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Todinca§4

1 Institute of Informatics, University of Szeged, Hungary
2 Department of Computer Science, West University of Timişoara, Timişoara, Romania.
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Define a sequence of elements from a partially ordered set to be heapable if it can be successively inserted as the
leaves of a binary tree, not necessarily complete, such that children nodes are always greater or equal than parent
nodes. This is a natural binary analog of the notion of a chain in a poset and an easy extension of a definition for
integers due to Byers et al. (2011). A set of elements is called heapable if some permutation of its elements is.

We investigate the partitioning of sequences from a poset into a minimal number of heapable subsequences. We give
an extension of Fulkerson’s proof of Dilworth’s theorem to decomposition into heapable subsequences which yields
as a byproduct a flow-based algorithm for computing such a minimal decomposition.

On the other hand, for sets and sequences of intervals and for trapezoid partial orders we prove that such minimal
decompositions can be computed via simple greedy-type algorithms.

Second, while the complexity of computing a maximal heapable subsequence of integers is still open, we show that
this problem has a polynomial time algorithm for sequences of intervals.

The paper concludes with a couple of open problems related to the analog of the Ulam-Hammersley problem for sets
and sequences of random intervals.
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1 Introduction
The longest increasing subsequence is a classical problem in combinatorics and algorithmics. Decompo-
sitions of (random) permutations into a minimal number of increasing sequences have been studied in the
context of the famous Ulam-Hammesley problem. This problem concerns the asymptotic scaling behavior
of the length of the longest increasing subsequence (LIS) of a random permutation, and is a problem with
deep connections to statistical physics and random matrix theory (for a very readable introduction see
Romik (2015)).

An interesting variation on the concept of increasing sequence was introduced by Byers et al. Byers
et al. (2011): call sequence of integers A = a1, a2, . . . , an heapable if numbers a1, a2, . . . , an can be
successively inserted as leaves into a heap-ordered binary tree (not necessarily complete). Heapability is
a ”weakly increasing pattern” for integer sequences. The study of patterns in (random) integer sequences
(Crane and DeSalvo (2018)), has been, of course, quite popular lately, some of the investigated problems
even involving increasingly labelled trees (Durant and Wagner (2019)) or heaps (Defant (2019)).

Heapability was further investigated in Istrate and Bonchiş (2015) (and, independently, in Porfilio
(2015)). In particular, a subgroup of the authors of the present papers showed that for permutations one
can compute in polynomial time a minimal decomposition into heapable subsequences, and investigated
a problem that can be viewed as an analog of the Ulam-Hammersley problem for heapable sequences (see
also subsequent work in Istrate and Bonchiş (2016); Basdevant et al. (2016); Basdevant and Singh (2018);
Bonchiş et al. (2018); Chandrasekaran et al. (2019), that extends/confirms some of the conjectures of Is-
trate and Bonchiş (2015)). Furthermore, as shown in Istrate and Bonchiş (2016) one can meaningfully
study the analogs of heapability and the Ulam-Hammesley problem in the context of partial orders.

This paper started as a conversation on the heapability of sequences of intervals during a joint Timişoara
Szeged seminar on theoretical computer science in November 2015. Its main purpose is to offer a different
perspective on the concept of heapability, by relating it to well-known results in combinatorics, such as
the classical theorems of Dilworth and Kőnig-Egerváry.

Specifically, we prove that the number of classes in a minimal decomposition of a sequence of elements
from a poset P into ”heapable subsequences” can be obtained as the size of a minimum vertex cover in
a certain bipartite graph whose construction directly generalizes the one employed in one classical proof
of Dilworth’s theorem. As a byproduct, we obtain an efficient algorithm based on network flows for
computing such a minimal decomposition.

This result, together with the ones from Istrate and Bonchiş (2015) (where such a minimal decomposi-
tion was computed, for integer sequences, via a direct, greedy algorithm) raise the question whether such
greedy algorithms exist for other posets except the set of integers. We answer this question in the affirma-
tive way by showing that the result of Istrate and Bonchiş (2015) is extendible to sets and sequences of
intervals, ordered by the natural partial order.

The structure of the paper is as follows: in Section 2 we review the main concepts and technical results
we will be concerned with. Then, in Section 3 we prove a result (Theorem 1) which shows that part of
Fulkerson’s proof of Dilworth’s theorem (Fulkerson (1956)) can be extended to characterizing partitions
into a minimal number of heapable subsequences. This result provides, as a byproduct, a flow-based
algorithm for the computation of such a minimal partition.

We then investigate, in Section 4, the heapability of sequences of intervals, showing (Theorem 2) that
a greedy-type algorithm computes such a minimal partition. In Section 5 we show (Theorem 3) that this
result extends to (unordered) sets of intervals as well. We then give in Section 6 a second, incomparable,
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extension (Theorem 4) from sequences of intervals to sequences from so-called trapezoid partial orders.
In Section 7 we investigate the problem of computing a maximal heapable subsequence of a sequence

of elements from a poset. For sequences of integers the complexity of this problem is open (Byers et al.
(2011)). We show (Theorem 5) that it has polynomial time algorithms for sequences of intervals.

We conclude in Section 8 with some open questions raised by our results.

2 Preliminaries
We will assume knowledge of standard graph-theoretic notions. In particular, given integer k ≥ 1, rooted
tree T is k-ary if every node has at most k children. Given a graph G = (V,E), we will denote by vc(G)
the size of the minimum vertex cover of G.

Definition 1. Let k ≥ 1. A sequence of integers A = (a1, a2, . . . , an) is called k-heapable (or a k-ary
chain) if there exists a k-ary tree T with n nodes labeled by a1, a2, . . . , an, such that for any two nodes
labeled ai, aj , if aj is a descendant of ai in T then i < j holds for their indices and ai < aj .

We will be concerned with finite partially ordered sets (posets) only. Sequences of elements from a
poset naturally embed into this framework by associating, to every sequence A = (a1, . . . , an) the poset
QA = {(i, ai) : 1 ≤ i ≤ n} with partial order (i, ai) ≤ (j, aj) if and only if i ≤ j and ai ≤ aj . Given
posetQ, its subsetB is a chain if the partial order ofQ is a total order onB. SubsetC is an antichain if no
two elements a, b of C are comparable with respect to the partial order relation of Q. Dilworth’s theorem
(Dilworth (1950)) states that the minimum number of classes in a chain decomposition of a partial order
Q is equal to the size of the largest antichain of Q.

One particular type of posets we consider is that of permutation orders: � is a permutation order if
there exists a permutation π of the elements of U such that, for all a, b ∈ U , a � b iff a < b and
π−1(a) < π−1(b).

