑p
i=1 ni = n. If, additionally, we can partition V (G) into

p parts (V1, V2, . . . , Vp) such that each Vi induces a connected subgraph of G with order ni, then τ is
realizable in G, the partition (V1, V2, . . . , Vp) being a realization of τ in G. If every admissible sequence
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for G is also realizable in G, then G is arbitrarily partitionable (AP for short). The interested reader is
referred to [1, 2, 6, 8] for a review of some results on AP graphs.

Now suppose that we still want to partition G into an arbitrary number, say p, of connected sub-
graphs G1, G2, . . . , Gp of prescribed orders, but in such a way that for each i ∈ {1, 2, . . . , k} with
fixed k ∈ {1, 2, . . . , p}, the subgraph Gi contains a vertex vi of G arbitrarily chosen beforehand. To
model this additional requirement, the definition of AP graphs can be strenghtened as follows [3]. A
k-prescription of G is a k-tuple P = (v1, v2, . . . , vk) of k distinct vertices of G. We say that a se-
quence τ = (n1, n2, . . . , np) with p ≥ k elements is realizable in G under P if there exists a realization
(V1, V2, . . . , Vp) of τ in G such that the vertex vi belongs to Vi for every i ∈ {1, 2, . . . , k}. Notice that we
have adopted the convention that the elements of τ associated with the prescribed vertices are the first ele-
ments of τ . We say that G is (p, k)-partitionable if every sequence admissible for G consisting of exactly
p elements is realizable in G under every k-prescription. Finally, the graph G is arbitrarily partitionable
under k prescriptions (AP+k for short) if G is (p, k)-partitionable for every p ∈ {k, k + 1, . . . , n}.

According to these definitions, an AP+0 graph is an AP graph. Stated differently, Theorem 1 asserts
that every k-connected graph is (k, k)-partitionable. In the same flavour, note that every k-connected
graph with k ≥ 2 is trivially (k, k − 1)-partitionable. Hence, when dealing with a k-connected graph, we
only consider sequences with strictly more than k elements throughout this paper. It also has to be known
that deciding whether a sequence is realizable in a graph under a prescription is NP-complete in general,
even when the sequence or the prescription has a fixed number of elements [4].

Only a few classes of AP+k graphs are known. For every k ≥ 1, the set of complete graphs on at
least k vertices is a trivial class of AP+k graphs, these graphs having the largest possible size. Regarding
graphs with less edges, it was proved in [3] that kth powers of paths (resp. cycles) are AP+(k − 1) (resp.
AP+(2k−1)) for every k ≥ 1, these results being tight (i.e. we cannot always partition these graphs when
more prescriptions are requested).

In this work, we investigate the least possible size of an AP+k graph. In this scope, we focus on optimal
AP+k graphs, i.e. on AP+k graphs with the least possible number of edges regarding their order and
connectivity. This is done by studying the family of well-known Harary graphs. After having introduced
some notation and preliminary results in Section 2, we prove some more results regarding the partition
of powers of paths or cycles in Section 3. These results are then used to show, in Section 4, that every
(k + 1)-connected Harary graph is an optimal AP+k graph for every k 6= 2. We finally deal with 3-
connected Harary graphs in Section 5. In particular, we show that these graphs are not necessarily AP+2.
We however provide another class of optimal AP+2 graphs instead. All these results imply that, for every
k ≥ 1 and n ≥ k, every optimal AP+k graph with order n has size dn(k+1)

2 e.

2 Definitions, notation, and preliminary results
A subgraph H of a graph G is a spanning subgraph of G if V (H) = V (G). We also say that G is
spanned by H . Given an integer k ≥ 1, the kth power of G, denoted by Gk, is the graph with the same
vertex set as G, two vertices of Gk being adjacent if they are at distance at most k in G. We denote by
Pn (resp. Cn) the path (resp. cycle) on n vertices. The vertices of Pn or Cn are consecutively denoted
by v0, v1, . . . , vn−1. Regarding Pn, the vertices v0 and vn−1 are its first and last vertices, respectively,
sometimes called its endvertices. We use the same terminology to deal with the vertices of P kn (resp. Ckn)
according to its natural spanning Pn (resp. Cn).
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(a) H6,8. (b) H5,10. (c) H3,7.

Fig. 1: Three examples of Harary graphs.

Let k ≥ 1 and n ≥ k be two integers. The k-connected Harary graph on n vertices, denoted by Hk,n,
has a vertex set {v0, v1, . . . , vn−1} and the following edges:

• if k = 2r is even, then two vertices vi and vj are linked if and only if i− r ≤ j ≤ i+ r;

• if k = 2r+1 is odd and n is even, then Hk,n is obtained by joining vi and vi+n
2

in H2r,n for every
i ∈ {0, 1, . . . , n2 − 1};

• if k = 2r + 1 and n are odd, then Hk,n is obtained from H2r,n by first linking v0 to both vbn2 c and
vdn2 e, and then each vertex vi to vi+dn2 e for every i ∈ {1, 2, . . . , bn2 c − 1};

where the subscripts are taken modulo n. Three examples of Harary graphs are given in Figure 1. When
k is odd, the neighbours of a vertex vi of Hk,n which are at distance strictly more than r from vi in the
underlying Cn (there are at most two of them) are called the antipodal neighbours of vi. In particular, the
vertex vi has two antipodal neighbours if and only if i = 0, and k and n are both odd. A diagonal edge of
Hk,n is an edge linking two vertices each of which is an antipodal neighbour of the other one.

IfG is a graph with a natural ordering of its vertices (like powers of paths and cycles, or Harary graphs),
then, for every vertex v ofG, we denote by v+ (resp. v−) the neighbour of v succeeding (resp. preceding)
v in this ordering. Every power of path P kn with underlying path Pn = v0v1 . . . vn−1 is considered to
be depicted in a ”usual” way, i.e. from its leftmost vertex v0 to its rightmost vertex vn−1. By uGv we
refer to the graph G[{u, u+, (u+)+, . . . , v−, v}] for every two vertices u and v of G. Assuming P is a
prescription of G, a prescribed block B of P in G is a set {vij1 , vij2 , . . . , vij`} of consecutive prescribed
vertices, i.e. vij2 = v+ij1

, vij3 = v+ij2
, . . . , vij` = v+ij`−1

. We say that B is maximal if neither v−ij1 nor v+ij`
are prescribed vertices.

One important property of AP graphs is the following.

Observation 2. If a graph G admits a spanning AP (resp. AP+k) subgraph (resp. for some k ≥ 1), then
G is AP (resp. AP+k).

Recall that a graph is traceable if it admits a Hamiltonian path. Since every path is AP, Observation 2
implies the following result.
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Corollary 3. Every traceable graph is AP.

