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The packing number of a graph G is the maximum number of closed neighborhoods of vertices in G with pairwise
empty intersections. Similarly, the open packing number of G is the maximum number of open neighborhoods in
G with pairwise empty intersections. We consider the packing and open packing numbers on graph products. In
particular we give a complete solution with respect to some properties of factors in the case of lexicographic and
rooted products. For Cartesian, strong and direct products, we present several lower and upper bounds on these
parameters.
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1 Introduction

The packing number ρ(G) and the open packing number ρo(G) of a graph G are natural lower bounds of
the domination number γ(G) and the total domination number γt(G) of G, respectively. One of the first
results of that type is from Meir and Moon [22], where it was shown that ρ(T ) = γ(T ) for every tree T
(in a different notation). It is easy to see that, while the numbers are the same, the sets that yield both ρ(T )
and γ(T ) are often different. See also [3, 12] for some results of that type where they “unfortunately”
only lie in a shadow of domination and total domination.

In the last decade the packing number became more interesting for itself, and not only in connection
with the domination number. Some interesting examples are as follows. The relationship between the
packing number and the maximal packings of minimum cardinality, called also the lower packing number,
is investigated in [26]. In [24], a connection between the packing number and the double domination in the
form of an upper bound is presented. Graphs for which their packing number equals the packing number
of their complement are described in [6]. In [14], it was shown that the domination number can also be
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bounded from above by the packing number multiplied by the maximum degree of a graph. Asymptotic
bounds for the maximum and the minimum number of packings in graphs of fixed order are established
in [16]. A different approach was taken in [2], where graphs with unique maximum packing are treated.

A generalization of packings presented in [9] is called k-limited packing, where the closed neighbor-
hood of every vertex can have at most k vertices in a k-limited packing set S. They exhibited some
real-world applications of it to network security, market saturation, NIMBY and codes. A probabilistic
approach to some bounds of the k-limited packings can be found in [8]. More results on this topic can
be found in [23]. A further generalization, that is, generalized limited packing of the k-limited packing
(see [5]) brings a dynamic approach with respect to the vertices of G, where every v ∈ V (G) can have
a different number of neighbors kv in a generalized limited packing. The problem is NP-complete, but
solvable in polynomial time for P4-tidy graphs as shown in [5].

The open packing number was introduced by Henning and Slater in [13]. They presented theoretical
and computational results concerning this parameter of graphs. In [25], the open packing and the total
domination equality ρo(T ) = γt(T ) was proved for all trees T of order at least two. Some applications
of this equality for trees can be found in [25] and [28]. As a generalization of the open packing, and a
total version of the limited packing, the concept of total limited packing was introduced in [15]. A subset
S of the vertices is called a k-total limited packing if the open neighborhood of each vertex has at most k
neighbors in S.

The class of graphs with ρ(G) = γ(G), where both maximum packing sets and minimum dominating
sets coincide, is called efficient closed domination graphs. In such a case we also call a minimum dom-
inating set a 1-perfect code. Similarly, we call a graph G an efficient open domination graph, whenever
ρo(G) = γt(G). Efficient open domination graphs are well known among graph products, see [20, 21]. In
particular, in [20], a method was established concerning how to approach to the efficient open domination
graphs among Cartesian products where one factor is fixed. The study of perfect codes in graphs was
initiated by Biggs [1]. It was later intensively studied, and for instance, graphs that are both efficient open
and efficient closed domination graphs at the same time are discussed in [18].

We twist the roles usually played by (open) packings in investigations, and bring in this work, packing
and open packing on the front line and present several upper and lower bounds for the packing and open
packing numbers of graph products. In the next section we fix the notation. Then we start with the
investigation of packing and open packing numbers of the Cartesian product of graphs. A section that
covers the lexicographic, the strong and the direct product follows. We end with a section on the rooted
product of graphs.

2 Preliminaries

Throughout this paper, let G be a finite simple graph with vertex set V (G) and edge set E(G). The open

neighborhood {u ∈ V (G) : uv ∈ E(G)} of a vertex v is denoted by NG(v), and the closed neighborhood

of v is NG[v] = NG(v)∪{v}. The degree of a vertex v is |NG(v)| and is denoted by δG(v). The minimum

and maximum degree of G are denoted by δ(G) and ∆(G), respectively. A subgraph of a graph G induced
by S ⊆ V (G) is denoted by G[S].

A set S ⊆ V (G) is a dominating set if each vertex in V (G)\S has at least one neighbor in S. The
domination number γ(G) is the minimum cardinality of a dominating set of G. We call a dominating set
S of a graph G with cardinality γ(G) a γ(G)-set. Similarly, a set D ⊆ V (G) is a total dominating set if
each vertex in V (G) has at least one neighbor in D. The total domination number γt(G) is the minimum
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cardinality of a total dominating set of G. We call a total dominating set D of a graph G with cardinality
γt(G) a γt(G)-set.

A subset P ⊆ V (G) is a packing in G, if for every pair of distinct vertices u, v ∈ P , N [u]∩N [v] = ∅.
The packing number ρ(G) is the maximum cardinality of a packing in G. The open packing, as it is
defined in [13], is a subset P ⊆ V (G) for which the open neighborhoods of the vertices of P are pairwise
disjoint in G (clearly, P is an open packing if and only if |N(v) ∩ P | ≤ 1, for every v ∈ V (G)). The
open packing number, denoted ρo(G), is the maximum cardinality among all open packings in G.

A set S ⊆ V (G) is k-independent set of a graph G, if ∆(G[S]) < k. The k-independence number of G
is the maximum cardinality of a k-independent set of G. We denote the k-independence number by αk(G)
and call a k-independent set of cardinality αk(G) as an αk(G)-set. This is clearly a generalization of the
independence number α(G), which may be considered as the 1-independence number. We are mainly
interested in this work in α2(G). If S is a 2-independent set of a graph G, then G[S] contains isolated
edges and isolated vertices. This invariant was first introduced in [7]. For more references we recommend
the survey [4].

For all four standard products of graphs G and H the vertex set of the product is V (G)× V (H). Their
edge sets are defined as follows. In the Cartesian product G✷H two vertices are adjacent if they are
adjacent in one coordinate and equal in the other. In the direct product G×H two vertices are adjacent if
they are adjacent in both coordinates. The edge set E(G⊠H) of the strong product G ⊠H is the union
of E(G✷H) and E(G × H). Finally, two vertices (g, h) and (g′, h′) are adjacent in the lexicographic

product G ◦H (also G[H ]) if either gg′ ∈ E(G) or (g = g′ and hh′ ∈ E(H)). For h ∈ V (H), g ∈ V (G)
and ∗ ∈ {✷,⊠,×, ◦}, we call Gh = {(g, h) ∈ V (G∗H) | g ∈ V (G)} a G-layer through h in G∗H , and
gH = {(g, h) ∈ V (G∗H) | h ∈ V (H)} an H-layer through g in G∗H . Note that the subgraph of G∗H
induced by Gh is isomorphic to G, and the subgraph of G ∗ H induced by gH is isomorphic to H for
∗ ∈ {✷,⊠, ◦}. On the other hand, there are no edges between vertices of Gh and between vertices of gH
in G×H . Note also that all four products are associative and only the first three are commutative, while
the lexicographic product is not, cf. [11]. The map pG : V (G ∗H) → V (G) defined by pG((g, h)) = g
is called a projection map onto G for ∗ ∈ {✷,⊠,×, ◦}. Similarly, we can define the projection map onto

H .

