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This work is a contribution to the study of rewrite games. Positions are finite words, and the possible moves are defined

by a finite number of local rewriting rules {ui−→ vi}i∈I : a move consists in the substitution of one occurrence of

ui by vi, for some i. We introduce and investigate taking-and-merging games, that is, where each rule is of the form

ak−→ ε. We give sufficient conditions for a game to be such that the losing positions (resp. the positions with a given

Grundy value) form a regular language or a context-free language. We formulate several related open questions in

parallel with the famous conjecture of Guy about the periodicity of the Grundy function of octal games.

Finally we show that more general rewrite games quickly lead to undecidable problems. Namely, it is undecidable

whether there exists a winning position in a given regular language, even if we restrict to games where each move

strictly reduces the length of the current position.

Keywords: Combinatorial game theory; rewrite games; Grundy values; regular languages; context-free languages;

taking-and-merging games.

1 Introduction

Waldmann [9] introduces general rewrite games as follows. Let A be a finite alphabet, i.e., a finite set of

symbols. We let A∗ denote the set of finite words over A. The empty word is denoted by ε. A rewrite

system is given by a (finite) set R ⊂ A∗ × A∗ of rules, called R-reductions, of the form u−→ v. The

latter rule can be applied to the word w = xuy, x, y ∈ A∗ where we replace one occurrence of u by v and

we write w−→Rxvy. We consider only terminating rewrite systems, that is, such that there is no infinite

chain of R-reductions starting from a given word. In the rewrite game associated with R, the positions

are the words in A∗, and from a position w the possible moves are those that lead to each word w′ such

that w−→Rw′. Starting from a word, also called ground term, t1 ∈ A∗, two players apply alternatively

an R-reduction of their choice to get a sequence t1 −→R t2 −→R t3 −→R · · · −→R tn until no R-

reduction can be applied. The first player unable to apply an R-reduction, because tn is in normal form

(i.e., irreducible), loses the game (tn is called a final position of the game).

Rewrite games belong to the family of impartial combinatorial games. In an impartial combinatorial

game, two players move alternatively with perfect information, and the set of valid moves depends only
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on the position. The first player unable to move loses the game. A complete definition of combinatorial

games can be found in [6]. Taking-and-breaking games are famous examples of combinatorial games.

A position consists in several piles of tokens, and a move consists in removing some tokens from a pile,

and then splitting that pile into smaller piles. A major issue when studying combinatorial games is the

computation of the outcome. An impartial combinatorial game position has outcome N if the player who

starts has a winning strategy, and P otherwise.

The notion of Grundy value (also called Sprague–Grundy value is a refinement of the one of outcome:

the position with outcome P are exactly those whose Grundy value is 0. More precisely, the Grundy value

of any position is recursively defined as the mex (minimum excluded value) of the set of Grundy values

of the position reachable in one move. For example, mex{0, 1, 3} = 2, and by convention mex ∅ = 0.

A background motivation for this work stems from octal games. They are a well-known family of

combinatorial games that can be described as rewrite games. They are the taking-and-breaking games in

which it is never allowed to split into more than two piles. An octal game is defined by its valid moves,

which may be coded by a (finite or infinite) sequence of integers that are less than or equal to 7; see [6]

for a formal definition. Octal games can be translated as rewrite games as follows. If we have r piles of

token with respectively n1, . . . , nr tokens, then a position in such a game can be coded by the word over

a two-letter alphabet

ba
n1
ba

n2
b · · ·banr

b.

The b’s play the role of separators between piles of a’s and one has to carefully choose the convenient

reductions to code the game of interest, see [9, Prop. 3].

Example 1. Let us consider the game over the alphabet A = {a, b}, associated with the rewrite system

R = {a−→ ε, aa−→ ε, aa−→ b}. An example of sequence of play for this game, starting from the

position t1 = baaabaab, is

baaabaab −→R baaabab −→R babab −→R bbab −→R bbb .

In this example, four moves have been played, hence the second player wins the game. Note that this game

exactly corresponds to the octal game 0.37. Indeed the piles are the block of one or more consecutive a’s.

A player can remove one token of a pile, possibly emptying it, by using move a−→ ε. A player can also

remove two tokens from a pile, possibly emptying it, by applying aa−→ ε. Finally, a player can remove

two tokens from a pile and divide the remaining tokens into two piles, by applying aa−→b in the middle

of a block of a’s.