We now point out the following property of AP+k graphs, from which we deduce a bound on the size
of an optimal AP+k graph.

Observation 4. Let k ≥ 1. Every AP+k graph is (k + 1)-connected. Therefore, an optimal AP+k graph
on n vertices has at least dn(k+1)

2 e edges.

Proof: AssumeG is a graph with order n. If there exist k vertices v1, v2, . . . , vk such thatG−{v1, v2, . . . ,
vk} is not connected, then the sequence (1, 1, . . . , 1, n − k) with the value 1 appearing k times cannot
be realized in G under (v1, v2, . . . , vk). Therefore, a necessary condition for G to be AP+k is to be
(k + 1)-connected. The lower bound then follows.

As mentioned by Corollary 3, paths are AP+0, while it is easy to check that cycles are AP+1. Baudon
et al. generalized these observations to powers of paths and cycles [3].

Theorem 5 ([3]). The graph P kn is AP+(k−1) for every k ≥ 1 and n ≥ k. The graph Ckn is AP+(2k−1)
for every k ≥ 1 and n ≥ 2k.

Provided that n ≥ 2k + 2, note that the size of P k+1
n is (k + 1)(n − (k + 1)) +

∑k
i=1 i. Then, since

|E(P k+1
n )| > dn(k+1)

2 e, an optimal AP+k graph on n vertices may have less edges than P k+1
n . On the

contrary, every graph Ckn is 2k-regular and hence is an edge-minimal 2k-connected graph. According to
Observation 4, it follows that the set of kth powers of cycles is a set of optimal AP+(2k − 1) graphs for
every k ≥ 1.

3 Partitioning powers of paths and cycles under prescriptions
As pointed out in Theorem 5, recall that kth powers of paths and cycles are AP+(k−1) and AP+(2k−1),
respectively. This result is tight according to Observation 4, in the sense that we cannot always prescribe
more vertices while partitioning these graphs. In this section, we exhibit situations under which these
graphs can be partitioned under more prescriptions than indicated by their connectivity.

The following first result asserts that kth powers of paths can be partitioned under k-prescriptions when
either the first or the last vertex is prescribed.

Lemma 6 ([3]). Let P = (vi1 , vi2 , . . . , vik) be a k-prescription of P kn with k ≥ 1, n ≥ k and 0 ≤ i1 <
i2 < . . . < ik ≤ n− 1. If i1 = 0 or ik = n− 1, then every sequence τ = (n1, n2, . . . , np) admissible for
P kn with p ≥ k elements is realizable in P kn under P .

In the next result, we prove that kth powers of paths are also partitionable under k-prescriptions when
the prescribed vertices do not form a prescribed block with size k.

Lemma 7. Let P = (vi1 , vi2 , . . . , vik) be a k-prescription of P kn with k ≥ 1, n ≥ k and 0 ≤ i1 <
i2 < . . . < ik ≤ n − 1. If the prescribed vertices do not form a prescribed block with size k, then every
sequence τ = (n1, n2, . . . , np) admissible for P kn with p ≥ k elements is realizable in P kn under P .

Proof: Let G = P kn for given values of k ≥ 1 and n ≥ k. If s =
∑p
j=k+1 nj ≤ i1, then a realization of

τ in G under P is (V1, V2, . . . , Vp) where (Vk+1, Vk+2, . . . , Vp) is a realization of (nk+1, nk+2, . . . , np)
in the traceable graph G[{v0, v1, . . . , vs−1}], and (V1, V2, . . . , Vk) is a realization of (n1, n2, . . . , nk) in
G− {v0, v1, . . . , vs−1} under P which exists according to Theorem 1.
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Suppose now that s > i1. On the one hand, if n1 > i1, then a realization of τ in G under P is (V ′1 ∪
V ′′1 , V2, V3, . . . , Vp), where V ′1 = {v0, v1, . . . , vi1−1} and (V ′′1 , V2, V3, . . . , Vp) is a realization of (n1 −
i1, n2, . . . , np) in G− V ′1 under P obtained via Lemma 6. On the other hand, if n1 ≤ i1, then let V1 be a
subset of {v0, v1, . . . , vi1} obtained as follows. First, we set V1 = {vi1} and we then repeatedly add to V1
the vertex located at distance 2 on the left of the last vertex added to V1 as long as |V1| < n1 and v0 is not
reached. If there is no vertex at distance 2 on the left of the last vertex added to V1 (but V1 needs additional
vertices), then we add to V1 every remaining vertex from {v0, v1, . . . , vi1−1} − V1 from left to right until
V1 has size n1. Let X = {v0, v1, . . . , vi1−1} − V1. Notice that, at the end of the procedure, G[V1] is
connected, G[X] is traceable, and vi1−1 ∈ X . Now, if there exists r ∈ {k + 1, k + 2, . . . , p} such that∑r
j=k+1 nj = |X|, then a realization of τ in G under P is (V1, V2, . . . , Vp) where (Vk+1, Vk+2, . . . , Vr)

is a realization of (nk+1, nk+2, . . . , nr) in G[X] and (V2, V3, . . . , Vk, Vr+1, Vr+2, . . . , Vp) is a realization
of (n2, n3, . . . , nk, nr+1, nr+2, . . . , np) in G− {v0, v1, . . . , vi1} under {vi2 , vi3 . . . , vik} obtained using
Theorem 5.

If such a value of r does not exist, then let r be such that
∑r−1
j=k+1 nj < |X| and

∑r
j=k+1 nj > |X|.

Let further n′r = |X|−
∑r−1
j=k+1 nj , n

′′
r = nr−n′r, and va 6∈ P be the nearest neighbour of vi1−1 located

on the right of vi1 . Such a vertex necessarily exists since the opposite assumption would imply that our
k prescribed vertices are located consecutively along G. Moreover, either va or vi2 is the first vertex
of G − {v0, v1, . . . , vi1}. We then obtain a realization (V1, V2, . . . , Vr−1, V

′
r ∪ V ′′r , Vr+1, Vr+2, . . . , Vp)

of τ in G under P , where (V ′r , Vk+1, Vk+2, . . . , Vr−1) is a realization of (n′r, nk+1, nk+2, . . . , nr−1) in
G[X] under (vi1−1), and (V2, V3, . . . , Vk, V

′′
r , Vr+1, Vr+2, . . . , Vp) is a realization of (n2, n3, . . . , nk, n

′′
r ,

nr+1, nr+2, . . . , np) in G[{vi1+1, vi1+2, . . . , vn−1}] under (vi2 , vi3 , . . . , vik , va). These two realizations
exist according to Lemma 6.

We now strengthen Lemma 6 by showing that kth powers of paths are partitionable under (k + 1)-
prescriptions when their endvertices are prescribed.