3 Cartesian product of graphs

In 1968, Vizing [29] posed the following conjecture, which is still widely open, concerning the domination
number of Cartesian product of two graphs G and H :

γ(G�H) ≥ γ(G)γ(H). (1)

One of the tools which have been used while trying to prove, or making a contribution to the knowledge
on the conjecture, is precisely the packing number. This could probably be one of reasons that the packing
number has been very rarely considered by itself in an investigation regarding products of graphs.

One of the most common contributions to the study on Vizing’s conjecture concerns finding some
Vizing-like results for other domination related parameters in the Cartesian product of graphs, or even
in other products. In this sense, similar inequalities concerning many domination parameters have been
extensively obtained in the literature (for more information the reader can consult [3]).

We first remark the following Vizing-like inequality for the packing number proved by Kazemi et al.
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[17]. That is, for all graphs G and H ,

ρ(G�H) ≥ ρ(G)ρ(H). (2)

Although the bound above satisfies the style of a Vizing-like result, in general this bound is not too
accurate. That is, the real value for ρ(G�H) is frequently much larger than ρ(G)ρ(H). For instance, we
next show that the difference between ρ(G�H) and ρ(G)ρ(H) can be arbitrary large. To this end, we
first recall that the distance formula in Cartesian product of two graphs G and H is given by

dG�H((g, h), (g′, h′)) = dG(g, g
′) + dH(h, h′). (See [11].) (3)

Proposition 3.1. For any integer b ≥ 2, there exist two graphsG andH for which ρ(G�H)−ρ(G)ρ(H) =
b.

Proof: Let b = r(t − 1), in which r, t ≥ 2 are two integers. We consider the graph Gr,t constructed as
follows. We begin with a graph Gr of order r. We next add t pendant vertices to each vertex of Gr. In
what follows we claim that

ρ(Gr,t) = r. (4)

Let S be a packing set of cardinality ρ(Gr,t). For any vertex v of Gr, at most one vertex of N [v] can
belong to S. Thus, ρ(Gr,t) ≤ r. By taking exactly one of the added pendant vertices to each vertex of
Gr, we construct a packing set of Gr,t. This also means that ρ(Gr,t) ≥ r and we have the equality (4).

We next give the exact value of the packing number of the Cartesian product of the graph Gr,t and a
complete graph Kn on n ≥ t vertices. In fact, we claim that

ρ(Gr,t�Kn) = rt. (5)

Let V (Kn) = {h1, . . . , hn} and let V (Gr,t) = {g1,0, g1,1, . . . , g1,t, . . . , gr,0, gr,1, . . . , gr,t}, where
V (Gr) = {g1,0, . . . , gr,0} and N(gi,0) \V (Gr) = {gi,1, . . . , gi,t} for every i ∈ {1, . . . , r}. To prove our
result, we consider the set

T = {(g1,1, h1), . . . , (gr,1, h1), (g1,2, h2), . . . , (gr,2, h2), . . . , (g1,t, ht), . . . , (gr,t, ht)}.

It can be noticed, by (3), that the distance between any two vertices of T is at least three. Thus, T is a
packing set of Gr,t�Kn, and so, ρ(Gr,t�Kn) ≥ |T | = rt.

Let B be a packing set of cardinality ρ(Gr,t�Kn). Consider the set of vertices of Gr,t�Kn in the
matrix form M = {(gi,j , hk) | 1 ≤ i ≤ r, 0 ≤ j ≤ t and 1 ≤ k ≤ n}. Hence, we can partition the set of
rows of M into the sets M1,0, · · · ,Mr,0, in which Mi,0 contains t+ 1 rows

((gi,0, h1), · · · , (gi,0, hn)), ((gi,1, h1), · · · , (gi,1, hn)), · · · , ((gi,t, h1), · · · , (gi,t, hn)).

Since the subgraph induced by the vertices in ((gi,j , h1), · · · , (gi,j , hn)) for 0 ≤ j ≤ t, is a copy of the
complete graph Kn, every row in Mi,0 has at most one vertex in B. Therefore, |Mi,0 ∩ B| ≤ t + 1 for
each 1 ≤ i ≤ r. Suppose to the contrary that, |Mi,0∩B| = t+1 for some 1 ≤ i ≤ r. Let (gi,t, hj) be the
unique vertex of ((gi,t, h1), · · · , (gi,t, hn)) which belongs to B. This implies that |N [(gi,0, hj)]∩B| = 2,
which is a contradiction. Thus, |Mi,0 ∩ B| ≤ t for each 1 ≤ i ≤ r, and so, ρ(Gr,t�Kn) = |B| ≤ rt.
Therefore, we have the equality (5).
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Since ρ(Kn) = 1 and ρ(Gr,t) = r, we have ρ(Gr,t�Kn)− ρ(Gr,t)ρ(Kn) = r(t − 1) = b.

For the open version of packings, we observe that the analogous inequality to that in (2) does not hold
in general. To see this we consider for instance G = H = P2. The definition of the packing number of
graphs (based on a maximum value) is more feasible to find lower bounds than to find upper bounds for it.
The main part of results known for the Cartesian product is an example of it. In contrast, in what follows
we center our attention into giving an upper bound on ρ(G�H).

Proposition 3.2. For any graphs G and H ,

ρ(G�H) ≤ min{ρ(G)|V (H)|, ρ(H)|V (G)|}.

This bound is sharp.

Proof: Let V (H) = {h1, · · · , h|V (H)|}. Clearly, G�H contains |V (H)| disjoint G-layers. Now let
P be a maximum packing in G�H . Hence, Pi = P ∩ Ghi is a packing in (G✷H)[Ghi ], for each
1 ≤ i ≤ |V (H)|. Therefore, |Pi| ≤ ρ(G), and it follows that

ρ(G�H) = |P | =

|V (H)|
∑

i=1

|Pi| ≤ ρ(G)|V (H)|.

We have ρ(G�H) ≤ ρ(H)|V (G)|, by a similar fashion. This shows the upper bound. That the bound
is sharp can be seen by considering ρ(P2�Km,n) = 2 when m+ n ≥ 3.

Similarly to the inequality in Proposition 3.2, we have

ρo(G�H) ≤ min{ρo(G)|V (H)|, ρo(H)|V (G)|}.