Another particular case we will be concerned with is that of interval orders. Without loss of generality
all our intervals will be closed subsets of (0, 1). We define a partial order of them as follows: Given
intervals I1 = [a1, b1] and I2 = [a2, b2] with a1 < b1 and a2 < b2, we say that I1 ≤ I2 if and only if
the entire interval I1 lies to the left of I2 on the real numbers axis, that is b1 ≤ a2. For technical reasons
we will also require a total ordering of intervals, denoted by v and defined as follows: I1 v I2 if either
b1 < b2 or b1 = b2 and a1 < a2.

We will consider in this paper models of random intervals. Similarly to the model in Justicz et al.
(1990) by ”random intervals” we will mean random subintervals of (0, 1) generated as follows: A random
sample I can be constructed iteratively at each step by choosing two random real numbers a, b ∈ (0, 1)
and taking I = [min(a, b),max(a, b)].

The patience sorting algorithm (Mallows (1963)) partitions a permutation into a minimal number of
increasing subsequences of integers. It works by adding each element in an online fashion to the first
subsequence where it can be added, starting a new subsequence if no existing one is compatible.

We need to briefly review one classical proof of Dilworth’s theorem, due to Fulkerson (Fulkerson
(1956)): First, given poset Q = (U,≤) with n elements, define the so-called split graph associated to
Q (Felsner et al. (2003)), to be the bipartite graph GQ = (V1, V2, E), where V1 = {x− : x ∈ U} and
V2 = {y+ : y ∈ U} are independent copies of U , and given x < y ∈ U we add to E edge x−y+.
Fulkerson proved that each chain decomposition of Q uniquely corresponds to a matching in GQ. The
proof proceeded by employing the classic Kőnig-Egerváry theorem (Konig (1931); Egerváry (1931)),
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stating that the size of a maximum matching in a bipartite graph is equal to the minimum vertex cover in
the same graph. This result was applied to the bipartite graph GQ, inferring that

Proposition 1. The cardinality of a minimum chain decomposition of Q is equal to n − vc(GQ), where
vc(GQ) is the vertex cover number of the split graph GQ.

Finally, Fulkerson’s proof of Dilworth’s theorem concluded by showing that n−vc(GQ) is equal to the
size of the largest antichain of Q.

We extend the definition of k-heapable sequences to general posets as follows:

Definition 2. Given integer k ≥ 1 and poset Q = (U,≤) a subset A of the ground set U is called k-
heapable (or, equivalently, a k-ary chain ofQ) if there exists a k-ary rooted tree T and a bijection between
A and the vertices of T such that for every i, j ∈ A, if j is a descendant of i in T then i < j in Q.

We stress the fact that the notion of a k-ary chain above is distinct from the notion of k-chain that
appears in the statement of the Greene-Kleitman theorem (Greene and Kleitman (1976)).

Definition 3. The k-width of poset Q, denoted by k-wd(Q), was defined in Istrate and Bonchiş (2016) as
the smallest number of classes in a partition of Q into k-ary chains. For k = 1, by Dilworth’s theorem,
we recover the usual definition of poset width (Trotter (1995)).

Observation 1. In the previous definition we partition a set into k-ary chains. On the other hand in the
problem studied in Istrate and Bonchiş (2015) we partition a permutation (i.e. sequence of elements) into
k-heapable subsets.

There is no contradiction between these two settings, as one can map a permutation π ∈ Sn of n
elements onto a poset defined as {(i, π[i]) : i = 1, . . . , n} with

(i, π[i]) < (j, π[j]) iff i < j and π[i] < π[j]

Two important (unpublished) minimax theorems, attributed in Gyárfás and Lehel (1985) to Tibor Gallai
and ultimately subsumed by the statement that interval graphs are perfect, deal with sets of intervals. We
will only be concerned with the first of them, that states that, given a set of intervals J on the real numbers
line the following equality holds:

Proposition 2. The minimum number of partition classes of J into pairwise disjoint intervals is equal to
the maximum number of pairwise intersecting intervals in J .

Of course, the first quantity in Proposition 2 is nothing but the 1-width of the partial order≤ on intervals.
The scaling of (the expected value of) this parameter for setsR of n random intervals has the form (Justicz
et al. (1990))

E[1-wd(R)] =
2√
π

√
n(1 + o(1)).

2.1 A graph-theoretic interpretation
Problems that we are concerned with have, it turns out, an algorithmic interpretation that is strongly related
to problems of computing the maximum independent sets and the chromatic number of various classes
of perfect graphs. The idea first appeared (somewhat implicitly) in Porfilio (2015). In this subsection we
make it fully explicit as follows:
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Definition 4. Given a directed graphG = (U,E), call a set of elementsW ⊆ U a k-treelike independent
set of G if there is a rooted k-ary tree T , not necessarily complete, and a bijection f : V (T ) → W such
that, for all vertices v, w of T , if v is an ancestor of w in T then f(v) and f(w) are not connected by an
edge in G.

A poset can, of course, be viewed as a directed graph, so the previous definition applies to posets as
well. We can apply the concept to undirected graphs as well by identifying such a graph with its oriented
version containing, for any undirected edge e, both directed versions of e.

For undirected graphs a 1-treelike independent set of G is simply an independent set: indeed, the con-
dition in the definition simply enforces the nonexistence of edges between the vertices in W . Paralleling
the case k = 1 (for which a polynomial time algorithm is known, in the form of patience sorting), we
can restate the open problem from Byers et al. (2011) as the problem of computing a maximum 2-treelike
independent set:

Proposition 3. Computing the longest k-heapable subsequence of an arbitrary permutation (order) π is
equivalent to computing a maximum k-treelike independent sets in the digraph induced by the transitive
closure of the Hasse diagram of the associated partial order Pπ .

When k is implied, we will informally use the name maximum heapable subset for the problem of
computing a maximum k-ary chain of an arbitrary permutation. Similarly, the problem of partitioning the
set into k-ary chains can be regarded as a generalization of graph coloring: define a k-treelike coloring of
a partial order P to be a partition of the universe U into classes that induce k-treelike independent sets.
The k-treelike chromatic number of a partial order P is the minimum number of colors in a k-treelike
coloring of P .

The main result from Istrate and Bonchiş (2015) is equivalent to the following (re)statement:

Proposition 4. For k ≥ 2 the greedy algorithm of Figure 1 computes an optimal k-treelike coloring of
permutation partial orders.