Lemma 8. Let P = (vi1 , vi2 , . . . , vik+1
) be a (k + 1)-prescription of P kn with k ≥ 1, n ≥ k and

0 ≤ i1 < i2 < . . . < ik+1 ≤ n−1. If i1 = 0 and ik+1 = n−1, then every sequence τ = (n1, n2, . . . , np)
admissible for P kn with p ≥ k + 1 elements is realizable in P kn under P .

Proof: We prove this claim by induction on k. For k = 1, the result is obvious. We thus now suppose
that k ≥ 2 and that the claim holds for every k′ < k. Let G = P kn . If n1 ≤ i2, then a realization of τ
in G under P is (V1, V2, . . . , Vp) where V1 = {v0, v1, . . . , vn1−1} and (V2, V3, . . . , Vp) is a realization of
(n2, n3, . . . , np) in G − V1 under (vi2 , vi3 , . . . , vik+1

). This realization necessarily exists according to
Lemma 6 since vik+1

is the last vertex of G− V1.
Suppose now that n1 > i2. Observe that {0, 1, . . . , k − 1} −

⋃k
j=2{ij mod k} is not empty, so let us

denote by r one of its elements. The subset V1 of the realization is constructed as follows. It first contains
all the vertices between v0 and vi2−1, i.e. {v0, v1, . . . , vi2−1} ⊆ V1. We then add the vertex va to V1,
where a ∈ {i2 + 1, i2 + 2, . . . , i2 + k − 1} is such that a ≡ r mod k. Finally, as long as |V1| < n1, we
repeatedly add to V1 the vertex at distance k on the right from the last vertex added to V1, unless it is equal
to vn−1, i.e. va+k, then va+2k, and so on. According to our choice of r, these vertices are not prescribed
ones and, at any moment of the procedure, the subgraph G − V1 is spanned by the (k − 1)th power of a
path, and the subgraph G[V1] is connected.

On the one hand, if |V1| = n1 holds after the procedure, then (V1, V2, . . . , Vp) is a realization of τ
under P , where (V2, V3, . . . , Vp) is a realization of (n2, n3, . . . , np) in G − V1 under the prescription
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(vi2 , vi3 , . . . , vik+1
) which necessarily exists by the induction hypothesis since vi2 and vik+1

are the end-
vertices of G− V1.

On the other hand, if |V1| < n1 holds once the procedure is achieved, then each vertex from V (G)−V1
has a neighbour in V1. Hence, we can obtain a realization (V1 ∪ V ′1 , V2, V3, . . . , Vp) of τ in G under
P , where (V2, V3, . . . , Vp, V

′
1) is a realization of (n2, n3, . . . , np, n1 − |V1|) in G − V1 under the pre-

scription (vi2 , vi3 , . . . , vik+1
). Once again, such a realization necessarily exists according to the induction

hypothesis.

We now prove an analogous result concerning cycles to the power of at least 2. Let G = Ckn for
some k ≥ 2 and n ≥ 2k, the sequence τ = (n0, n1, . . . , np−1) be admissible for G, and P =
(vi0 , vi1 , . . . , vi2k−1

) be a 2k-prescription of G, with p ≥ 2k and 0 ≤ i0 < i1 < . . . < i2k−1 ≤ n − 1.
For every j ∈ {0, 1, . . . , 2k − 1}, we denote by Dj the set {v+ij−1

, (v+ij−1
)+, . . . , v−ij , vij} containing the

consecutive vertices of G lying between vij−1
and vij , including vij . The size of every Dj is denoted dj .

In particular, we have
∑2k−1
j=0 dj = n.

Lemma 9. Let P = (vi0 , vi1 , . . . , vi2k−1
) be a 2k-prescription of Ckn with k ≥ 2, n ≥ 2k and 0 ≤ i0 <

i1 < . . . < i2k−1 ≤ n − 1. If the prescribed vertices are not organized into two maximal prescribed
blocks with size k, then every sequence τ = (n0, n1, . . . , np−1) admissible for Ckn with p ≥ 2k elements
is realizable in Ckn under P .

Proof: Let k ≥ 2 be fixed, and G = Ckn for some value of n ≥ 2k. We prove that every partition
τ = (n0, n1, . . . , np−1) of n with p ≥ 2k elements is realizable in G under every 2k-prescription P =
(vi0 , vi1 , . . . , vi2k−1

) with 0 ≤ i0 < i1 < . . . < i2k−1 ≤ n− 1 when the prescribed vertices do not form
two maximal prescribed blocks with size k. For every j ∈ {0, 1, . . . , 2k − 1}, let qj =

∑j+k−1
`=j d` and

sj =
∑j+k−1
`=j n`, where the indices are counted modulo 2k. In other words, the value qj is the order

of the graph v+ij−1
Gvij+k−1

= G[{i+j−1, (i
+
j−1)

+, . . . , ij+k−1}] including the k prescribed vertices vij ,
vij+1

, . . . , vij+k−1
, and sj is the amount of vertices needed by the subgraphs containing these prescribed

vertices in a realization of τ in G under P . Note that there necessarily exists a j such that sj ≤ qj since
having

∑2k−1
j=0 sj ≥

∑2k−1
j=0 (qj + 1) implies k

∑2k−1
`=0 n` ≥ k

∑2k−1
`=0 d` + 2k, which is impossible since

n =
∑2k−1
`=0 d` and n ≥

∑2k−1
`=0 n`. To prove the claim, we distinguish several cases depending on the

relationship between sj’s and qj’s.

Case 1. sj = qj for some j ∈ {0, 1, . . . , 2k − 1}.
In this situation, a realization of τ in G under P is deduced as follows. Assume j = 0 with-
out loss of generality, and set G0 = G[

⋃k−1
`=0 D`]. Note that G0 is the kth power of a path. If∑k−1

`=0 d` ≥ k + 1, then G0 is k-connected and thus admits a realization (V0, V1, . . . , Vk−1) of
(n0, n1, . . . , nk−1) under (vi0 , vi1 , . . . , vik−1

) according to Theorem 1. Otherwise, if
∑k−1
`=0 d` =

k, then (V0, V1, . . . , Vk−1) = ({vi0}, {vi1}, . . . , {vik−1
}) is a realization of (n0, n1, . . . , nk−1) =

(1, 1, . . . , 1) inG0 under (vi0 , vi1 , . . . , vik−1
). On the other hand, the graphG−

⋃k−1
`=0 D` is the kth

power of a path whose last vertex is vi2k−1
. Therefore, there exists a realization (Vk, Vk+1, . . . , Vp−1)

of (nk, nk+1, . . . , np−1) under (vik , vik+1
, . . . , vi2k−1

) in this graph by Lemma 6. The partition
(V0, V1, . . . , Vp−1) is then a realization of τ in G under P .
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Case 2. We are not in Case 1 and sj > qj for some j ∈ {0, 1, . . . , 2k − 1}.
In particular, there exists a value of j for which sj > qj and sj+1 < qj+1. Suppose j = 0 without
loss of generality.