The Grundy sequence of an octal game is defined as the integer sequence where the i-th element is the

Grundy value of the position with one pile of i tokens. We may then reformulate a famous conjecture in

combinatorial game theory:

Conjecture 2 (Guy’s conjecture [2]). All finite octal games have an eventually periodic Grundy sequence.

In the context of a rewrite game G, positions are words over a finite alphabet A and we can associate

a Grundy value G(w) with each word w in A∗. Thus, the family of languages (Li)i∈N, defined by Li =
G−1(i), is a partition of A∗; they are called the Grundy languages of G. In his paper [9], Waldmann

makes a correspondence between the regularity of the Grundy languages of octal games (seen as rewrite

games) and the periodicity of the Grundy sequence.
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Theorem 3 (Waldmann, 2002). The Grundy sequence of an octal game is eventually periodic if and only

if it has only finitely many non-empty Grundy languages Li, all of which are regular languages.

This nice result translates the notion of periodicity of a taking-and-breaking game into the context of

rewrite games. Therefore, the question of the regularity of rewrite games becomes paramount, and in

particular would allow to make progress towards proving or disproving Conjecture 2. This leads to the

general open question below, which we start to address in this article.

Question 4. Which rewrite games have Grundy values bounded by a constant K and such that all the

languages L0, . . . ,LK are regular?

The following classical lemma (see [2]) characterizes the Grundy languages of a rewrite game; and will

be heavily used throughout this article.

Lemma 5. Given a rewrite game G over an alphabet A, the family (Li)i∈N is the only family of lan-

guages (Mi)i∈N that satisfies:

• for all i ∈ I , every move from words in Mi leads to a word outside of Mi (stability property),

• for every i ∈ N, every word u ∈ Mi, and every j < i, there exists a move from u leading to a word

in Mj (absorption property).

In addition to octal games, some other well-known games have also been considered in the context of

rewrite games. It is for example the case of Peg-solitaire [4, 5], where R is of the form {aab−→ bba,

baa−→ aab}. In Peg-solitaire, it has been proved that on one dimensional boards, the set of solvable

configurations forms a regular language. In the 2-player version of the game, called DUOTAIRE, where

series of hops can be done in a single move, neither the P nor the N positions form a regular nor even

a context-free language. Another example of a combinatorial game seen as a rewrite game is the game

CLOBBER [1], played over a 3-letter alphabet {a, b, ∅} with R = {ab∅−→∅∅a, ba∅−→∅∅b}.

In the following, we assume that the reader is familiar with basic results about formal languages and

combinatorial games. We refer the reader respectively to [3] and [6] for a general reference on these

topics. For any given letter a and word w, we let |w|a denote the number of a occurring in the word w.

We denote by ε the empty word.

Taking-and-merging games

In most of this article, we consider a family of rewrite games over a two-letter alphabet, say {a, b}, where

any reduction rule of R is either of the form a
k−→ ε or bk−→ ε for some k. In a certain way, this family

allows us to model a new kind of pile games, where taking moves are combined with merging ones. For

example, by following Waldmann’s description of octal games with a rewrite system, playing b−→ ε from

the word aba
5 leads to a

6 and can be seen as a merging of the piles a and a
5.

From now on and for the sake of notation, we will omit the reduction to ε in the description of the

rewrite system. In other words, the games considered here will be denoted by a set

{ak1 , ak2 , . . . , akn , bℓ1 , bℓ2 , . . . , bℓm}

where the ki and ℓi are positive integers.
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We now consider a first example of such a taking-and-merging game. Using a convenient invariant

(denoted by S) is a strategy that will appear in several proofs encountered in this paper.

Example 6. Let us consider the game G = {a2, b}. We claim that the DFA (deterministic finite automa-

ton) depicted in Figure 1 computes the Grundy function of G: consider a word w and start reading it from

the initial state marked with an incoming arrow. Follow transitions reading the word letter by letter from

left to right and look at the state reached when reading the last letter of w. The states (0.0) and (0.1)
correspond to the words of Grundy value 0, and the states (1.2) and (1.3) to those of Grundy value 1.

First, note that this is true for the two final positions ε and a. To prove this result, we define the following

quantity for a given word u.