In what follows we always assume that |V (G)|, |V (H)| ≥ 2, for otherwise G�H ∼= G or G�H ∼=
H . If G1, . . . , Gr and H1, . . . , Hs are the components of G and H , respectively, then ρ0(G�H) =
∑

i,j ρ0(Gi�Hj). So, we can assume that both G and H are connected.
We start with a lower bound on ρo(G�H). To this end, we let ηG = ⌈(diam(G) + 1)/3⌉ and

ηHG =

{

1, if G 6= K2 and diam(H) ≡ 2 (mod 3),

0, otherwise.
(6)

Theorem 3.3. For any graphs G and H ,

ρo(G�H) ≥ max{ρ(G)ρo(H), ρ(H)ρo(G), ηHρo(G) + ηHG , ηGρo(H) + ηGH}.

Proof: Let V (H) = {v1, . . . , v|V (H)|} and let P ′ be a maximum open packing in G and P ′
i = P ′×{vi}.

Consider a diametral path P = v1v2 · · · vdiam(H)+1 in H , by renaming vertices if necessary. If G = K2

or diam(H) ≡ 0 or 1 (mod 3), then

P1 = ∪
⌊diam(H)/3⌋+1
i=1 P ′

3i−2
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is an open packing in G�H . Therefore, ρo(G�H) ≥ |P1| = ηHρo(G). So, in what follows we suppose
that G 6= K2 and diam(H) ≡ 2 (mod 3). Let uj ∈ V (G) \ P ′ (note that such a vertex exists because
G 6= K2). Observe that P2 = P1 ∪ {(uj, vdiam(H)+1)} is an open packing in G�H of cardinality
ηHρo(G) + 1. The above discussion results in ρo(G�H) ≥ ηHρo(G) + ηHG . Interchanging the roles of
G and H we have ρo(G�H) ≥ ηGρo(H) + ηGH .

Now, let PG be a maximum open packing in G and let PH be a maximum packing in H . Let P =
PG × PH . Suppose that there exists a vertex (u, v) ∈ V (G�H) with two neighbors (u′, v′) and (u′′, v′′)
in P . Since PH is a packing of H , we have either v′ = v′′ or dH(v′, v′′) > 2. Because (u, v) is a
common neighbor of (u′, v′) and (u′′, v′′), we have dH(v′, v′′) ≤ 2. Therefore, v′ = v′′ follows. By
the same reason, because PG is an open packing of G, we have that either u′ = u′′, or u′u′′ ∈ E(G),
or dG(u′, u′′) > 2. The first option cannot occur because (u′, v′) 6= (u′′, v′′) and the last option is not
possible since (u′, v′) and (u′′, v′′) have a common neighbor (u, v). Therefore, u′u′′ ∈ E(G). By the
properties of the Cartesian product, the common neighbor (u, v), of (u′, v′) and (u′′, v′′), must be also
in the G-layer Gv′

because v′ = v′′, which is a contradiction with PG being an open packing of G as
different vertices u′, u′′ ∈ PG have a common neighbor u. This shows that P is an open packing in G�H .
So,

ρo(G�H) ≥ |P | = ρo(G)ρ(H).

Interchanging the roles of G and H we have ρo(G�H) ≥ ρo(H)ρ(G), and this completes the proof.

Since

ρo(Km�Kn) =

{

2, if m = 2 or n = 2,

1, otherwise,
(7)

we may assume that max{diam(G), diam(H)} ≥ 2, where diam(G) and diam(H) stand for the diame-
ters of G and H , respectively.

From now on, we fix one factor, say H , to be a complete graph and try to bound the open packing
number of G✷Kr. In the next results, we follow a similar approach as for efficient open domination
Cartesian products from [20]. Clearly, as G�K1

∼= G, we only consider r ≥ 2. For this we need to
distinguish the cases when r = 2 and when r > 2. The reason for this is that for r = 2, both vertices of a
Kr-layer can be in an open packing, while this cannot occur when r > 2, where at most one vertex from
a Kr-layer can be in any open packing of G✷Kr.

As an immediate consequence of Theorem 3.3, we have ρo(G✷K2) ≥ 2ρ(G), for any graph G. So, we
next consider ρo(G✷Kr) for r > 2. In this case, it is easy to see that every Kr-layer contains at most one
vertex of any open packing of G✷Kr.

Let G be a graph and let S be a 2-independent set of G. We define a graph G/S as follows. The
vertex set V (G/S) consists of components of G[S]. Two components C and C′ of G[S] are adjacent in
G/S whenever dG(C,C′) = 2. We recall that dG(H1, H2) = min{dG(v1, v2) | v1 ∈ V (H1) and v2 ∈
V (H2)} for any subgraphs H1 and H2 of G, and also χ(G) is the chromatic number of G.

Theorem 3.4. Let G be a graph and r > 2 an integer. Then,

ρo(G) ≤ ρo(G✷Kr) ≤ α2(G).

If G is triangle-free and χ(G/S) ≤ r, where S is an α2(G)-set, then ρo(G✷Kr) = α2(G).
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Proof: The lower bound follows from Theorem 3.3 because ρ(Kn) = 1.

Suppose now that ρo(G✷Kr) > α2(G), let V (Kr) = {1, . . . , r} and let P be an ρo(G✷Kr)-set.
Clearly, every Kr-layer contains at most one vertex from P , because r > 2. So, the projection S′ =
pG(P ) contains ρo(G✷Kr) vertices of G. Notice that S′ is not a 2-independent set because ρo(G✷Kr) >
α2(G). Therefore there exists a vertex x ∈ S′ such that its degree is at least two in G[S′]. Let u and v
be neighbors of x in G[S′] and let (x, ℓ), (u, i) and (v, j) be the vertices of P that project to x, u and v,
respectively. If i = j, then (x, i) ∈ NG✷Kr

((v, i)) ∩ NG✷Kr
((u, i)), which is a contradiction with P

being an open packing of G✷Kr. Thus, we may assume that i 6= j. But then we have ℓ 6= i or ℓ 6= j.
Suppose without loss of generality that ℓ 6= i. This implies that (u, ℓ) ∈ NG✷Kr

((u, i))∩NG✷Kr
((x, ℓ)),

which is a final contradiction. Hence ρo(G✷Kr) ≤ α2(G) and the upper bound follows.