Case 2.1. There exists a setX = {v+i2k−1
, (v+i2k−1

)+, . . . , va}with a ∈ {ik−1+1, ik−1+2, . . . , ik−
1} such that |X| = s0.
A realization of τ in G under P can be obtained as follows. Firstly, let (V0, V1, . . . , Vk−1) be
a realization of (n0, n1, . . . , nk−1) in G[X] under (vi0 , vi1 , . . . , vik−1

). Such a realization ex-
ists by Theorem 1 since G[X] is the kth power of a path. Secondly, let (Vk, Vk+1, . . . , Vp−1)
be a realization of (nk, nk+1, . . . , np−1) in G−X under (vik , vik+1

, . . . , vi2k−1
) which nec-

essarily exists according to Lemma 6 since vi2k−1
is the last vertex of G − X . The partition

(V0, V1, . . . , Vp−1) is then a realization of τ in G under P .
Case 2.2. Such a set X does not exist.

In such a situation, we have s0 > q0 + dk − 1, i.e.
∑k−1
`=0 n` >

∑k
`=0 d` − 1. Besides, since

n`’s and d`’s are strictly greater than 0, we get
∑k
`=0 n` ≥ 1 +

∑k
`=1 d`. Since s1 < q1,

i.e.
∑k
`=1 n` <

∑k
`=1 d`, it follows that there exists a n′0 such that 1 ≤ n′0 ≤ n0 and

n′0 +
∑k
`=1 n` = 1 +

∑k
`=1 d` = |{vi0 , v+i0 , . . . , vik}|. A realization of τ in G under P

is then obtained as follows. On the one hand, let (V ′0 , V1, V2, . . . , Vk) be a realization of
(n′0, n1, n2, . . . , nk) inG[{vi0 , v+i0 , . . . , vik}] under (vi0 , vi1 , . . . , vik), which exists according
to Lemma 8 since vi0 and vik are the endvertices of G[{vi0 , v+i0 , . . . , vik}]. On the other hand,
let n′′0 = (n0 − n′0) + 1 (note that n′′0 ≥ 1), and let (V ′′0 , Vk+1, Vk+2, . . . , Vp−1) be a realiza-
tion of (n′′0 , nk+1, nk+2, . . . , np−1) in G[{v+ik , (v

+
ik
)+, . . . , vi0}] under (vi0 , vik+1

, vik+2
, . . . ,

vi2k−1
), which exists according to Lemma 6 since G[{v+ik , (v

+
ik
)+, . . . , vi0}] is the kth power

of a path with last vertex vi0 , and k prescribed vertices are specified. The partition (V ′0 ∪
V ′′0 , V1, V2, . . . , Vp−1) is then a realization of τ in G under P since G[V ′0 ] and G[V ′′0 ] are
connected and both contain the vertex vi0 (which is actually the only vertex appearing in both
these subgraphs).

Case 3. sj < qj for every j ∈ {0, 1, . . . , 2k − 1}.
We distinguish two subcases.

Case 3.1. There are two consecutive prescribed vertices.
Assume vi0 = v+i2k−1

without loss of generality, with i0 = 0 and i2k−1 = n− 1.

Case 3.1.1. There exists r ∈ {2k, 2k + 1, . . . , p− 1} such that s0 +
∑r
`=2k n` = q0.

In this situation, we can deduce a realization of τ in G under P as follows. Firstly, let

(V0, V1, . . . , Vk−1, V2k, V2k+1, . . . , Vr)

be a realization of
(n0, n1, . . . , nk−1, n2k, n2k−1, . . . , nr)

in G[
⋃k−1
`=0 D`] under (vi0 , vi1 , . . . , vik−1

) which exists according to Lemma 6 since vi0
is the first vertex of G[

⋃k−1
`=0 D`], this graph being the kth power of some path. Secondly,

let
(Vk, Vk+1, . . . , V2k−1, Vr+1, Vr+2, . . . , Vp−1)
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be a realization of

(nk, nk+1, . . . , n2k−1, nr+1, nr+2, . . . , np−1)

in G−
⋃k−1
`=0 D` under (vik , vik+1

, . . . , vi2k−1
) which exists for the same reason as pre-

viously since vi2k−1
is the last vertex of G−

⋃k−1
`=0 D`. The partition (V0, V1, . . . , Vp−1)

is then a realization of τ in G under P .
Case 3.1.2. Such r does not exist.

Let r ∈ {2k, 2k + 1, . . . , p − 1} be the value for which we have s0 +
∑r−1
`=2k n` < q0

and s0 +
∑r
`=2k n` > q0. Such a value exists since s0 < q0 and sk < qk. So let further

n′r = q0 − (s0 +
∑r−1
`=2k n`) and n′′r = nr − n′r . Denote by va the last non-prescribed

vertex of G[
⋃k−1
`=0 D`], and by vb the first non-prescribed vertex of G−

⋃k−1
`=0 D`.

Case 3.1.2.1. The vertices va and vb are adjacent in G.
Let vb = v+iq for some q ∈ {k + 1, k + 2, . . . , 2k − 2}. Then we obtain a realization of τ
in G under P as follows. Firstly, let

(V0, V1, . . . , Vk−1, V
′
r , V2k, V2k+1, . . . , Vr−1)

be a realization of (n0, n1, . . . , nk−1, n′r, n2k, n2k+1, . . . , nr−1) in G[
⋃k−1
`=0 D`] under

(vi0 , vi1 , . . . , vik−1
, va), which exists by Lemma 8 since G[

⋃k−1
`=0 D`] is the kth power

of a path whose endvertices are vi0 and vik−1
. Secondly, let

(Vk, Vk+1, . . . , Vq, V
′′
r , Vq+1, Vq+2, . . . , V2k−1, Vr+1, Vr+2, . . . , Vp−1)

be a realization of

(nk, nk+1, . . . , nq, n
′′
r , nq+1, nq+2, . . . , n2k−1, nr+1, nr+2, . . . , np−1)

in G−
⋃k−1
`=0 D` under (vik , vik+1

, . . . , viq , vb, viq+1
, viq+2

, . . . , vi2k−1
).

This realization exists according to Lemma 8 since G −
⋃k−1
`=0 D` is the kth power of a

path, either vb or vik is the first vertex of G −
⋃k−1
`=0 D`, and vi2k−1

is the last vertex of
G−

⋃k−1
`=0 D`. It follows that

(V0, V1, . . . , Vr−1, V
′
r ∪ V ′′r , Vr+1, Vr+2, . . . , Vp−1)

is a realization of τ in G under P since G[V ′r ∪V ′′r ] is connected thanks to the edge vavb.
Case 3.1.2.2. The vertices va and vb are not adjacent in G.