Input: Permutation order P specified by permutation π ∈ Sn.
Output: A k-treelike coloring of P .

let F = ∅
for i := 1 to n do:

if π(i) cannot become the child of any node in F .

then
start a new tree with root π(i).

else
make π(i) a child of the largest value π(j) < π(i),

j < i that has fewer than k children.

Fig. 1: The greedy best-fit algorithm for k-tree-like colorings of permutation posets.
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Again, let us remark that the corresponding statement for k = 1 is well known, as it is equivalent to the
greedy coloring of permutation graphs, accomplished by patience sorting.

3 Main result
Our main result proves a k-ary extension of Proposition 1. To state it, we extend the definition of split
graphs to all values k ≥ 1 as follows:

Definition 5. Given poset Q = (U,≤) an integer k ≥ 1, the k-split graph associated to poset Q is the
bipartite graph GQ,k = (V1, V2, E), where

• V1 = {x−1 , . . . , x
−
k : x ∈ U}

• V2 = {y+ : y ∈ U}

• given x, y ∈ U, x < y, add to E edge x−i y
+ for i ∈ 1, ..., k.

Given this definition, our main result shows that computing the k-width of a finite poset can be com-
puted as in Fulkerson’s proof of Dilworth’s theorem, by directly generalizing Proposition 1:

Theorem 1. Let Q = (U,≤) be a finite poset with n elements and a fixed integer k ≥ 1. Then

k-wd(Q) = n− vc(GQ,k). (1)

Proof: Define a left k-matching of graph GQ to be any set of edges A ⊆ E such that for every x, y ∈ U ,
degA(x−) ≤ k and degA(y+) ≤ 1.

Claim 1. Partitions of Q into k-ary chains bijectively correspond to left k-matchings of GQ. The number
of classes of a partition is equal to n minus the number of edges in the associated left k-matching.

Proof: Consider a left k-matching A in GQ. Define the partition PA as follows: roots of the k-ary chains
consist of those x ∈ U for which degA(x+) = 0. There must be some element x ∈ U satisfying this
condition, as the minimal elements of Q with respect to ≤ satisfy this condition.

Now we recursively add elements of U to the partition PA (in parallel) as follows:

1. All elements y ∈ U not yet added to any k-ary chain, and such that y+ is connected to some x−

by an edge in A are added to the k-ary chain containing x, as direct descendants of x. Note that
element x (if there exists at least one y with this property) is unique (since degA(y+) = 1 in this
case), so the specification of the k-ary chain to add y to is well defined. On the other hand, each
operation adds at most k successors of any x to its k-ary chain, since degA(x−) ≤ k.

2. If all direct predecessors of an element x ∈ U have been added to some k-ary chain and are no
longer leaves of that k-ary chain then x will be the root of a new k-ary chain.

Conversely, given any partition P of U into k-ary chains, define set of edgesA consisting of edges x−, y+

such that x is the parent of y in a k-ary chain. It is immediate that A is a left k-matching.
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Corollary 1. There is a bijective mapping between partitions of Q into k-ary chains and matchings of
GQ,k such that the number of k-ary chains in a partition is n minus the number of edges in the matching.

Proof: We will actually show (using Claim 1) how to associate left k-matchings of GQ to matchings of
GQ,k. The idea is simple: given a node x− of GQ with l ≤ k neighbors in V2, construct a matching
in GQ,k by giving each of x−1 , . . . , x

−
l exactly one neighbor from the neighbors of x− (in a pairwise

distinct way). In the other direction, if e = x−i y
+ is an edge in the matching of GQ,k then consider the

appropriate edge x−y+ inGQ. It is easy to check that it gives a left k-matching inGQ (which corresponds
to a k−chain partition of Q). Furthermore, the number of k−chains is the number of edges in the left
k−matching in GQ which is the same as n minus vc(GQ).

We complete the proof of Theorem 1 (based on Claim 1 and Corollary 1) by applying in a straightfor-
ward way Kőnig’s theorem to the graph GQ,k.

Corollary 2. One can compute parameter k-wd(Q) by creating a flow network ZQ and computing the
value of the maximum flow of ZQ consisting of :

• vertices and edges of GQ, with edge capacity 1.

• a source s, connected to nodes in V1 by directed edges of capacity k,

• a sink t, that all nodes in V2 connect to via oriented edges of capacity 1.

computing the maximum s-t network flow value f in network ZQ and outputting k-wd(Q)=n-f.

Proof: Straightforward, this is simply the maximal flow algorithm for computing the maximal size left
k-matching inGQ, similar to the construction for maximum matchings in bipartite graphs in the literature.

4 Heapability of sequences of intervals: an online algorithm
We now know that the problem of computing a minimal partition of the elements of a poset into heapable
subsequences has a polynomial time algorithm.

On the other hand for permutations (sequences of integers) the optimal algorithm presented in Istrate
and Bonchiş (2015), which extended the well-known patience sorting algorithm (Mallows (1963)), had
a simple, online, structure: the heaps were built incrementally, by considering the elements one by one
and inserting each element as a leaf in one of the existing heaps, or starting a new heap. In contrast, the
particularization of the network flow algorithm to permutations is not online in any natural sense, as it
computes a maximum flow in a graph which depends ”globally” on the sequence. One could ask whether
the existence of the online algorithm from Istrate and Bonchiş (2015) is an exception or, rather, such
online algorithms which are optimal exist for sequences of elements from other posets as well.

The question is also interesting since the case k = 1 is a natural variant of the online chain partitioning
problem, a problem with a rich history (Kierstead et al. (1984); Trotter (1995)) and bibliography (see e.g.
Bosek et al. (2012)). In contrast to the classical case, in our variant elements can be assigned to a (k-ary)
chain only if they can be inserted as leaves at the moment they are inserted.

In the sequel we provide an affirmative answer to the above question, by focusing on the case of se-
quences of intervals:
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Theorem 2. For every fixed k ≥ 1 there exists a (polynomial time) online algorithm that, given a sequence
of intervals S = (I1, I2, ..., In) as input, computes a minimal partition of S into k-ary chains so that each
interval is inserted at the time of its consideration as a leaf into one of the k-ary chains, or starts a new
k-ary chain.

Before proceeding with the proof of theorem 2, let us remark a potential application of a variant of this
result to parallel computing: many algorithms in this area (e.g. algorithms using a parallel prefix-sum
design methodology, Blelloch (1990)) require the computation of all prefixes of an associative operation
A1 ∗ A2 ∗ . . . An. Operations being performed (each corresponding to one computation of a *-product)
are arranged on a binary tree. In the (completely equivalent) max-heap variant of theorem 2, children
intervals are required to be less or equal to the parent interval with respect to ordering ≤. This is quite
natural from the standpoint of parallel computing: consider the setting of a parallel-prefix problem where
each intermediate *-computation is a rather costly operation; intervals now represent times when these
operations can be scheduled. The requirement that the parent interval be larger than child intervals with
respect to ≤ is completely natural, as child computations need to complete in order to feed their results
to the parent computation. Thus our result answers the question whether all the time intervals can be
scheduled on a single heap-ordered binary tree, and gives such a scheduling, if the answer is affirmative.