S(u) = (|u|a − 2|u|b) mod 4

0.0 1.3 0.1

1.2

a

a

b

b

b

b

a

a

Fig. 1: A DFA computing the Grundy function of the game {a2, b}.

One can first observe that for all i = 0, . . . , 3, every word u recognized by the state (X.i) (for X ∈
{0, 1}) satisfies S(u) = i. To check this property, it suffices to consider each transition of the DFA and

verify that S(u) changes accordingly. For example, reading a letter a from the state (1.2) increases by 1
the value of S(u), leading to the state (1.3), while reading a letter b decreases by 2 the value and leads

to the state (0.0). Then, in order to prove that the DFA computes the Grundy values, by Lemma 5, it

suffices to show that any move from a word recognized by a state (0.X) (for X ∈ {0, 1}) leads to a word

recognized by a state (1.Y ) (for some Y ∈ {2, 3}), and that any move from a word recognized by a state

(1.Y ) leads to some (0.X). These two properties can be easily checked by using the invariant S(u):

• By definition of S, any move a2−→ ε from a word u such that S(u) = 0, 1 leads to a word u′ having

S(u′) = 2, 3, and conversely.

• Any move b−→ ε satisfies the same property, as S is modified by 2 mod 4.

In view of such an example and according to Guy’s conjecture, it is natural to wonder whether the

regularity of the languages Li would hold in the context of taking-and-merging games. In Section 2,

we will give a negative answer to this question, for games where both reductions a−→ ε and b−→ ε

are forbidden. In addition, a proof of context-freeness is given for simple instances of such games. In

Section 3, we prove the regularity of several taking-and-merging games. In particular, we exhibit DFAs

computing their Grundy functions. Section 4 deals with a discussion about a result of Waldmann about

the correlation between the regularity of L0, the other Li, and the number of Grundy values. The last

section explains why we restricted our study to taking-and-merging games: in the slightly more general

settings of strongly-terminating rewrite games (i.e., where each move strictly decreases the length of the
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position), some problems become undecidable. Indeed, we show that then it is undecidable whether there

exists a winning position in a given regular language L of starting positions.

2 Not all games lead to regular languages

Our first result shows that Guy’s conjecture does not hold for taking-and-merging games. More precisely,

it states that, considering any taking-and-merging game that excludes both reductions a−→ ε and b−→ ε,

the set of P-positions is not a regular language.

2.1 Games {ak1, . . . , akn , bℓ1, . . . , bℓm} with k1 > 1 and ℓ1 > 1

Theorem 7. Let G be the taking-and-merging game {ak1 , . . . , akn , bℓ1 , . . . , bℓm}, with k1 ≤ k2 ≤ . . . ≤
kn and ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓm. If k1 > 1 and ℓ1 > 1, then the language of the P-position of G is not

regular.

Proof: Let us show that the intersection of the set of P-positions of G with the regular languageL, defined

below, is not a regular language.

L = b
ℓ1−1(abℓ1−1)∗(bak1−1)∗

More precisely, we prove by induction that the word ui,j = b
ℓ1−1(abℓ1−1)i(bak1−1)j is a P-position if

and only if i ≥ j.

If i = 0 and j > 0, then there is only one valid move from position ui,j and it leads to position f ,

below.

u0,j = b
ℓ1−1(bak1−1)j −→ f = a

k1−1(bak1−1)j−1

It may be verified that f is a final position, hence that u0,j is a N -position, for every j > 0. On the other

hand, for every i ≥ 0 then ui,0 is a final position, hence a P-position. In other words, the claim is true if

i = 0 or j = 0.

Now, assume that i > 0 and j > 0. In that case, we denote by v the following word.

v = b
ℓ1−1(abℓ1−1)i−1

a
k1(bak1−1)j−1

It may be verified that only one move is valid from ui,j , and that it leads to v. Similarly, the only move

from v leads to ui−1,j−1. Therefore, words ui,j and ui−1,j−1 have the same outcome and by induction

hypothesis ui−1,j−1 is a P-position if and only if i− 1 ≥ j − 1, which concludes the induction.

2.2 Context-freenes for {ak, bℓ}

We have seen with Theorem 7 that the language made of P-positions is, in general, not regular. Never-

theless, when limited to a rewrite game with two reductions, we get the following result.

Theorem 8. Let k, ℓ be positive integers. The taking-and-merging game {ak, bℓ} has only two Grundy

values and the corresponding languages L0 and L1 are context-free.