In this situation, either vik−1
or vik belongs to a prescribed block with size at least k.

Then one can relabel the prescribed vertices so that vi0 and vi2k−1
correspond to two

consecutive prescribed vertices from this prescribed block, and use the procedures from
Case 3.1. Since sj < qj for every j ∈ {0, 1, . . . , 2k − 1}, note that this time the two
vertices va and vb (if these vertices are needed) have to be adjacent since otherwise it
would mean that the prescribed vertices form another prescribed block with size at least k,
implying that there are two prescribed blocks with size k, contradicting the assumption
of the lemma.



Partitioning Harary graphs into connected subgraphs containing prescribed vertices 271

Case 3.2. There are no two consecutive prescribed vertices.

Case 3.2.1. There exists a set X of consecutive vertices of G such that X ∩ P = {vij , vij+1
,

. . . , vij+k−1
} and |X| = sj for some j ∈ {0, 1, . . . , 2k − 1}.

In this situation, we obtain a realization of τ in G under P as follows. Assume j = 0
without loss of generality. Firstly, let (V0, V1, . . . , Vk−1) be a realization of (ni0 , ni1 , . . . ,
nik−1

) in G[X] under (vi0 , vi1 , . . . , vik−1
), which exists by Theorem 1 since G[X] is

the kth power of some path. Secondly, let (Vk, Vk+1, . . . , Vp−1) be a realization of
(nk, nk+1, . . . , np−1) inG−X under (vik , vik+1

, . . . , vi2k−1
) obtained thanks to Lemma 7

since G−X is the kth power of a path and there are no consecutive prescribed vertices.
Then (V0, V1, . . . , Vp−1) is a realization of τ in G under P .

Case 3.2.2. sj < qj − dj + 1 for every j ∈ {0, 1, . . . , 2k − 1}.
Case 3.2.2.1. There are two prescribed vertices vi` and vi`+1

such that n` + n`+1 ≥
d`+1 + 1.
Assume ` = 2k − 1 without loss of generality. Then there exist two sets of con-
secutive vertices X = {vi2k−1

, v+i2k−1
, . . . , va} and Y = {v+a , (v+a )+, . . . , vi0}, with

a ∈ {i2k−1, i2k−1 + 1 mod n, . . . , i0 − 1 mod n}, |X| ≤ n2k−1 and |Y | ≤ n0. A
realization of τ in G under P can be then obtained as in Case 3.1 by doing as if vi2k−1

and vi0 were consecutive prescribed vertices (this is straightforward due to the notation
we have adopted herein), but requesting vi2k−1

and vi0 to belong to subgraphs with order
n2k−1− |X|+1 and n0− |Y |+1, respectively. Recall that we are under the assumption
that there are no two consecutive prescribed vertices. For the resulting parts V ′2k−1 and
V ′0 , the graphs G[V ′2k−1 ∪ X] and G[V ′0 ∪ Y ] are connected, and have order n2k−1 and
n0, respectively.
Case 3.2.2.2. nj + nj+1 < dj+1 + 1 for every j ∈ {0, 1, . . . , 2k − 1}.
In particular, n0+n1 < d1+1 = |{vi0 , v+i0 , . . . , vi1}|. We cannot have both n0 ≥ dd1+1

2 e
and n1 ≥ dd1+1

2 e, since otherwise we would get n0 + n1 ≥ d1 + 1, a contradiction. Let
us thus suppose that n0 < dd1+1

2 e without loss of generality. Then note that the graph
induced by V0 = {vi0 , vi0+2, vi0+4, . . . , vi0+2(n0−1)} has order n0 and contains vi0 , and
the graph G[{vi2k−1

, v+i2k−1
, . . . , vi1} − V0] is traceable with endvertices vi2k−1

and vi1 .

Let t1 = |{vi1 , v+i1 , . . . , vik}| −
∑k
`=1 n` and t2 = |{v+i2k−1

, (v+i2k−1
)+, . . . , v−i1}| − n0.

From τ , we define three sequences τ1, τ2 and τ3.
First, let τ1 = (n1, n2, . . . , nk, n2k, n2k+1, . . . , nr1−1), where r1 is the unique index
in {2k, 2k + 1, . . . , p − 1} such that

∑r1−1
`=2k n` ≤ t1 and

∑r1
`=2k n` > t1. Now, if

t1 −
∑r1−1
`=2k n` > 0, then add n′r1 = t1 −

∑r1−1
`=2k n` as the (k+1)th element of τ1. Note

that the elements of τ1 sum up to |{vi1 , v+i1 , . . . , vik}|.
Let n′′r1 = nr1 −n′r1 . If n′′r1 ≥ t2, then let τ2 = (t2), and set r2 = r1 and n′′r2 = n′′r1 − t2.
Otherwise, let r2 be the index in {r1+1, r1+2, . . . , p−1} for which n′′r1+

∑r2−1
`=r1+1 n` ≤

t2 and n′′r1 +
∑r2
`=r1+1 n` > t2. Now let τ2 = (n′′r1 , nr1+1, nr1+2, . . . , nr2−1). Set

n′r2 = t2 − (n′′r1 +
∑r2−1
`=r1+1 n`) and n′′r2 = nr2 − n′r2 , and add n′r2 as the second

element of τ2 if n′r2 > 0. Once τ2 is constructed, note that its elements sum up to
|{v+i2k−1

, (v+i2k−1
)+, . . . , v−i1}| − n0.

Finally, assuming n′′r2 > 0 (otherwise, remove this element from the sequence), let τ3 =
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(nk+1, nk+2, . . . , n2k−1, n
′′
r2 , nr2+1, nr2+2, . . . , np−1). Note that the elements of τ3

sum up to |{v+ik , (v
+
ik
)+, . . . , vi2k−1

}|.
Remark that every element of τ has been associated with one of τ1, τ2 and τ3, with at
most two non-prescribed elements being split so that the τi’s sum up exactly to the orders
of some subgraphs of G. In the case where τ contains a ”big” non-prescribed element,
it is even possible that this element was split into three integers among τ1, τ2 and τ3.
To obtain the realization of τ in G under P , we realize τ1, τ2 and τ3 in vertex-disjoint
subgraphs of G, and this in such a way that if an original element of τ was dispatched
in several of the τi’s, then the resulting connected subgraphs perform a whole connected
subgraph when unified.
The three realizations R1, R2 and R3 are obtained as follows.