4.1 Proof of Theorem 2
The proof employs the concept of slots, adapted for interval sequences from similar concepts for permu-
tations (Byers et al. (2011); Istrate and Bonchiş (2015)):

Definition 6. When a new interval is added to a k-ary chain it opens k new positions to possibly insert
other intervals as direct successors into this node. Each position has an associated integer value that will
be called its slot. The value of all empty slots created by inserting I1 = [a1, b1] into a k-ary chain will be
b1, the right endpoint of I1.

Definition 7. An interval I is compatible with an (empty) slot with value x if all of I lies in [x,∞).

Intuitively, x is the smallest value of the left endpoint of an interval that can be inserted in the k-ary
chain as a child of an interval I1 with right endpoint xwhile respecting the heap property. Indeed, as k-ary
chains are (min-)heap ordered, an insertion of an interval I into a k-ary chain as a child of I1 is legal if
the interval I is greater than I1 with respect to ≤ relation. This readily translates to the stated condition,
that the start point of I must be greater or equal than the slot value of its parent.

The proposed greedy best-fit algorithm for computing a minimum partition into k-chains a sequence
of n intervals is described in Figure 2. As an example, consider the sequence of intervals S1 below, with
k = 2. The resulting configuration is shown in Figure 3.

S1 = ([1, 7], [1, 11], [11, 12], [15, 16], [7, 9], [8, 16], [1, 2], [3, 19], [13, 17], [5, 7])

By choosing the highest valued slot available for insertion for It = [at, bt], we make sure that the
difference between the chosen slot value s and at is minimal. This is desirable because there may be
some interval further down the sequence with starting point value in between the s and at that fits slot s
but cannot be inserted there, as the slot is no longer available.

We define the concepts of signature of a multiset of slots and domination between such multisets in a
similar way to the corresponding concepts for permutations in Byers et al. (2011):
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Input: A sequence of intervals I = (I1, I2, . . . , In).
Output: A partition H of I into k-ary chains.

for i := 1 to n do:

if Ii = [li, ri] can be inserted into some empty slot

then insert Ii in the highest-valued compatible slot (a child of the
node with this slot).

else create a new k-chain rooted at Ii

Fig. 2: The best-fit algorithm for k-ary chain partition of sequences of intervals.

[1, 7]

H1

[7, 9] [8, 16]

7 7

9 9 16 16

[1, 2]

H3

[3, 19] [5, 7]

2 2

19 19 7 7

[1, 11]

H2

[11, 12]

[15, 16] [13, 17]

11 11

12 12

17 1716 16

Fig. 3: The binary (2-ary)-chain configuration corresponding to S1.

Definition 8. Given a multiset of slots H, we call the vector of slots, sorted in increasing order, the
signature of H . We shall denote this by sig(H). By slightly abusing notation, we will employ the previous
definition in the obvious way when H is a union of k-chains as well.

Definition 9. Multiset P dominates multiset Q (denoted P � Q) if
|sig(P )| ≤ |sig(Q)| and for all 1 ≤ i ≤ |sig(P )| we have sig(P )[i] ≤ sig(Q)[i].

For example, for the binary (2-ary) chains in the Figure 3 their corresponding signatures are, respec-
tively:

sig(H1) = [9, 9, 16, 16];
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sig(H2) = [11, 16, 16, 17, 17];

sig(H3) = [7, 7, 19, 19].

Therefore, in our example H1 � H2, (H1 dominates H2), but no other domination relations between
H1, H2, H3 are true.

Lemma 1. Assume that A,B are multisets of slots and A dominates B. Then the multisets A′ and
B′ obtained after inserting a new interval into the largest compatible slot of A, and into an arbitrary
compatible slot of B, propagates the domination property, i.e. A′ dominates B′.

Proof:
Let sig(A) = [a1, a2, . . . , a|sig(A)|] and sig(B) = [b1, b2, . . . , b|sig(B)|]. Also, by convention, define

a0 = b0 = −∞ and a|sig(A)|+1 = b|sig(B)|+1 = +∞.
Proving that A′ � B′ is equivalent to proving that |sig(A′)| ≤ |sig(B′)| and for all indices 1 ≤ l ≤
|sig(A′)|:

sig(A′)[l] ≤ sig(B′)[l]. (2)

The cardinality condition can be easily verified: indeed, |sig(A′)| is either |sig(A)|+k−1 (if the process
adds k copies of y but also kills a lifeline) or |sig(A)|+k (no slot exists with a value less or equal to x), and
similarly for |sig(B′)|. It follows easily from the domination property that when |sig(A′)| = |sig(A)|+k
then |sig(B′)| = |sig(B)| + k as well. Indeed, since |sig(A′)| = |sig(A)| + k, no slot of A has value
lower than x (or it would lose a lifeline). Thus a1 > x and since A � B, b1 ≥ a1 > x. So no slot of B is
smaller than x either.

As for the second condition, consider the slots from A and B which interfere with the newly arrived
interval as follows:

• Let i and i′ be the (unique) indices such that ai ≤ x < ai+1 and ai′ ≤ y < ai′+1 hold in A, with
i, i′ ∈ {0, · · · , |sig(A)|}.

• Similarly, let j and j′ be the unique indices such that bj ≤ x < bj+1 and bj′ ≤ y < bj′+1 hold in
B, with j, j′ ∈ {0, · · · , |sig(B)|}.

Since A � B, it follows that i ≥ j and i′ ≥ j′. Suppose that we insert the interval [x, y] in B in an
arbitrary slot bt ≤ bj (thus removing one life of slot bt and inserting k copies of slot y). The rest of the
proof is by a case analysis. The four cases which can be distinguished (displayed in Fig. 4, for k = 2) are:

Case 1. l < t:
In this case, none of the signatures A,B were affected at position l by the insertion of [x, y], hence:

sig(A′)[l] = sig(A)[l] ≤ sig(B)[l] = sig(B′)[l].