Let G be a triangle-free graph, and let S be an α2(G)-set for which χ(G/S) ≤ r. Also, let V ′
1 , . . . , V

′
k ,

k ≤ r, be the color classes of G/S. By Vi, i ∈ {1, . . . , k}, we denote the set of vertices from G that
belong to V ′

i . Clearly α2(G) = |S| =
∑k

i=1 |Vi|. We will show that the set

P = {(v, i) : v ∈ Vi, i ∈ {1, . . . , k}}

forms an open packing of G✷Kr (notice that P is well-defined as k ≤ r). Clearly, |P | = α2(G).
Suppose first that NG✷Kr

((v, i)) ∩ NG✷Kr
((u, i)) 6= ∅ for v 6= u. Therefore, there exists a vertex x

which is a common neighbor of u and v in G. On the other hand, uv /∈ E(G), for otherwise u, v and
x would be on a triangle. By the definition of a 2-independent set, it follows x /∈ S. In consequence,
u and v belong to two different components of G[S], say to C and C′, respectively. Vertices C and
C′ are adjacent in G/S, which yields a contradiction with a proper coloring of G/S as u, v ∈ Vi and
with this C,C′ ∈ V ′

i . Thus, NG✷Kr
((v, i)) ∩ NG✷Kr

((u, i)) = ∅ for any pair of different vertices
u, v ∈ Vi. Suppose next that NG✷Kr

((v, i)) ∩ NG✷Kr
((u, j)) 6= ∅ for i 6= j. Note that also u 6= v by

the definition of P . By the properties of the Cartesian product, u must be adjacent to v in G. Therefore,
u, v ∈ S and they belong to one component of G[S], a contradiction with i 6= j. Moreover, in this
case we have NG✷Kr

((v, i)) ∩ NG✷Kr
((u, j)) = ∅ and P is an open packing of G✷Kr. Therefore,

ρo(G✷Kr) ≥ α2(G), because P is an open packing of cardinality α2(G).

The assumption which states that the graphG is triangle-free is necessary for the equality ρo(G✷Kr) =
α2(G) in Theorem 3.4. For instance, ρo(Kt✷Kr) = 1 while α2(Kt) = 2 for each integer t ≥ 3.

A direct consequence of the last theorem holds for r0 = χ(G/S) and a set S being an α2(G)-set of
graph G.

Corollary 3.5. Let G be a triangle-free graph. There exists a positive integer r0 such that ρo(G✷Kr) =
α2(G) for every integer r ≥ r0.

With respect to the inequality ρo(G✷K2) ≥ 2ρ(G) (previously remarked) and Theorem 3.4, the ques-
tion that remains concerns finding the value ρo(G✷Kr) whether χ(G/S) > r > 2 for an α2(G)-set
S. One can show, by the same steps as in the proof of Theorem 3.4, that any proper, but partial, r-
coloring of G/S yields a packing of G✷Kr. Similarly, every packing of G✷Kr yields a set of G that is
2-independent. However, it seems to be challenging to find a 2-independent set that gives the maximum
number of vertices in a partial r-coloring.
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4 Lexicographic, strong and direct products of graphs

This section is divided into three parts. We first completely describe the packing and open packing
numbers of the lexicographic product. We continue with bounds on the packing and open packing numbers
of the strong product. In the last part we present lower bounds for the packing and open packing numbers
of the direct product of graphs.

4.1 Lexicographic product

For two graphs G and H , where G is a connected graph of order at least two, it is a part of folklore that
the distance between any two vertices (g, h), (g′, h′) ∈ V (G ◦H) is given by

dG◦H((g, h), (g′, h′)) =

{

min{2, dH(h, h′)}, if g = g′,
dG(g, g

′), if g 6= g′.
(8)

This formula does not hold anymore in the case of a disconnected graph G. In such a case the formula
holds, if both g and g′ are in the same component of G, when this component contains at least two vertices.
If there exists a singleton g in G, then we have dG◦H((g, h), (g, h′)) = dH(h, h′). This is the reason for
the following notation. By G− we denote the graph obtained from G by removing all the isolated vertices
of G.

Theorem 4.1. Let G and H be any graphs. If G has iG isolated vertices, then

ρ(G ◦H) = ρ(G) + iGρ(H)− iG.

Proof: Let PG be a ρ(G−)-set, let PH be a ρ(H)-set, and let I be the set of all singletons of G. For a
vertex v ∈ V (H), we set P = (PG × {v}) ∪ (I × PH). According to (8), and the paragraph after it, we
can deduce that for any two vertices (g, h), (g′, h′) ∈ P , it follows that dG◦H((g, h), (g′, h′)) ≥ 3. Thus,
P is a packing of G ◦H and we have ρ(G ◦H) ≥ ρ(G) + iGρ(H)− iG.

On the other hand, let P be a ρ(G ◦H)-set. Suppose first that g ∈ V (G) is a singleton. The subgraph
(G ◦H)[gH ] is isomorphic to H and contains at most ρ(H) vertices of P . Hence, in (G ◦H)[I ×V (H)],
there exist at most iGρ(H) vertices of P . Since the distance between any distinct vertices (g, h), (g, h′) ∈
V (G−◦H) is at most two, it clearly happens that for any g ∈ V (G−), |P∩({g}×V (H))| ≤ 1. Moreover,
for any two vertices (g, h), (g′, h′) ∈ P , where g, g′ ∈ V (G−) (notice that it must be g 6= g′), it follows
dG(g, g

′) = dG◦H((g, h), (g′, h′)) ≥ 3. Thus, the projection of P − (I × V (H)) onto G is a packing set
in G−. As a consequence, ρ(G◦H) = |P | ≤ |pG(P − (I×V (H)))|+ iGρ(H) ≤ ρ(G)+ iGρ(H)− iG,
which leads to the equality.

With respect to the open packing number, we can see that the lexicographic product behaves slightly
different from that of the packing number.

Theorem 4.2. Let G and H be any graphs. If G has iG isolated vertices, then

ρo(G ◦H) =

{

ρo(G) + iGρo(H)− iG, if H has an isolated vertex,

ρ(G) + iGρo(H)− iG, otherwise.

Proof: Suppose first that h is an isolated vertex of H . Let PG be a ρo(G−)-set, let PH be a ρo(H)-set, and
let I be the set of all isolated vertices of G. We set P = (PG×{h})∪(I×PH). If the open neighborhoods
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centered at distinct vertices (g, h), (g′, h) ∈ PG × {h} intersect, then we have a contradiction with PG

being a ρo(G
−)-set. Similarly, if the open neighborhoods centered at distinct vertices (g, h), (g, h′) ∈

{g}×PH intersect for some g ∈ I , then we have a contradiction with PH being a ρo(H)-set. Now, assume
(g′′, h′′) belongs to the intersection of the open neighborhoods of (g, h) ∈ PG×{h} and (g′, h′) ∈ I×PH .
We note that g′′g ∈ E(G) and g′′ = g′ ∈ I . This contradicts the fact that g′ is an isolated vertex in G.
Thus, P is an open packing of G ◦H and we have ρo(G ◦H) ≥ ρo(G) + iGρo(H)− iG.