• Let R1 be a realization of τ1 in G[{vi1 , v+i1 , . . . , vik}] under (vi1 , vi2 , . . . , vik , v
+
i1
),

which exists according to Lemma 8 since vi1 and vik are the endvertices of G[{vi1 ,
v+i1 , . . . , vik}] and there are k + 1 prescribed vertices.

• Let R2 be a realization of τ2 in G[{v+i2k−1
, (v+i2k−1

)+, . . . , v−i1}−V0], which is trace-
able by our choice of V0. Additionally request the realization to satisfy the prescrip-
tion (v−i1 , v

+
i2k−1

) when τ2 has at least two elements. Such a requirement is allowed
according to Lemma 8.

• Let R3 be a realization of τ3 in G[{v+ik , (v
+
ik
)+ , . . . , vi2k−1

}] under (vik+1
, vik+2

, . . . , vi2k−1
, v−i2k−1

). The existence of such a realization follows from Lemma 6
since G[{v+ik , (v

+
ik
)+ , . . . , vi2k−1

}] is the kth power of some path whose last vertex
is vi2k−1

.

The realization of τ in G under P is obtained by considering V0 and the parts from R1,
R2 and R3, and unifying those parts whose sizes result from the split of a single element
of τ , if necessary. By our choice of the prescribed vertices, these parts have neighbouring
vertices (this follows from the facts that k ≥ 2, and that the prescribed vertices of P are
not consecutive), and thus induce connected subgraphs. This completes the proof.

4 Partitioning Harary graphs under prescriptions
Harary graphs are trivially AP according to Corollary 3. We here show that we can always prescribe the
largest possible number of vertices (with respect to their connectivity) while partitioning these graphs,
except for 3-connected Harary graphs. We consider the three kinds of Harary graphs for this purpose.

4.1 Construction 1: k is even

The Harary graph Hk,n with k even is isomorphic to Ck/2n which is AP+(k − 1) according to Theorem 5
for every k ≥ 2 and n ≥ 2k. We thus derive the following result.

Corollary 10. For every even k ≥ 2 and n ≥ 2k, the Harary graph Hk,n is AP+(k − 1).
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4.2 Construction 2: k is odd and n is even
Let k ≥ 2 and n ≥ 2k + 1 be two integers such that n is even. By construction, the Harary graph
H2k+1,n is spanned by H2k,n and is thus AP+(2k − 1) according to Corollary 10. However, regarding
the connectivity of H2k+1,n, one could wonder whether H2k+1,n is AP+2k.

Before proving thatH2k+1,n is indeed AP+2k, we first introduce the following lemma which deals with
the traceability of a graph composed by two linked squares of paths.

Lemma 11. If G is a graph such that V (G) = V1∪V2, the subgraphs G[V1] and G[V2] are both spanned
by the square of a path, and there exists an edge joining one vertex of V1 and one of V2, thenG is traceable.

Proof: Let v1, v2, . . . , v` and u1, u2, . . . , u`′ denote the consecutive vertices of G[V1] and G[V2], and
va ∈ V1 and ub ∈ V2 be two vertices of G such that vaub ∈ E(G). Consider the following subpaths of G:

- P = v1v2 . . . va−1;

- Q =

{
va+1va+3 . . . v`−1v`v`−2v`−4 . . . va+2 if `− a is even,
va+1va+3 . . . v`v`−1v`−3 . . . va+2 otherwise;

- R =

{
ub+2ub+4 . . . u`′u`′−1u`′−3 . . . ub+1 if `′ − b is even,
ub+2ub+4 . . . u`′−1u`′u`′−2u`′−4 . . . ub+1 otherwise;

- S = ub−1ub−2 . . . u1.

It is then easy to check that PQvaubRS is a Hamiltonian path of G.

We are now ready to prove our main result.

Theorem 12. For every k ≥ 2 and even n ≥ 2k + 1, the Harary graph H2k+1,n is AP+2k.

Proof: Let k ≥ 2 and even n ≥ 2k + 1 be fixed, and G = H2k+1,n be the (2k + 1)-connected Harary
graph on n vertices. We prove that every sequence τ = (n0, n1, . . . , np−1), admissible for G with
p ≥ 2k + 1 elements, is realizable in G under every 2k-prescription P = (vi0 , vi1 , . . . , vi2k−1

) with
0 ≤ i0 < i1 < . . . < i2k−1 ≤ n− 1. We distinguish two main cases.

Case 1. If the prescribed vertices are not organized into two maximal prescribed blocks with size k, then,
because k ≥ 2, we can deduce a realization of τ in the spanning Ckn of G under P , thanks to
Lemma 9. Such a realization is naturally a realization of τ in G under P .

Case 2. Suppose now that the prescribed vertices form two maximal prescribed blocks B1 and B2 with
size exactly k in G. In this situation, note that G − P only remains connected thanks to some
diagonal edges. Indeed, assume B1 = {vi0 , vi1 , . . . , vik−1

} and B2 = {vik , vik+1
, . . . , vi2k−1

}
without loss of generality. Then the antipodal neighbours of v−i0 and v+ik−1

cannot both belong to P :
since n ≥ 2k + 2, if this were the case then these two antipodal neighbours would belong to B2,
and similarly for all antipodal neighbours of vi0 , vi1 , . . . , vik−1

(according to our assumptions on the
maximal prescribed blocks). We would then get that B2 has size at least k+2, a contradiction. Let
us thus denote by va and vb two antipodal neighbours ofG such that va, vb 6∈ B1∪B2. In particular,
we may suppose a ∈ {ik−1 +1, ik−1 +2, . . . , ik − 1} and b ∈ {i2k−1 +1, i2k−1 +2, . . . , i0 − 1}.
Let further a1 = a− ik−1 − 1, a2 = ik − a− 1, a3 = i0 − b− 1 and a4 = b− i2k−1 − 1 denote
the number of consecutive vertices between B1, B2 and the two vertices va and vb according to the
natural ordering of G.
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Case 2.1.
∑k−1
j=0 nj ≤ a1 + a3 + k and

∑2k−1
j=k nj ≤ a2 + a4 + k.

In this situation, we can find two subsets X and Y of consecutive vertices of G such that
|X| =

∑k−1
j=0 nj , |Y | =

∑2k−1
j=k nj , {vi0 , vi1 , . . . , vik−1

} ⊆ X , {vik , vik+1
, . . . , vi2k−1

} ⊆
Y , and va, vb 6∈ X ∪ Y . Since G[X] and G[Y ] are both isomorphic to the kth power
of a path, by Theorem 1 we know that we can deduce two realizations (V0, V1, . . . , Vk−1)
and (Vk, Vk+1, . . . , V2k−1) of (n0, n1, . . . , nk−1) and (nk, nk+1, . . . , n2k−1), respectively, in
G[X] and G[Y ], respectively, under (vi0 , vi1 , . . . , vik−1) and (vik , vik+1

, . . . , vi2k−1
), respec-

tively. Now, since k ≥ 2, the graphG− (X ∪Y ) is traceable according to Lemma 11 and thus
admits a realization (V2k, V2k+1, . . . , Vp−1) of (n2k, n2k+1, . . . , np−1). Finally, the partition
(V0, V1, . . . , Vp−1) is a realization of τ in G under P .