Case 2. l ∈ [t, j′):
In this range all slots from B′ have been shifted by one position to the left compared to B due to
the removal of bt. Consequently:

sig(A′)[l] = sig(A)[l] ≤ sig(B)[l + 1] = sig(B′)[l].
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sig(A) ai ai′

sig(B) bt bj bj′

t j′ i′

sig(A′) aj ai+1 ai′ y y ai′+1

sig(B′) bt+1 bj bj+1 bj′ y y bj′+1 bi′ bi′+1

À Á Â Ã

Fig. 4: The various cases of inserting a new interval [x, y] into B and A.

Case 3. l ∈ [j′, i′):
Knowing that i′ is the position in A where we inserted k new slots with value y, j′ is the position
in B where we inserted these same slots and i′ ≥ j′, the following is true:

sig(A′)[l] ≤ sig(B)[j′] ≤ y = sig(B′)[i′] ≤ sig(B′)[l].

Case 4. l ≥ i′:

a) For l = i′, . . . , i′ + k − 1 : sig(A′)[l] = sig(B′)[j′] = y. Since j′ < i′ < i′ + 1, then:

sig(A′)[i′] = y = sig(B′)[j′] ≤ sig(B′)[i′].
sig(A′)[i′ + 1] = y = sig(B′)[j′] ≤ sig(B′)[i′ + 1].

b) For l ≥ i′ + k the two signatures have equally shifted components compared to the original
signatures of A and B, so:

sig(A′)[l] = sig(A′)[i′ + k − 1 + (l − i− k + 1)] = sig(A)[i′ + (l − i′ − k + 1)] ≤
sig(B)[l − k + 1] = sig(B′)[l]

In conclusion, sig(A′)[l] ≤ sig(B′)[l] for any l, and relation A′ � B′ follows.

Lemma 2. Given a sequence I of intervals, consider an optimal way of partitioning I into k-ary chains.
Let r be a stage where the greedy best-fit algorithm creates a new k-ary chain. Then the optimal way also
creates a new k-ary chain.

Proof: We use the fact that, by Lemma 1, before every step r of the algorithm the multiset Γr−1 of slots
created by our greedy algorithm dominates the multiset Ωr−1 created by the optimal insertion.

Suppose that at stage r the newly inserted interval Ir causes a new k-ary chain to be created. That means
that the left endpoint lr of Ir is lower than any of the elements of the multiset Γr−1. By domination, the
minimum slot of Ωr−1 is at least as high as the minimum slot of Γr−1. Therefore lr is also lower than
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any slot of Ωr−1, which means that the optimal algorithm also creates a new k-ary chain when inserting
Ir.

Lemma 2 proves that the best-fit algorithm for insertion of new intervals is optimal.

4.2 The interval Hammersley (tree) process
One of the most fruitful avenues for the investigation of the scaling properties of the LIS (Longest increas-
ing subsequence) of a random permutation is made via the study of the (so-called hydrodynamic) limit
behavior of an interacting particle system known as Hammersley’s process ( Aldous and Diaconis (1995)).
This is a stochastic process that, for the purposes of this paper can be defined (in a somewhat simplified
form) as follows: random numbers X0, X1, . . . , Xn, . . . ∈ (0, 1) arrive at integer moments. Each value
Xj eliminates (”kills”) the smallest Xi > Xj that is still alive at moment j. Intuitively, ”live” particles
represent the top of the stacks in the patience sorting algorithm that computes parameter LIS.

The problem of partitioning a random permutation into a minimal set of k-heapable subsequences is
similarly connected to a variant of the above process, introduced in Istrate and Bonchiş (2015) and further
studied in Basdevant et al. (2016); Basdevant and Singh (2018), where it was baptized Hammersley’s tree
process. Now particles come with k lives, and each particle Xj merely takes one life of the smallest
Xi > Xj , if any (instead of outright killing it).

The proof of theorem 2 shows that a similar connection holds for sequences of intervals. The Hammer-
sley interval tree process is defined as follows: ”particles” are still numbers in (0, 1), that may have up to
k lives. However now the sequence I0, I1, . . . , In, . . . is comprised of random intervals in (0, 1). When
interval In = [an, bn] arrives, it is an that takes a life from the largest live particle y ≤ an. However, it is
bn that is inserted as a new particle, initially with k lives.

Corollary 3. Live particles in the above Hammersley interval process correspond to slots in our greedy
insertion algorithm above. The newly created k-ary chains correspond to local minima (particle insertions
that have a value lower than the value of any particle that is alive at that particular moment).

5 From sequences to sets of intervals
Theorem 2 dealt with sequences of intervals. On the other hand a set of intervals does not come with any
particular listing order on the constituent intervals. Nevertheless, the problem can be easily reduced to the
sequence case by the following:

Theorem 3. Let k ≥ 1 and Q be a set of intervals. Then the k-width of Q is equal to the k-width of GrQ,
the sequence of intervals obtained by listing the intervals in the increasing order of their right endpoints
(with earlier starting intervals being preferred in the case of ties).

Proof: Clearly k-wd(Q)≤ k-wd(GrQ), since a partition of GrQ into k-ary chains is also a partition of Q.
To prove the opposite direction we need the following:

Lemma 3. Let S be a multiset of slots. Let I1 = [a1, b1], I2 = [a2, b2] be two intervals such that b1 < b2,
or b1 = b2 and a1 < a2. Let S1 and S2 be the multisets of slots obtained by inserting the two intervals in
the order (I1, I2) and (I2, I1), respectively. Then S1 dominates S2.

Proof:
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The only nontrivial cases are those for which S1 6= S2. This condition can only happen when the
insertions of I1, I2 “interact”.

Indeed, let x, y be the values of the largest slots less or equal to a1, a2, respectively. If x 6= y and
b1 does not become (after insertion of I1) the slot occupied by b2 instead of y (nor does the symmetric
situation for the insertion order I2, I1 hold) then S1, S2 are obtained by adding k copies of b1, b2 each,
and deleting x, y, so we obtain S1 = S2.

If instead x = y then the two slots to be deleted (for both insertion orders) are x and the largest slot
smaller or equal than x. We obtain again S1 = S2.

The only remaining case is when the slot removed after insertion of I2 is b1. In this case S cannot
contain any element in the range (b1, a2). Insertion (I1, I2) removes x, adds k−1 copies of b1 and k copies
of b2. On the other hand, insertion (I2, I1) may remove some element x′. It is certainly x ≤ x′ ≤ b1. It
then adds k copies of b2. Then it removes some x′′ ≤ x and adds k copies of b1. Thus both sets S1, S2

can be described as adding k copies of b1 and k copies of b2 to S, and then deleting one or two elements,
two of them

- x and b1 in the case of order (I1, I2)

- x′ and x′′ in the case of order (I2, I1).

in the case when some element of S is strictly less than a1, and one element

- b1 in the case of order (I1, I2)

- x′′ in the case of order (I2, I1)

otherwise. In the second case the result follows by taking into account the fact that x′′ ≤ b1 and the
following lemma:

Lemma 4. Let S be a multiset of slots. Let s2, s1 ∈ S with s2 ≤ s1, and let S1, S2 be the sets obtained
by deleting from S elements s1 (or s2, respectively). Then S1 dominates S2.