Conversely, let P be a ρo(G ◦H)-set. Suppose first that g ∈ V (G) is an isolated vertex. The subgraph
(G◦H)[gH ] is isomorphic to H and is a component of H . Therefore, (G◦H)[gH ] contains at most ρo(H)
vertices of P . Hence, in (G ◦ H)[I × V (H)], there exist at most iGρo(H) vertices of P . The distance
between any two distinct vertices (g, h), (g, h′) ∈ V (G− ◦H) is at most two and, if it is one, then they
are on a common triangle. Hence, for any g ∈ V (G−), it follows |P ∩ ({g}×V (H))| ≤ 1. Therefore, we
have |pG(P ′)| = |P ′| for P− = P ∩(V (G−)×V (H)). If pG(P ′) is not an open packing of G−, then also
P ′ is not an open packing in G−◦H , which is a contradiction. Therefore, we have ρo(G−◦H) ≤ ρo(G

−).
Joining both parts we obtain ρo(G ◦H) ≤ ρo(G

−) + iGρo(H) = ρo(G) + iGρo(H) − iG and the first
equality holds.

Suppose now that H has no isolated vertices. Let P be an open packing in G− ◦ H which is not
a packing. Therefore, there exist two adjacent vertices (g′, h′) and (g′′, h′′) in P . Let g′g′′ ∈ E(G).
Since h′ is not an isolated vertex, there is a vertex h′′′ ∈ V (H) adjacent to it. Hence (g′, h′′′) ∈
NG−◦H((g′, h′)) ∩ NG−◦H((g′′, h′′)), which is a contradiction. So, g′ = g′′ and h′h′′ ∈ E(H). In
addition, (g′′′, h′) ∈ NG−◦H((g′, h′)) ∩NG−◦H((g′′, h′′)), in which g′′′ is a neighbor of g′ in G−, con-
tradicting the fact that P is an open packing. This shows that every open packing in G− ◦H is a packing,
as well. So, ρo(G− ◦H) = ρ(G− ◦H). Thus, ρo(G− ◦H) = ρ(G−) follows from Theorem 4.1, because
iG− = 0. It is also clear that F = (G ◦H)[I × V (H)] ∼= iGH , or equivalently, iG copies of H . Clearly
ρo(F ) = iGρo(H) and the result for ρo(G ◦H) follows.

4.2 Strong product

The strong product is a natural environment for the closed neighborhoods

NG⊠H [(g, h)] = NG[g]×NH [h]. (9)

The distance between any two vertices (g, h), (g′, h′) ∈ V (G⊠H) is given by

dG⊠H((g, h), (g′, h′)) = max{dG(g, g
′), dH(h, h′)}. (10)

The next result involves the fractional domination number γf (G) of a graphG. Since this is not influen-
tial in this work, for the interested readers, we recommend [11, p.360] for the definition and terminology
on this issue.

Theorem 4.3. ([11, Theorem 28.16]) If G and H are any graphs, then

ρ(G)ρ(H) ≤ ρ(G⊠H) ≤ min{ρ(G)γf (H), ρ(H)γf (G)}.

The lower bound from the last theorem follows easily from (9) because PG×PH is a packing of G⊠H
for any packings PG and PH of G and H , respectively. The upper bound is achieved by using some linear
programming methods. However, we strongly believe that the lower bound gives always the exact result,
but the proof of it seems to be very illusive. To underline such ideas we show the equality when one factor
has a small diameter.
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Proposition 4.4. Let G and H be graphs. If diam(H) ≤ 2, then

ρ(G⊠H) = ρ(G)ρ(H) = ρ(G).

Proof: Since diam(H) ≤ 2, we have ρ(H) = 1 and the second equality is clear. By Theorem 4.3, we
know that ρ(G⊠H) ≥ ρ(G)ρ(H). For the converse, let P be a maximum packing of G⊠H and let (g, h)
be an arbitrary vertex from P . By (10) we have gH∩P = {(g, h)}, because diam(H) ≤ 2. Similarly, we
have g′

H ∩ P = ∅ for any vertex g′ with 1 ≤ dG(g, g
′) ≤ 2, again by (10), and because diam(H) ≤ 2.

Thus, the distance between any two vertices of pG(P ) is at least three, and so pG(P ) is a packing of G.
Moreover, pG(P ) has the same cardinality as P . Therefore, ρ(G ⊠ H) ≤ ρ(G) = ρ(G)ρ(H) and the
proof is completed.

For the case of open packing sets the strong product behaves similarly as in the case of packings.

Theorem 4.5. For any graphs G and H with iG and iH isolated vertices, respectively,

ρo(G⊠H) ≥ ρ(G−)ρ(H−) + iGρo(H) + iHρo(G)− iGiH

and

ρo(G⊠H) ≤ min{ρ(G−)γf (H
−), ρ(H−)γf (G

−)}+ iGρo(H) + iHρo(G)− iGiH .

Proof: Let PG and PH denote a ρ(G)-set and a ρ(H)-set, respectively. Let P o
G and P o

H denote a ρo(G)-
set and a ρo(H)-set, respectively. Finally, let IG and IH be the sets of isolated vertices from G and H ,
respectively. We set

S = ((PG − IG)× (PH − IH)) ∪ (IG × (P o
H − IH)) ∪ ((P o

G − IG)× IH) ∪ (IG × IH).

The four sets in this union are clearly disjoint and we have |S| = ρ(G−)ρ(H−) + iG(ρo(H) − iH) +
iH(ρo(G) − iG) + iGiH = ρ(G−)ρ(H−) + iGρo(H) + iHρo(G) − iGiH . The set S has the desired
cardinality and, if we show that it is also an open packing of G⊠H , then we have one inequality.

Every vertex from A = IG × IH is a singleton in G ⊠ H , and so, at distance more than two away
to any other vertex of G ⊠ H . Let g be an isolated vertex of G. The subgraph of G ⊠ H induced
by {g} × (V (H) − IH) is isomorphic to H−. Moreover, every component of this subgraph is also a
component of G⊠H . Thus, the set {g} × (P o

H − IH) is a maximum open packing of these components.
Therefore, also B = IG×(P o

H−IH) is a maximum open packing of the subgraph induced by IG×V (H−),
and B is an open packing of G⊠H . By symmetry, also the set C = (P o

G − IG)× IH is an open packing
of G⊠H . Finally, D = (PG − IG)× (PH − IH) is an open packing of (G− IG)⊠ (H − IH), because
it is also a packing of (G − IG) ⊠ (H − IH) (see the remark after Theorem 4.3). Because all four sets
A,B,C and D belong to different components of G ⊠ H , their union S is an open packing of G ⊠H ,
and so ρo(G⊠H) ≥ ρ(G−)ρ(H−) + iGρo(H) + iHρo(G)− iGiH .

For the upper bound we split G ⊠ H into four parts: G−
⊠ H−, G−

⊠ IH , IG ⊠ H− and IG ⊠ IH .
Let P be a maximum packing of G ⊠ H . Clearly, IG × IH ⊆ P , since IG × IH consists of isolated
vertices. The graph IG ⊠ H− is isomorphic to iG copies of H− and, if P does not contain iGρo(H

−)
vertices from IG ⊠H−, then we immediately obtain a contradiction with the maximality of P . Similarly,
P contains exactly iHρo(G

−) vertices from G−
⊠ IH . Finally, for G−

⊠H− we observe that every pair
of adjacent vertices is contained in a triangle, because there are no isolated vertices in G−, nor in H−.
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Therefore, every open packing of G−
⊠ H− is also a packing of the same graph, and by Theorem 4.3,

we have ρo(G
−
⊠H−) = ρ(G−

⊠H−) ≤ min{ρ(G−)γf (H
−), ρ(H−)γf (G

−)}. Everything together
yields the desired upper bound which finishes the proof.