Case 2.2.
∑k−1
j=0 nj > a1 + a3 + k without loss of generality.

Note that we have
∑2k−1
j=0 nj ≥ min{a1 + a2 + 2k + 1, a3 + a4 + 2k + 1}, since otherwise

a1 + a3 + 2k + 1 ≤
k−1∑
j=0

nj +

2k−1∑
j=k

nj =

2k−1∑
j=0

nj <
1

2
(a1 + a2 + a3 + a4) + 2k + 1,

which implies a1 + a3 < a2 + a4, a contradiction. Then we consider two new cases.

Case 2.2.1.
∑2k−1
j=0 nj ≥ a1 + a2 + 2k + 1.

Under this assumption, we can find two subsets of consecutive vertices X,Y ⊆ V (G)

such that {vi0 , vi1 , . . . , vik−1
} ⊆ X , {vik , vik+1

, . . . , vi2k−1
} ⊆ Y , |X| =

∑k−1
j=0 nj ,

|Y | =
∑2k−1
j=k nj , and the last vertex of G[X] is the vertex preceding the first vertex of

G[Y ]. By Theorem 1, we know that we can deduce realizations (V0, V1, . . . , Vk−1) and
(Vk, Vk+1, . . . , V2k−1) of (n0, n1, . . . , nk−1) and (nk, nk+1, . . . , n2k−1), respectively, in
G[X] and G[Y ], respectively, under (vi0 , vi1 , . . . , vik−1

) and (vik , vik+1
, . . . , vi2k−1

), re-
spectively. Finally, since the graphG− (X∪Y ) is isomorphic to the kth power of a path,
there exists a realization (V2k, V2k+1, . . . , Vp) of the remaining sequence (n2k, n2k+1, . . . ,
np−1) in it. We get that (V0, V1, . . . , Vp−1) is a realization of τ in G under P .

Case 2.2.2.
∑2k−1
j=0 nj ≥ a3 + a4 + 2k + 1.

In this case, we proceed similarly as in Case 2.2.1, but the last vertex of G[Y ] has to be
the vertex preceding the first vertex of G[X].

4.3 Construction 3: k and n are odd
Since two Harary graphs H2k+1,n and H2k+1,n′ , with k ≥ 2, and n ≥ 2k + 1 and n′ ≥ 2k + 1 being
even and odd, respectively, are both spanned by Ckn, Case 1 from the proof of Theorem 12 also holds
directly regarding Harary graphs with odd connectivity and order. Despite H2k+1,n and H2k+1,n′ slightly
differ by their diagonal edges, it is easy to realize that if the assumptions of Case 2 from the proof of
Theorem 12 are fulfilled, that proof can be adapted for considering Harary graphs of odd connectivity and
order.

Theorem 13. For every k ≥ 2 and odd n ≥ 2k + 1, the Harary graph H2k+1,n is AP+2k.
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5 On the existence of optimal AP+2 graphs
Recall that Theorems 12 and 13 exclude 3-connected Harary graphs, mainly because some of their sub-
graphs do not satisfy the traceability property exhibited in Lemma 11. Therefore, our proof cannot be
used to prove that 3-connected Harary graphs are AP+2.

Besides, it turns out that 3-connected Harary graphs are not all AP+2 anyway. A straight argument
for that claim follows from the fact that an unbalanced bipartite graph G = (A ∪ B,E), i.e. such that
|A| 6= |B|, with even order does not admit a perfect matching.

Lemma 14. If a bipartite graph G = (A ∪ B,E) has even (resp. odd) order, then, assuming G has
enough vertices, the graph G cannot be AP+k for every even (resp. odd) k ≥ 2 (resp. k ≥ 1).

Proof: We prove the claim for bipartite graphs with even order, but the proof is analogous for bipartite
graphs with odd order. Let k ≥ 2 be even and fixed. For such a value of k, we can find two subsets
X ⊂ A and Y ⊂ B such that X ∩ Y = ∅, |X|+ |Y | = k, and |A−X| 6= |B − Y |. Let A′ = A−X and
B′ = B−X . Then since |A′|+ |B′| is even and |A′| 6= |B′|, the graph G[A′∪B′] cannot admit a perfect
matching. It follows that the sequence (1, 1, . . . , 1, 2, 2, . . . , 2), with the value 1 appearing k times, is not
realizable in G under (v1, v2, . . . , vk), where {v1, v2, . . . , vk} = X ∪ Y .

Corollary 15. For every n ≡ 2 mod 4, the Harary graph H3,n is not AP+2.

Proof: This follows from Lemma 14 since every such Harary graph is a balanced bipartite graph.

In order to prove that there actually exist optimal AP+2 graphs on n vertices and d 3n2 e edges for every
n ≥ 4, we introduce another class of 3-connected graphs. Let n ≥ 4. The graph Prn is constructed as
follows.

• If n is even, then Prn is obtained from the cycle Cn, whose vertices are successively denoted by
u,w1

1, w
1
2, . . . , w

1
n−2
2

, v, w2
n−2
2

, w2
n−2
2 −1

. . . , w2
1 , by adding to it the edge uv, and the edge w1

iw
2
i

for every i ∈ {1, 2, . . . , n−22 }.

• If n is odd, then Prn is obtained by first removing the edges w1
1w

2
1 and w1

n−3
2

w2
n−3
2

from Prn−1,

and then adding to it a new vertex o and the edges ow1
1 , ow2

1 , ow1
n−3
2

, and ow2
n−3
2

.

Two examples of such graphs are drawn in Figure 2. For every n ≥ 4, the graph Prn is an edge-
minimal 3-connected graph since it has size d 3n2 e. To prove that Pr graphs are AP+2, we consider the
following sufficient condition for a graph to be AP+2. Recall that a graph G is Hamiltonian-connected if
G admits a Hamiltonian path with endvertices u and v for every two vertices u and v of G.

Lemma 16. If a graph G is Hamiltonian-connected, then G is AP+2.

Proof: The statement follows from Lemma 8 since every path Pn can be partitioned under every 2-
prescription (u, v) as long as u and v are the endvertices of Pn.