Proof: It follows easily from the simple fact that for every r ≥ 1 and multiset W the function that maps
an integer x ∈ W to the r’th smallest element of W \ x is non-increasing (more precisely a function that
jumps from the r + 1’th down to the r’th smallest element of W ) The first case is only slightly more

involved. Since x′ ≤ x, by applying Lemma 4 twice we infer:

S1 = S \ {x, b1} = (S \ {b1}) \ {x} � (S \ {b1}) \ {x′} = (S \ {x′}) \ {b1} �
� (S \ {x′}) \ {x′′} = S2.

which is what we wanted to prove.

From Lemma 3 we infer the following result

Lemma 5. Let 1 ≤ r ≤ n and let X,Y be two permutations of intervals I1, I2, . . . , In,

X = (I1, . . . , Ir−1, Ir, Ir+1, . . . In),

Y = (I1, . . . , Ir−1, Ir+1, Ir, . . . In).
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Input: A set of intervals I .
Output: A partition H of I into k-ary chains.
Sort the intervals w.r.t. v: I = (I1, . . . , In).
For i := 1 to n do:

If Ii = [ai, bi] can be inserted into some empty slot

then insert Ii in the highest-valued compatible slot.

else create a new k-chain rooted at Ii

Fig. 5: The greedy algorithm for sets of intervals.

respectively (i.e. X,Y differ by a transposition). If Ir ≤ Ir+1 (recall, this means that the right endpoint
of Ir is less or equal than the left endpoint of Ir+1) then multisets of slots SX , SY obtained by inserting
intervals according to the listing specified by X and Y, respectively, satisfy

SX � SY .

Proof: Without loss of generality one may assume that r = n − 1 (as the result for a general n follows
from this special case by repeatedly applying Lemma 1). Let S be the multiset of slots obtained by
inserting (in this order) intervals I1, . . . , Ir−1. Applying Lemma 3 to intervals Ir, Ir+1 we complete the
proof of Lemma 5.

Now the opposite direction in the proof of Theorem 3 follows: the multiset SGr(Q) of labels obtained by
inserting the intervals according to sequenceGrQ dominates any multiset of labels arising from a different
permutation, since one can ”bubble down” smaller intervals (as in bubble sort), until we obtain GrQ. As
we do so, at each step, the new multiset of labels dominates the old one. Hence SGr(Q) dominates
all multisets arising from permutations of I1, . . . , In, so sequence GrQ minimizes the parameter k-wd
among all permutations of Q.

Corollary 4. The greedy algorithm in Figure 5 computes the k-width of an arbitrary set of intervals.

Corollary 5. Modify the Hammersley interval process to work on sets of intervals by considering them in
non-decreasing order according to relation v. Then live particles in the modified process correspond to
slots obtained using our greedy insertion algorithm for sets of intervals. New k-ary chains correspond to
local minima (such particle insertions that have a value lower than the value of any particle that is alive
at that particular moment).

6 Extension to sequences of elements from a trapezoid partial
order

The theorem in the previous section is strongly reminiscent of the fact that for interval partial orders a
greedy best-fit algorithm computes the chromatic number (Olariu (1991)). This result has an extension to
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an even more general class of graphs, that of trapezoid graphs (Dagan et al. (1988)). Trapezoid graphs
are an extension of both interval and permutation graphs that unify many natural algorithms (for problems
such as maximum independent set, coloring) for the two classes of graphs.

As noted in Felsner et al. (1997), trapezoid graphs can be equivalently defined as the cocomparability
graphs of two-dimensional boxes, with sides parallel to the coordinate axes:

Definition 10. A box is the set of points in R2 defined as

B = {(x1, x2) ∈ R2 | lBi ≤ xi ≤ rBi , i = 1, 2}

for some numbers lBi ≤ rBi ∈ R, where lB = (lB1 , l
B
2 ) is the lower corner of the boxB and rB = (rB1 , r

B
2 )

is the upper corner.
The interval I(B) associated to box B is the projection onto the y axis of box B. Clearly I(B) =

[lB2 , r
B
2 ].

The dominance partial order on intervals naturally extends to boxes:

Definition 11. The dominance partial order among boxes is defined as follows: box B1 dominates box
B2 if point rB1

dominates point lB2
, i.e.

rB1
i ≤ l

B2
i for i = 1, 2.

A trapezoid partial order is a poset P induced by the dominance partial order on a finite set V of boxes.
l and u refer to the lower and upper corner coordinate functions defining the boxes. That is, for every
v ∈ V , l(v) is the lower corner of box v and u(v) is its upper corner.

The box representation allowed the authors of Felsner et al. (1997) to give a “sweep-line algorithm” for
coloring trapezoid graphs that improved the coloring algorithm in Dagan et al. (1988).

As noted in Section 2.1, partition into k-heapable sequences is a natural generalization of coloring
permutation graphs. In the sequel we give an algorithm that generalizes the sweep-line coloring algorithm
for trapezoid graphs from Dagan et al. (1988) to the partition into k-ary chains of a particular class of
sequences of boxes.

Theorem 4. Let B = (B1, B2, . . . , Bn) be a sequence of two-dimensional axis-parallel boxes, totally
ordered by the x-coordinates of their right endpoints. Then the greedy sweep-line algorithm in Figure 6
computes an optimal partition of sequence B into k-ary chains.

Proof: The proof of Theorem 4 leverages and extends the method used for intervals in the proof of
Theorem 2. The fact that sequence B is sorted in increasing order of the x-coordonate of the endpoints
allows us to see the problem as one on intervals: instead of dealing with boxes B1, B2, . . . , Bn we will
instead deal with the associated intervals I(B1), I(B2), . . . , I(Bn).

We will assume that the x and the y coordinates of all boxes in B are all distinct. As usual with such
algorithms, the truth of our statement does not rely on this assumption: if the statement is not true then
points can be slightly perturbed to make the assumption true. The algorithm we give then extends to the
degenerate cases as well.