Proof: The rewrite system {ak−→ ε, bℓ−→ ε} is weakly confluent, that is, if u−→v1 and u−→ v2, then

there exists a w such that v1 −→∗ w and v2 −→∗ w (in our case, w can be reached in at most one step).

Since moreover, this rewriting system is terminating (i.e., there is no infinite rewriting chain), Newman’s
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Lemma [8] yields that the rewriting system is confluent or, stated otherwise, from any position u can be

reached a unique final position.

Let u be a word and w be the unique final position reachable from u. If |u|a = n, |u|b = m, there exists

α, β ≥ 0 such that |w|a = n − αk and |w|b = m − β ℓ. This means that the reduction a
k−→ ε (resp.

b
ℓ−→ ε) has been applied α (resp. β) times in a sequence of α+ β reductions. Hence, playing the game

starting from u necessarily consists of α+ β moves. Consequently u is a P-position (resp. a N -position)

if and only if α+ β is even (resp. odd)

To compute the Grundy value of a word, one just has to apply all the possible reductions in any order

and count the parity of the number of applied reductions. This can be computed by a push-down automata:

reading the word from left to right, each time there are k consecutive letters a or ℓ consecutive letters b, a

reduction is simulated and the parity changed. Let us define more formally this push-down automata. It

has with three states: 0, 1 and an initial state q0. The stack alphabet is

{(a, 1), . . . , (a, k − 1), (b, 1), . . . , (b, ℓ− 1),⊥}

where ⊥ is a special symbol to represent the bottom of the stack. Transitions are of the form

(i, x, y, z, j)

where i, j ∈ {0, 1} are states, x is the symbol read by the automata, y is the symbol that is popped from

the top of the stack, z is the word that is then pushed on the stack (with the usual convention that the

leftmost symbol is on top of the stack).

First, there is a unique transition leaving the initial states; it initializes the stack with the bottom sym-

bol ⊥ without reading any letter from the input:

(q0, ε, ε,⊥, 0) .

Second, the transition table for states q ∈ {0, 1} is given in Table 1.

source input popped pushed target
state letter symbol symbols state

(q, a, ⊥, (a, 1) ⊥, q)

(q, b, ⊥, (b, 1) ⊥, q)

(q, a, (b, j), (a, 1)(b, j), q) for each j < ℓ

(q, b, (a, j), (b, 1)(a, j), q) for each j < k

(q, a, (a, i), (a, i+ 1), q) if i < k − 1

(q, b, (b, i), (b, i+ 1), q) if i < ℓ− 1

(q, a, (a, k − 1), ε, 1− q)

(q, b, (b, ℓ− 1), ε, 1− q)

Tab. 1: Transition table for states q ∈ {0, 1}

For each of these transitions, observe that a symbol has to be popped from the stack. We store on the

stack the blocks of letters that are were read but not consumed: note that symbol (a, 5) means a block of



Taking-and-merging games as rewrite games 7

five a’s. If a block of k contiguous a’s is found, that is if we read a from the input and that (a, k−1) is the

symbol on top of the stack, we apply a
ℓ−→ ε, effectively popping (a, k − 1) from the stack. Moreover,

the automaton goes into the other state (from 0 to 1 or 1 to 0). A similar transition is taken when a block

of ℓ contiguous b’s is found. In all other cases, the stack is simply updated without changing the state.

When the input is entirely read, the state of the automaton is the parity of the number of reductions that

have been applied. We disregard the final content of the stack; it is the final position of the game.

Remark 9. In the above result, when k or ℓ is equal to 1, the two languages L0 and L1 are regular.

Indeed, the stack is not needed in that case.

Assume that k > 1 and ℓ = 1. Since the order of the moves does not matter, we may assume that all the

moves b−→ ε are played first. Then the word contains only letters a and the rule ak−→ ε is played until

a position a
i with i < k is reached. Thus, the number of moves from a starting position u is |u|b +

⌊

|u|a
k

⌋

and the Grundy value is the parity of this number. This can easily be computed by a DFA. In Figure 2, we

have represented the DFA for the game {a3, b}. (The integers in the states are the Grundy values.)

0 0 0

1 1 1

a a

a a

b
b

b

b

b
b

a

a

Fig. 2: The DFA computing the Grundy values of {a3, b}.