4.3 Direct product

It is an easy observation that the open neighborhoods behave nicely in direct products

NG×H((g, h)) = NG(g)×NH(h). (11)

For the distance formula in the direct product, see [19], we need first to define even distance deG(u, v)
and odd distance doG(u, v) between two vertices u and v of G. The even distance deG(u, v) is the minimum
even number of edges on a walk between u and v, and if such a walk does not exist, then we set deG(u, v) =
∞. Similarly, the odd distance doG(u, v) is the minimum odd number of edges on a walk between u and v
and, if such a walk does not exist, then we set doG(u, v) = ∞. In a connected bipartite graph G, clearly,
only one of deG(u, v) and doG(u, v) is finite.

The distance between any two vertices (g, h), (g′, h′) ∈ V (G×H) is now given by

dG×H((g, h), (g′, h′)) = min{max{deG(g, g
′), deH(h, h′)},max{doG(g, g

′), doH(h, h′)}}. (12)

Recall that by G− we denote the graph obtained from G by removing all the isolated vertices.

Theorem 4.6. If G and H are graphs with iG and iH isolated vertices, respectively, then

ρ(G×H) ≥ max{ρo(G
−)ρ(H−), ρo(H

−)ρ(G−)} + iG|V (H)|+ iH |V (G)| − iGiH .

Proof: Let PG and PH denote a ρ(G)-set and a ρ(H)-set, respectively, let P o
G and P o

H denote a ρo(G)-
set and a ρo(H)-set, respectively, and let IG and IH be the sets of isolated vertices from G and H ,
respectively. Notice that IG ⊆ PG, IH ⊆ PH , IG ⊆ P o

G and IH ⊆ P o
H . Without lost of generality, we

may assume that ρo(G−)ρ(H−) ≤ ρo(H
−)ρ(G−). We set

S = ((PG − IG)× (P o
H − IH)) ∪ (IG × V (H)) ∪ (V (G)× IH).

The first set of this union is clearly disjoint with the other two. On the other hand, we have (IG×V (H))∩
(V (G)× IH) = IG × IH and we have |S| = ρ(G−)ρo(H

−) + iG|V (H)|+ iH |V (G)| − iGiH .
Now, notice that (IG × V (H)) ∪ (V (G)× IH) is the set of all singletons of G×H , and can therefore

be in any packing set. It remains to see that (PG − IG) × (P o
H − IH) represents a packing of G− ×

H−. Let (g, h) and (g′, h′) be any distinct vertices from (PG − IG) × (P o
H − IH). If g 6= g′, then

dG(g, g
′) ≥ 3, because g and g′ belong to a packing of G. If h 6= h′, then either dH(h, h′) = 1 or

dH(h, h′) ≥ 3, because h and h′ belong to an open packing of H . Moreover, if dH(h, h′) = 1, then
h and h′ do not belong to a common triangle, as P o

H is an open packing. Since (g, h) 6= (g′, h′), we
have g 6= g′ or h 6= h′. Suppose for instance g 6= g′. Clearly, doG(g, g

′) ≥ 3 and deG(g, g
′) > 3,

and so, we have max{doG(g, g
′), doH(h, h′)} ≥ 3 and max{deG(g, g

′), deH(h, h′)} > 3. By (12) we have
dG×H((g, h), (g′, h′)) ≥ 3. Thus, we may assume that g = g′ and h 6= h′. Clearly, doG(g, g

′) ≥ 3 and
deG(g, g

′) = 0. As mentioned, either dH(h, h′) ≥ 3, or h, h′ are adjacent but not in the same triangle.
Since h, h′ ∈ P o

H , we have dH(h, h′) 6= 2, and as h and h′ are not in a common triangle, we have
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deH(h, h′) > 2. Altogether we have max{doG(g, g
′), doH(h, h′)} ≥ 3 and max{deG(g, g

′), deH(h, h′)} >
2. By (12), we have dG×H((g, h), (g′, h′)) ≥ 3, and so, (PG − IG) × (P o

H − IH) is a packing of
(G− IG)× (H − IH). Therefore, S is a packing set of G×H and the proof is completed.

Corollary 4.7. If G and H are graphs without isolated vertices, then

ρ(G×H) ≥ max{ρo(G)ρ(H), ρo(H)ρ(G)}.

The lower bound from last theorem is tight. In particular, it is well known that G×K2
∼= 2G for every

bipartite graph G. Therefore,

ρ(G×K2) = 2ρ(G) = max{ρo(G), 2ρ(G)} = max{ρo(G)ρ(K2), ρo(K2)ρ(G)}.

For the case of open packing sets, the direct product behaves nicer due to (11). Similarly to the case
of packing number in the strong product, we expect equality to hold in the following theorem. However,
again the proof for the upper bound seems very challenging, and we only present the lower bound.

Theorem 4.8. If G and H are graphs with iG and iH isolated vertices, respectively, then

ρo(G×H) ≥ ρo(G
−)ρo(H

−) + iG|V (H)|+ iH |V (G)| − iGiH .

Proof: Let PG and PH denote a ρo(G)-set and a ρo(H)-set, respectively, and let IG and IH be the sets of
isolated vertices from G and H , respectively. We set

S = ((PG − IG)× (PH − IH)) ∪ (IG × V (H)) ∪ (V (G)× IH).

The first set of this union is clearly disjoint with the other two. On the other hand, we have (IG×V (H))∩
(V (G)× IH) = IG × IH and we have |S| = ρo(G

−)ρo(H
−) + iG|V (H)|+ iH |V (G)| − iGiH .

Notice that (IG × V (H)) ∪ (V (G) × IH) is the set of all singletons of G × H , and it is therefore
contained in any maximum open packing. On the other hand, (PG− IG)× (PH − IH) represents an open
packing of (G − IG)× (H − IH), by (11). Thus, S is an open packing set of G×H , and consequently,
ρo(G×H) ≥ ρo(G

−)ρo(H
−) + iG|V (H)|+ iH |V (G)| − iGiH .

5 Rooted product graphs

A rooted graph is a graph in which one vertex is labeled in a special way to distinguish it from other
vertices. The special vertex is called the root of the graph. Let G be a labeled graph on n vertices.
Let H be a sequence of n rooted graphs H1, . . . , Hn. The rooted product graph G(H) is the graph
obtained by identifying the root of Hi with the ith vertex of G, see [10]. We here consider the particular
case of rooted product graphs where H consists of n isomorphic rooted graphs [27]. More formally,
assuming that V (G) = {g1, . . . , gn} and that the root vertex of H is v, we define the rooted product
graph G ◦v H = (V,E), where V = V (G)× V (H) and

E =

n
⋃

i=1

{(gi, h)(gi, h
′) : hh′ ∈ E(H)} ∪ {(gi, v)(gj , v) : gigj ∈ E(G)}.