The sweep line maintains a multiset S of slots, that correspond to right endpoints of the intervals
associated with the boxes processed so far. The difference with respect to the case of Theorem 2 is that
the slots are now of one of two types:
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Input: A sequence of boxes B = (B1, B2, . . . , Bn).
Output: A partition H of B into k-ary chains.

let P = {(p1, p2)|(p1, p2) = lBi
or(p1, p2) = uBi

, i ∈ 1...n}

initialize S = {d}, where d is a real number smaller than all

the y coordinates of points p ∈ P, marked available

foreach p ∈ P sorted increasingly by the second coordinate do:

q← first available slot below p2 in S

if p = l(v) for some v ∈ B then

if q = u(w)2 for some w ∈ B then
insert v in the k-ary chain of w as a child of this node
remove q from S

add k copies of p2 to S, marking them unavailable

else // (q == d)

start a new k-ary chain rooted at v
add k copies of p2 to S, marking them unavailable

if p = u(v) for some v ∈ B then

mark all slots with value p2 in S as available

return the set of k-ary chains constructed by the algorithm.

Fig. 6: The greedy sweep-line algorithm for x-sorted trapezoid sequences.

- unavailable: a slot of this type is present in multiset S but cannot be used to process intervals.

- available: a slot of this type can be fully employed when processing a new interval.

The action of a sweep line comprises two types of actions:

- insertion: This happens when the sweep line reaches the left corner of some box Bj . We process
the interval I(Bj) similarly to the process in Theorem 2. Namely, we remove one lifeline from the
largest available slot with value at most lBj

2 , and insert into S k slots with value rBj

2 . These slots
are marked unavailable.

- state change: This happens when the sweep line reaches the right corner of some box Bj . All the
slots with value rBj

2 change marking, from unavailable to available.
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The intuitive explanation for this modification is clear: a box D can become the parent of another box
E only when the right corner of D is to the left (on the x axis) of the left corner of E. Thus, if the sweep
line has not reached the right endpoint of a box D then this box is not eligible to become the parent of any
currently processed box.

Let σt be the multiset of all slots created by the sweep-line algorithm up to a given moment t. Let
OPTt be the multiset of slots corresponding to an optimal partition into k-ary chains. Let σ

′

t be the
corresponding (multi)set of all slots in σt marked available at moment t. Let OPT

′

t be the set of slots in
OPTt marked available at moment t.

The basis for the proof of Theorem 4 is the following adaptation of Lemma 1 to the setting of slots with
availability statuses:

Lemma 6. For every t ≥ 0, sig(σ′t) � sig(OPT ′t ).

Proof: By induction on t. The statement is clear for t = 0, since both σ0 and OPT0 are empty. As-
sume the claim is true for all t′ < t. Let sig(σ′t−1) = [a1, a2, . . . , a|sig(σ′t−1)|] and sig(OPT ′t−1) =

[b1, b2, . . . , b|sig(OPT ′t−1)|]. Also, by convention, define a0 = b0 = −∞ and
a|sig(σ′t−1)|+1 = b|sig(OPT ′t−1)|+1 = +∞. Finally, let [l2s , r

2
s ] is the interval to be processed at stage t.

Proving that σ′t−1 � OPT ′t−1 entails proving that |sig(σ′t)| ≤ |sig(OPT ′t )| and for all indices 1 ≤ l ≤
|sig(σ′t)|:

sig(σ′t)[l] ≤ sig(OPT ′t )[l]. (3)

• Case 1: t is an insertion step:
σ′t is obtained from σ′t−1 by removing the largest available slot less or equal to l2s . OPT ′t is obtained
from OPT ′t−1 by perhaps removing some slot with value at most l2s .

The inequality |σ′t| ≤ |OPT ′t−1| follows easilty from the corresponding inequality at stage t − 1.
Indeed, σ′t−1 may lose an element (in which case OPT ′t−1 may also lose at most one element) or
stay the same (in which case OPT ′t−1 also stays the same (because there is no available slot to lose
a lifeline.)

As for inequality (3): if OPT ′t−1 does not lose an element the inequality follows easily from the
induction hypothesis for stage t − 1 and the fact that elements of σ′t−1 stay in place or shift to the
left.

If both σ′t−1 and OPT ′t−1 lose one element to yield σ′t, OPT
′
t , there are four types of positions l:

– Those below both deleted positions. They are unchanged as we move from σ′t−1 and OPT ′t−1
to σ′t, OPT

′
t . That is:

σ′t[l] = σ′t−1[l] and OPT ′t [l] = OPT ′t−1[l].

Hence inequality (3) is true by the induction hypothesis.

– Those above both deleted positions. They get shifted to the left by one in both σ′t and OPT ′t .
That is:

σ′t[l] = σ′t−1[l + 1] and OPT ′t [l] = OPT ′t−1[l + 1].

Hence again inequality (3) is true by the induction hypothesis.
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– Those below one but above the other deleted position. By the fact that the deleted slot in
OPT ′t−1 is less or equal than the one in σ′t−1 (since this is the largest available slot less or
equal to l2s), it follows that

σ′t[l] = σ′t−1[l] and OPT ′t [l] = OPT ′t−1[l + 1].

Hence
σ′t[l] = σ′t−1[l] ≤ OPT ′t−1[l] ≤ OPT ′t−1[l + 1] = OPT ′t [l].

so relation (3) holds in all cases.

• Case 2: t is a change step: The effect of such a step is that, both in σt−1 and OPTt−1 the k slots
with value r2s (that were previously inserted, but marked unavailable) become available.

Since |σ′t| = |σ′t−1|+ k and, similarly, |OPT ′t | = |OPT ′t−1|+ k, statement |σ′t| ≤ |OPT ′t | follows
from the analogous statement for t− 1.

Positions l before the insertion points of the k copies of r2s are not modified in σ′t, OPT
′
t so equa-

tion (3) follows for such l’s from the corresponding inequalities for stage t− 1. Similarly, positions
larger than both insertion points get shifted by exactly k, so inequality (3) also follows for such l’s
by the corresponding inequality for stage t− 1.

These two cases cover all positions l for which both values are different from the newly inserted
values equal to r2s . If both positions are equal to r2s the inequality also follows. The only remaining
cases are those l for which one of σ′t[l], OPT

′
t [l] is equal to the newly inserted value r2s but the other

is not. On inspection, though, inequality (3) is true in these cases as well: because of dominance,
the insertion point into OPT ′t−1 is to the left (or equal) to the insertion point into σ′t−1. So if
σ′t[l] 6= r2s but OPT ′t [l] = r2s then σ′t[l] < r2s = OPT ′t [l]. The reasoning in the case σ′t[l] = r2s but
OPT ′t [l] 6= r2s is analogous, the conclusion being that σ′t[l] = r2s < OPT ′t [l].