Remark 10. The proof of Theorem 8 generalizes to any n-letter game of the form {ak1
1 , . . . , akn

n }.

3 Regularity of some games

In this section, we prove the regularity of some games of the form

G = {ak1 , ak2 , ..., akn , b} .

If the game has only two rules, {ak1 , b}, the game is trivial: there are only two Grundy values and the

two corresponding languages L0 and L1 are regular (see Remark 9). In the following, we consider games

with at least three rules.

3.1 The game {a, a2k+1, b}

In the game {a, a2k+1, b} the only irreducible word is ε (since a−→ ε and b−→ ε are moves), and all

words w ∈ A∗ can be reduced to it. Let w be a word. We need |w|b reductions of the form b−→ ε to get

rid of the b’s. To get rid of all the a’s, since the reduction rules all involve an odd number of a, the number

of reductions to apply to eliminate the a’s has the same parity as |w|a. Hence, the number of reductions

to apply to a word w to obtain ε is even if and only if |w|a + |w|b is even. Let us partition A∗ into two
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sets M0 and M1; a word w belongs to M0 if |w|a + |w|b is even and to M1 if it is odd. Lemma 5 then

yields that M0 is the set of P-positions and that M1 is the set of N -position. It can be easily shown that

these two languages are regular.

Remark 11. The same argument extends to each game whose set of rewriting rules contains a−→ ε,

b−→ ε and any number of rules of the form a
2k+1−→ ε and b

2ℓ+1−→ ε.

3.2 The game {a, a2, b}

In this section, we prove that for the game {a, a2, b}, the language Li of words of Grundy value i is

regular for any Grundy value i and we explicitly give a DFA that computes the Grundy values.

Every word in A∗ can be uniquely written as

w = a
i0
ba

i1
b · · · baik

where k ≥ 0 and i0, . . . , ik ≥ 0. With every word w is thus associated a tuple (i0, . . . , ik), with k =
|w|b; this association is one-to-one. For j ∈ {0, ..., k}, let i′j := ij mod 3. For r ∈ {1, 2}, let

αr = #{j | i′j = r} be the number of blocks of a’s of size r (modulo 3). Finally, we define for every

word w the quantity

S(w) = 2k + 2α1 + α2 mod 4 .

As an example, the word w = a
5
b
2
aba

2 has k = 3, (i0, i1, i2, i3) = (5, 0, 1, 2) thus α1 = 1, α2 = 2 and

S(w) = 2.

Lemma 12. Let w ∈ A∗, the Grundy value of w in the game {a, a2, b} is entirely determined by S(w),
i.e.,

G(w) =















0, if S(w) = 0;
1, if S(w) = 2;
2, if S(w) = 1;
3, if S(w) = 3.

Proof: The proofs consists in showing that the conditions of Lemma 5 are met by the following family of

languages: M0 = S−1(0), M1 = S−1(2), M2 = S−1(1), M3 = S−1(3) and Mi = ∅, for each i > 3.

First, let us show that playing any move changes the value of S(w) modulo 4. Let w ∈ A∗ and consider

each rule.

• If the rule a−→ ε is played on a block a
ir , then S(w) decreases by 2 if i′r = 1 and increases by 1

if i′r ∈ {0, 2}.

• If the rule a2−→ ε is played, on a block a
ir , then S(w) increases by 2 if i′r = 0, by 1 if i′r = 1 and

decreases by 1 if i′r = 2.

• Finally, assume that the rule b−→ ε is played. Let aim and a
im+1 be the two blocks around the b

that will be removed. Table 2 gives, for every value of i′m and i′m+1, the variation of S(w) modulo

4.

As an example, consider the case i′m = i′m+1 = 1. Then one b and two blocks of size 1 (modulo

3) are lost, decreasing the value of S(w) by 6, but we obtain a new block of size 2. Thus the total

value S(w) decreases by 5 which is congruent to 1 modulo 4. Note that if im = 0 (respectively
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i′m

i′m+1 0 1 2

0 -2 -2 -2

1 -2 -1 -1

2 -2 -1 -2

Tab. 2: Variation of S(w) when the rule b−→ ε is applied to a b between two blocks of a’s respectively of length

i′m and i′m+1 modulo 4.

i′m+1 = 0), then the number of blocks of a of size 1 and 2 do not change modulo 3 and only one b

is removed, decreasing by 2 the value S(w).