Before showing that G = Prn is Hamiltonian-connected for every n ≥ 4, we first introduce some
notation. Let q = n−2

2 (resp. q = n−3
2 ) if n is even (resp. odd). Given two integers x and y in

{1, 2, . . . , q} (resp. {2, 3, . . . , q − 1}) such that x ≤ y, we denote by P↗x,y(G) and P↘x,y(G) the following
paths of G.
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w1
2 w1

3 w1
4

w2
1 w2

2 w2
3 w2

4

vu

w1
1

(a) Pr10.

w1
3

w2
3

u v

w2
1 w2

2

w1
1 w1

2

o

(b) Pr9.

Fig. 2: Two examples of Pr graphs.

P↗x,y(G) =

{
w2
xw

1
x if x = y,

w2
xw

1
xP
↘
x+1,y(G) otherwise.

P↘x,y(G) =

{
w1
xw

2
x if x = y,

w1
xw

2
xP
↗
x+1,y(G) otherwise.

The paths P↖x,y(G) and P↙x,y(G) of G are defined analogously from right to left when x ≥ y. For
every α ∈ {1, 2}, we additionally define Pα,→x,y (G) (resp. Pα,←x,y (G)) for x < y (resp. x > y) to be
the path wαxw

α
x+1 . . . w

α
y (resp. wαxw

α
x−1 . . . w

α
y ) of G . For convenience, let us assume that P↗x,y(G) =

P↘x,y(G) = Pα,→x,y (G) = ∅ (resp. P↖x,y(G) = P↙x,y(G) = Pα,←x,y (G) = ∅) whenever x or y does not
belong to the interval above or when x > y (resp. x < y). According to our terminology, note e.g. that
uP 1,→

1,4 (Pr10)vP
2,←
4,1 (Pr10) and uP↗1,4(Pr10)v are Hamiltonian paths of Pr10.

We are now ready to prove that every Prn graph is Hamiltonian-connected, and thus AP+2 according
to Lemma 16.

Theorem 17. For every n ≥ 4, the graph Prn is Hamiltonian-connected.

Proof: Let G = Prn, and q = n−2
2 if n is even, or q = n−3

2 otherwise. Table 1 (resp. Table 2) exhibits,
given two distinct vertices s and t of G, a Hamiltonian path P of G whose endvertices are s and t when
n is even (resp. n is odd). In Table 1 (resp. Table 2), it is assumed that 1 ≤ i ≤ q when j is not defined
(resp. 1 < i < q), and 0 ≤ i < j ≤ q otherwise (resp. 1 < i < j < q). Every Hamiltonian path which
does not appear in these two tables can be deduced from another Hamiltonian path using the symmetries
of G.

Corollary 18. For every n ≥ 4, the graph Prn is AP+2.
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s t P

u v uP↗1,q(G)v

u w1
i

uP↗1,i−1(G)w
2
iP

2,→
i+1,q(G)vP

1,←
q,i (G) if i− 1 is even

uP↘1,i−1(G)w
2
iP

2,→
i+1,q(G)vP

1,←
q,i (G) otherwise

w1
i w1

j

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,1(G)uvP

↖
q,j(G) if q − j is even

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,1(G)uvP

↙
q,j(G) otherwise

w1
i w2

j

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,1(G)uvP

↙
q,j(G) if q − j is even

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,1(G)uvP

↖
q,j(G) otherwise

Tab. 1: Proof that Prn is Hamiltonian-connected for every even n ≥ 4.

s t P

o u oP 1,→
1,q (G)vP 2,←

q,1 (G)u

o w1
1

ow1
qvw

2
qP
↖
q−1,2w

2
1uw

1
1 if q is even

ow2
qvw

1
qP
↙
q−1,2w

2
1uw

1
1 otherwise

o w1
i

ow1
1uw

2
1P
↗
2,i−1(G)w

2
i P

2,→
i+1,q(G)vP

1,←
q,i (G) if i is even

ow2
1uw

1
1P
↘
2,i−1(G)w

2
iP

2,→
i+1,q(G)vP

1,←
q,i (G) otherwise

u v uP 2,→
1,q (G)oP 1,→

1,q (G)v

u w1
1 uvP 2,←

q,1 (G)oP 1,←
q,1 (G)

u w1
q uvP 2,←

q,1 (G)oP 1,→
1,q (G)

u w1
i

uP 1,→
1,i−1(G)P

2,←
i−1,1(G)ow

2
qvw

1
qP
↙
q−1,i(G) if q − i is even

uP 1,→
1,i−1(G)P

2,←
i−1,1(G)ow

1
qvw

2
qP
↖
q−1,i(G) otherwise

w1
1 w2

1 w1
1uvP

1,←
q,2 (G)P 2,→

2,q (G)ow2
1

w1
1 w1

q P 1,→
1,q−1(G)P

2,←
q−1,1(G)uvw

2
qow

1
q

w1
1 w2

q w1
1ow

2
1uvP

1,←
q,2 (G)P 2,→

2,q (G)

w1
i w1

j

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,2(G)w

2
1uw

1
1ow

2
qvw

1
qP
↙
q−1,j(G) if i and q − j are even

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,2(G)w

1
1uw

2
1ow

2
qvw

1
qP
↙
q−1,j(G) if i is odd and q− j is even

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,2(G)w

2
1uw

1
1ow

1
qvw

2
qP
↖
q−1,j(G) if i is even and q− j is odd

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,2(G)w

1
1uw

2
1ow

1
qvw

2
qP
↖
q−1,j(G) if i and q − j are odd

w1
i w2

j

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,2(G)w

2
1uw

1
1ow

1
qvw

2
qP
↖
q−1,j(G) if i and q − j are even

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,2(G)w

1
1uw

2
1ow

1
qvw

2
qP
↖
q−1,j(G) if i is odd and q− j is even

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,2(G)w

2
1uw

1
1ow

2
qvw

1
qP
↙
q−1,j(G) if i is even and q− j is odd

P 1,→
i,j−1(G)P

2,←
j−1,i(G)P

↖
i−1,2(G)w

1
1uw

2
1ow

2
qvw

1
qP
↙
q−1,j(G) if i and n− j are odd

Tab. 2: Proof that Prn is Hamiltonian-connected for every odd n ≥ 5.
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6 Conclusion
We summarize Corollaries 10 and 18 and Theorems 12 and 13 in this concluding theorem.

Theorem 19. For every k ≥ 1 and n ≥ k, there exists an optimal AP+k graph on n vertices and dn(k+1)
2 e

edges.

This result does not tell much about the number of optimal AP+k graphs on n vertices for some fixed
values of k and n. However, this number is upper bounded by the number of edge-minimal (k + 1)-
connected graphs with order n according to Observation 4.
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[5] E. Győri. On division of graphs to connected subgraphs. In Combinatorics, pages 485–494, Colloq.
Math. Soc. János Bolyai 18, 1978.
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