Note that subgraphs induced by H-layers of G ◦v H are isomorphic to H . We next study the (open)
packing number of rooted product graphs.
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Theorem 5.1. Let G be any graph of order n. If H is any graph with root v, then

ρ(G ◦v H) =

{

ρ(G) + n(ρ(H)− 1), v ∈ PH for every ρ(H)-set PH ,

nρ(H), v /∈ PH for some ρ(H)-set PH .

Proof: We distinguish two cases depending on the membership of v to ρ(H)-sets.

Case 1. Let v belong to every ρ(H)-set PH . Let P ′ be any ρ(G)-set, and let now P = (P ′ ×
{v}) ∪ (V (G) × (PH \ {v})). We can easily see that P is a packing set in G ◦v H , which leads to
ρ(G ◦v H) ≥ ρ(G) + n(ρ(H) − 1). On the other side, let D be a ρ(G ◦v H)-set. We note that the
set Dg = D ∩ gH is a packing set in (G ◦v H)[gH ] for every g ∈ V (G). Notice that Dg is not
a ρ((G ◦v H)[gH ])-set for some g ∈ V (G), since v belongs to every ρ(H)-set (when G contains at
least one edge). Thus, we have that |D ∩ gH | = |Dg| ≤ ρ(H) − 1 if (g, v) /∈ Dg , which means
|D ∩ (gH \ {(g, v)})| ≤ ρ(H)− 1. Also, if (g, v) ∈ Dg , then |D ∩ (gH \ {(g, v)})| ≤ ρ(H)− 1 as well.
In addition, D ∩ Gv is a packing set in (G ◦v H)[Gv] and hence |D ∩ Gv| ≤ ρ(G). As a consequence,
we deduce the following

ρ(G ◦v H) = |D| = |D ∩Gv|+
∑

g∈V (G)

|D ∩ (gH \ {(g, v)})| ≤ ρ(G) + n(ρ(H)− 1).

Therefore, ρ(G ◦v H) = ρ(G) + n(ρ(H)− 1).

Case 2. Suppose that there exists a ρ(H)-set PH not containing v. Let P g
H = {g} × PH for every

g ∈ V (G), and let P ′′ =
⋃

g∈V (G) P
g
H . It can be readily seen that P ′′ is a packing set in G ◦v H ,

which means ρ(G ◦v H) ≥ nρ(H). On the other hand, let P be a ρ(G ◦v H)-set. It can be again
easily observed that the set Pg = P ∩ gH is a packing set in (G ◦v H)[gH ] for every g ∈ V (G). So,
ρ(H) = ρ((G ◦v H)[gH ]) ≥ |Pg|. As a consequence,

ρ(G ◦v H) = |P | =
∑

g∈V (G)

|Pg| ≤
∑

g∈V (G)

ρ(H) = nρ(H),

which leads to ρ(G ◦v H) = nρ(H).

In [2] trees with unique maximum packing are described. Every leaf of such a tree must be contained
in the unique maximum packing. If we choose a root to be a leaf in such a tree, then we end up in the first
case of above theorem. Conversely, every neighbor v of a leaf in a tree with unique maximum packing is
not contained in the maximum packing. Therefore, if we choose v to be the root of H in such a tree, we
end up in the second case of Theorem 5.1.

By using similar techniques as in the theorem above, we can prove the following result for the case
of open packing number. However, there are many different situations that must be remarked. For this
we first introduce the following notation. Let H be a graph and v ∈ V (H). We say that the pair (H, v)
belongs to class A if v /∈ PH for some ρo(H)-set PH . On the other hand, (H, v) /∈ A means that v ∈ PH

for every ρo(H)-set PH . We write (H, v) ∈ B if δH[PH ](v) = 0 for some ρo(H)-set PH . Clearly,
(H, v) /∈ B means that δH[PH ](v) = 1 for every ρo(H)-set PH . We also denote denote H∗ = H−NH [v].
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Theorem 5.2. Let G be any graph of order n with iG isolated vertices. If H is any rooted graph with root

v, then

ρo(G ◦v H) =



























nρo(H), (H, v) ∈ A,

n(ρo(H)− 1) + ρo(G), (H, v) /∈ A and (H, v) ∈ B,

n(ρo(H)− 1) + ρ(G), (H, v) /∈ A and (H, v) /∈ B and ρo(H
∗) = ρo(H)− 1,

n(ρo(H)− 1) + iG, (H, v) /∈ A and (H, v) /∈ B and ρo(H
∗) 6= ρo(H)− 1.

Proof: Since every H-layer in G ◦v H is isomorphic to H , it follows that each ρo(G ◦v H)-set intersects
every H-layer in at most ρo(H) vertices. Thus, ρo(G ◦v H) ≤ nρo(H). On the other hand, let PH be a
ρo(H)-set. It is easy to see that P =

⋃

g∈V (G)({g} × (PH \ {v})) is an open packing in G ◦v H . There-
fore, n(ρo(H) − 1) ≤ |P | ≤ ρo(G ◦v H). We now distinguish two cases depending on the membership
of v to ρo(H)-sets.

Case 1. (H, v) ∈ A. There exists a ρo(H)-set not containing v. Let PH be such a set. We readily
note that the set P =

⋃

g∈V (G)({g} × PH) is an open packing in G ◦v H . Therefore, nρo(H) = |P | ≤

ρo(G ◦v H), which implies that ρo(G ◦v H) = nρo(H) in this case.

Case 2. (H, v) /∈ A. Thus v belongs to every ρo(H)-set. In such a situation we must deal with two
possibilities.

Subcase 2.1. (H, v) ∈ B. Hence there exists a ρo(H)-set PH for which v is an isolated vertex of
H [PH ], which means that δH[PH ](v) = 0. Let PG be a ρo(G)-set. It is easy to observe that P ′ =
⋃

g∈V (G)({g} × (PH − {v})) ∪ ({v} × PG) is an open packing in G ◦v H . Therefore, ρo(G ◦v H) ≥

|P ′| = n(ρo(H)− 1) + ρo(G).
Suppose now that ρo(G ◦v H) > n(ρo(H) − 1) + ρo(G) and let P be a ρo(G ◦v H)-set. Simi-

larly to the proof of Theorem 5.1, the set Pg = P ∩ gH is an open packing set of (G ◦v H)[gH ]
for every g ∈ V (G). Moreover, |Pg| = ρo(H), for at least ρo(G) + 1 vertices g ∈ V (G) because
|P | > n(ρo(H)− 1) + ρo(G). Since v belongs to every ρo(H)-set as (H, v) ∈ A, it follows that at least
ρo(G) + 1 vertices (g, v) ∈ V (G)× {v} belong to P . This contradicts the fact that P is an open packing
in G ◦v H . Therefore, ρo(G ◦v H) = |P ′| = n(ρo(H)− 1) + ρo(G).