Using Lemma 6 we infer that at every step t when the greedy sweep-line algorithm creates a new k-ary
chain (because there is no available slot to lose a lifeline), so does the optimal algorithm (for the very
same reason). Hence the greedy sweep-line algorithm is optimal.

7 Maximal heapable subsets of interval orders
Finally, note that we are unable to solve the open problem from Byers et al. (2011) on the complexity of
computing a maximum heapable subsequence, i.e. a maximum treelike 2-independent set in permutation
posets (see the definition and discussion in Section 2.1). Instead, we settle this problem for a different
subclass of partial orders, the class of interval orders:

Theorem 5. Given a set of intervals I , the best-fit algorithm in Figure 7 computes a largest k-heapable
subset of intervals of the set I .

Proof:
Note first that, whereas the theorem deals with subsets of the set of intervals, the algorithm in Figure 7

considers the intervals in the set in a specific order (by sorting them with respect to v). This will turn not
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Input: A set of intervals I .
Output: A k-ary chain J ⊆ I of maximum cardinality.

Sort the intervals w.r.t. v: SI = (I1, . . . , In).
Let J = ∅.
For i := 1 to n do:

If Ii = [li, ri] can be inserted into some empty slot

then
J = J ∪ {i}.
insert Ii in the highest-valued compatible slot.

Fig. 7: The greedy best-fit algorithm for sets of intervals.

to be a problem, because we prove by induction the following result, which implies the statement of the
theorem:

Lemma 7. For every 1 ≤ r ≤ n there exists a largest k-heapable subset Γr of {I1, I2 . . . , In} and a
k-heap Tr for Γr such that the tree TG built by the greedy algorithm of Figure 7 agrees with Tr with
respect to the presence or absence of intervals I1, I2 . . . , Ir.

Proof: By induction.
The result is simple for r = 1: if I1 is part of an optimal k-heapable subset then there is nothing to

prove, since I1 can only participate in a k-heapable subset as the root of its corresponding tree. This
happens because I1 v Is for all s ≥ 1. If, on the other hand, I1 is not part of an optimal subset, then
consider such a solution Γ. Create a new solution Γ1 with the same tree shape by replacing the root
interval I of Γ by I1 (thus obtaining tree T1). This is legal, since I1 ends earlier than I .

Assume we have proved the result for 1 ≤ i ≤ r − 1. Consider now the optimal solution Γr−1 (with
k-ary tree Tr−1) agreeing with the greedy solution TG on the presence of the first r − 1 intervals.

• If Ir cannot be inserted into TG (that is, in the portion of TG constructed by the greedy-best fit algo-
rithm after considering intervals I1, I2, . . . , Ir−1) it means that no slot is available for Ir. By dom-
ination (Lemma 1) this must be true for both the greedy and the optimal solution Γr−1. Therefore
these two solutions do not contain Ir, hence they agree on the presence or absence of I1, I2, . . . , Ir.

• Suppose now that Ir can be inserted in a slot (thus is present in the greedy solution) but is not
present in the optimal solution Γr. Let J be the interval that has the same parent in Γr as Ir has in
the greedy solution (Figure 8). J must exist, otherwise one could simply extend Γr−1 by inserting
Ir at that position.

By the order we considered, the intervals Ir ends no later than J does. So by inserting Ir instead of
J we obtain an optimal solution Γr = Γr−1 \ {J} ∪ {Ir} that satisfies the induction property.
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The conclusion of the induction argument is that there exists an optimal tree containing exactly the same
intervals as those selected by TG. Thus the greedy best-fit algorithm produces an optimal solution.

Γr−1

y

J

TG

y

Ir

⇒

Γr

y

Ir

Fig. 8: Creating optimal solution Γr = Γr−1 \ {J} ∪ {Ir}.

8 Open questions and future work
Our Theorem 1 is very similar to (the proof of) Dilworth’s theorem. It is not yet a proper generalization
of this result to the case k ≥ 1 because of the lack of a suitable extension of the notion of antichain:

Open problem 1. Is there a suitable definition of the concept of k-antichain, that coincides with this
concept for k = 1 and leads (via our theorem 1) to an extension of Dilworth’s theorem?

On the other hand, results in Section 4 naturally raise the following:

Open problem 2. For which partial ordersQ can one compute the parameter k-wd(Q) (and an associate
optimal k-ary chain decomposition) via a greedy algorithm?

Several open problems concern the limit behavior of the expected value of the k-width of a set of
random intervals, for k ≥ 1. As discussed in Section 2, for k = 1 the scaling behavior of this parameter
is known (Justicz et al. (1990)). However, in the case of random permutations, the most illuminating
description of this scaling behavior is by analyzing the hydrodynamic limit of the Hammersley process
(Aldous and Diaconis (1995); Groeneboom (2002)). As shown in Section 5, the difference between
sequences and sets of intervals is not substantial.

We ask, therefore, whether the success in analyzing this process for random permutations can be repli-
cated in the case of sequences/sets of random intervals:

Open problem 3. Analyze the hydrodynamic limit of the Hammersley process for sequences/sets of ran-
dom intervals.

When k ≥ 2 even the scaling behavior is not known, for both sequences and sets of random intervals.
The connection with the interval Hammersley process given by Corollaries 3 and 5 provides a convenient,
lean way to simulate the dynamics, leading to experimental observations on the scaling constants. A
C++ program used to perform these experiments is publicly available at Istrate (2017). Based on these
experiments we would like to raise the following:
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Conjecture 1. For every k ≥ 2 there exists a positive constant ck > 0 such that, if Rn is a sequence of n
random intervals then

lim
n→∞

E[k-wd(Rn)]

n
= ck (4)

Moreover ck = 1
k+1 .

According to this conjecture, just as in the case of random permutations, the scaling behavior of the
k-width changes when going from k = 1 to k = 2. Note, though, that the direction of change is different
(Θ(
√
n) to Θ(log n) for integer sequences, Θ(

√
n) to Θ(n) for sequences of intervals). On the other

hand, somewhat surprisingly, the scaling behavior of sets of random intervals seems to be similar to that
for sequences:

Conjecture 2. For every k ≥ 2 there exists a positive constant dk > 0 such that, if Wn is a set of n
random intervals then

lim
n→∞

E[k-wd(Wn)]

n
= dk (5)

Experiments suggest that d2 = c2 = 1
3 , and similarly for k = 3, 4 dk = ck = 1

k+1 . Therefore we
conjecture that

dk = ck =
1

k + 1
for all k ≥ 2. (6)
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