Subcase 2.2. (H, v) /∈ B. This means that v has degree one in all subgraphs induced by ρo(H)-sets PH ,
that is δH[PH ](v) = 1. We first prove that ρo(G◦vH) can be bounded from above by n(ρo(H)−1)+ρ(G).
Suppose to the contrary that ρo(G ◦v H) > n(ρo(H)− 1)+ ρ(G). Again, let P be a ρo(G ◦v H)-set and
let Pg = P ∩ gH for any g ∈ V (G). Note that |Pg| = ρo(H), for at least ρ(G) + 1 vertices g ∈ V (G).
Hence, at least ρ(G) + 1 vertices, say (g1, v), · · · , (gρ(G)+1, v) ∈ V (G) × {v}, belong to P . Since
{(g1, v), · · · , (gρ(G)+1, v)} is not a packing in (G ◦v H)[Gv] (note that {(g1, v), · · · , (gρ(G)+1, v)} is an
open packing in (G ◦v H)[Gv]), there exists an edge (gi, v)(gj , v) in (G ◦v H)[Gv] for some 1 ≤ i < j ≤
ρ(G). This implies that both (gi, v) and (gj , v) have two neighbors in P , a contradiction. Therefore,

ρo(G ◦v H) ≤ n(ρo(H)− 1) + ρ(G). (13)
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From now on, we need to divide the reasoning into two more possibilities.

Subcase 2.2.1. There exists an open packing P ′
H∗ of cardinality ρo(H

∗) = ρo(H)− 1 in H∗. Let PG

and P o
H be a ρ(G)-set and a ρo(H)-set, respectively. It is easily verified that

P ′′ =





⋃

g∈PG

({g} × P o
H)



 ∪





⋃

g∈V (G)\PG

({g} × P ′
H∗)





is an open packing in G◦vH . Therefore, ρo(G◦vH) ≥ |P ′′| = ρ(G)ρo(H)+(n−ρ(G))(ρo(H)−1) =
n(ρo(H)− 1) + ρ(G). We now have ρo(G ◦v H) = n(ρo(H)− 1) + ρ(G), by (13).

Subcase 2.2.2. H does not satisfy the statement of Subcase 2.2.1. This means that every ρo(H
∗)-set

has cardinality ρo(H
∗) 6= ρo(H) − 1. In other words, every open packing of cardinality ρo(H) − 1 of

H has at least one vertex in NH [v]. Let P be a ρo(G ◦v H)-set. We have exactly iG components of
G ◦v H isomorphic to H , where every component has exactly ρo(H) vertices in P , and one component
isomorphic to G− ◦v H (recall that we obtain G− from G by deleting all isolated vertices). In this
case let P− = P ∩ V (G− ◦v H) and let P−

g = P− ∩ gH for any g ∈ V (G−). We claim that
ρo(G

− ◦vH) = (n− iG)(ρo(H)−1). Suppose to the contrary that ρo(G− ◦vH) > (n− iG)(ρo(H)−1).
Therefore, at least one subgraph (G− ◦v H)[gH ], for some g ∈ V (G−), has exactly ρo(H) vertices of
P−. Since G− has no isolated vertices, there exists a vertex g′ such that gg′ ∈ E(G−). If |P−

g′ | =

ρo(H), then both (g, v) and (g′, v) have two neighbors in P−, which is a contradiction. Therefore,
|P−

g′ | ≤ ρo(H) − 1 for all g′ ∈ NG−(g). Let now g′ be an arbitrary neighbor of g in G−. If |P−
g′ | =

ρo(H) − 1, then N(G◦vH)[ g′H][(g
′, v)] ∩ P−

g′ 6= ∅. This implies that |NG−◦vH(g, v) ∩ P−| ≥ 2 or that

|NG−◦vH(g′, v)∩P−| ≥ 2, which is a contradiction. Therefore, |P−
g′ | ≤ ρo(H)−2. The above argument

guarantees that for every vertex g ∈ V (G) such that |P−
g | = ρo(H), we have |P−

g′ | ≤ ρo(H) − 2

for all g′ ∈ NG−(g). This contradicts the assumption ρo(G
− ◦v H) > (n − iG)(ρo(H) − 1). Thus,

ρo(G
− ◦v H) ≤ (n− iG)(ρo(H)− 1). Therefore, it follows that ρo(G− ◦v H) = (n− iG)(ρo(H)− 1)

by using the corresponding inequality obtained at the first steps of the proof. We conclude this proof by
the following computation

ρo(G ◦v H) = ρo(G
− ◦v H) + iGρo(H) = (n− iG)(ρo(H)− 1) + iGρo(H) = n(ρo(H)− 1) + iG.

We end with four different examples that illustrate four cases of Theorem 5.2. First let H be a path
P4k+2 = v1 . . . v4k+2 and let v ∈ {v4j−1, v4j} for some j ∈ {1, . . . , k}. It is easy to see that there
exists a unique ρo(P4k+2)-set of cardinality 2k+2 not containing v. Hence (P4k+2, v) ∈ A and we have
ρo(G ◦v P4k+2) = nρo(P4k+2) = n(2k + 2), where n = |V (G)|.

For the same reason (unique ρo(P4k+2)-set) we get for H ∼= P4k+2 and v ∈ {v1, v2, v4k+1, v4k+2} that
(H, v) /∈ A and (H, v) /∈ B and ρo(H

∗) < ρo(H)−1. Again by Theorem 5.2 we have ρo(G◦vP4k+2) =
n(ρo(P4k+2)− 1) = n(2k + 1), where n = |V (G)|.

Let now H be a path P4k+1 and let v = v1. It is easy to see that P = {v1} ∪ {v4j , v4j+1 : 1 ≤ j ≤ k}
is a ρo(P4k+1)-set of cardinality 2k + 1 and that v ∈ P such that δH[P ](v) = 0. Hence (H, v) /∈ A,
(H, v) ∈ B and we have ρo(G ◦v P4k+1) = n(ρo(P4k+1)− 1) + ρo(G) = 2kn+ ρo(G).
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Finally, let H be isomorphic to the complete graph Kk, k ≥ 4, with one additional vertex u adjacent to
one vertex, say v1, from Kk. Clearly, u and v1 form a unique ρo(H)-set and ρ(H−{u, v1}) = 1. Thus, if
we choose v = u, then the conditions (H, v) /∈ A and (H, v) /∈ B and ρo(H

∗) = ρo(H)− 1 are fulfilled.
By the third option of Theorem 5.2 we have ρo(G ◦v H) = n(ρo(H) − 1) + ρ(G) = n + ρo(G), where
n = |V (G)|.
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