Now, let us prove that S(w) > 0, there is a move to w′ with S(w′) = 0. If S(w) is odd, α2 is also odd

and in particular, there must be a block a
im with i′m = 2. Then playing a

2−→ ε if S(w) = 1 or a−→ ε

if S(w) = 3 on this block leads to a word w′ with S(w′) = 0. Thus assume that S(w) = 2. If there is a

block a
im with i′m = 1 then playing the rule a−→ ε on this block decreases S(w) by 2. Otherwise, there

must be at least one b. Then, using Table 2, removing any b decreases S(w) by 2 since the blocks around

b have size 0 or 2 modulo 3.

If S(w) ∈ {1, 3}, then there is a move to a word w′ with S(w′) = 2. Indeed, as before, there must be a

block a
im with i′m = 2. Then playing a−→ ε if S(w) = 1 or a2−→ ε if S(w) = 3 on this block leads to

a word w′ with S(w′) = 2.

Finally, if S(w) = 3, there is a move to a word w′ with S(w′) = 1. We do the same reasoning than

before to find a move from S(w) = 2 to S(w′) = 0. If there is a block of size 1 or a b next to a block of

size 0, we remove the block of size 1 or b. If not, we remove any b between two blocks of size 2.

Hence, the conditions of Lemma 5 are indeed met by the following family of languages: M0 = S−1(0),
M1 = S−1(2), M2 = S−1(1), M3 = S−1(3) and Mi = ∅, for each i > 3.

Theorem 13. The Grundy values of the game {a, a2, b} can be computed by a DFA.

Proof: By Lemma 12, we just need to compute the value S(w). This is done by the automaton depicted

in Figure 3. There are 12 states. A state is denoted by (s.i) where s is the value S(w) and i is the size

modulo 3 of the last block of a of w. Reading b from a state (s.i) leads to state (s− 2.0) (values are taken

modulo 4 for s and modulo 3 for i). Reading a from a state (s.i) leads to state (s′.(i+1)) with s′ = s+2
if i = 0, s′ = s− 1 if i ∈ {1, 2}.

What could happen if we just replace the rule a
2−→ ε by a

4−→ ε? Surprisingly, we did not find an

automaton for the game {a, a4, b} even though the Grundy values of this game seem to be bounded as

suggested by computer experiments. For words of length at most 20, the Grundy function is bounded

by 3. This leads to the following open question.

Question 14. Are the Grundy values of the game {a, a4, b} bounded? Are the corresponding sets regular?
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Fig. 3: A DFA for the game {a, a2, b}.

3.3 The game {a, a2, a3, b}

We now prove that for the game {a, a2, a3, b}, the corresponding sets Li are again regular and give a DFA

that computes the Grundy values. As before, every word in A∗ can be written as

w = a
i0
ba

i1
b · · · baik

where k = |w|b ≥ 0 and i0, . . . , ik ≥ 0. We now write i′j := ij mod 4. For r ∈ {1, 2, 3}, let αr = #{j |

i′j = r} be the number of blocks of size r modulo 4. Finally, we define for any word the triplet of {0, 1}3.

S(w) = (k + α1 mod 2, α2 mod 2, α3 mod 2).

For convenience reasons, we will denote the triplet S(w) = (x, y, z) by the word xyz. As an example,

the word w = a
5
ba

3
bba

2
ba has k = 4, α1 = 2, α2 = α3 = 1 and thus S(w) = 011. As before, the

value S(w) is enough to compute the Grundy values.

Lemma 15. Let w ∈ A∗, the Grundy value of w in the game {a, a2, a3, b} is determined by S(w), i.e.,

G(w) =















0, if S(w) ∈ {000, 111};
1, if S(w) ∈ {011, 100};
2, if S(w) ∈ {010, 101};
3, if S(w) ∈ {001, 110}.

Note that the values S(w) are paired with their complement

Proof: We denote by Mi, i ∈ {0, 1, 2, 3} the potential candidates for Li, that are:



Taking-and-merging games as rewrite games 11

• M0 = {w ∈ A∗|S(w) ∈ {000, 111}};

• M1 = {w ∈ A∗|S(w) ∈ {011, 100}};

• M2 = {w ∈ A∗|S(w) ∈ {010, 101}};

• M3 = {w ∈ A∗|S(w) ∈ {001, 110}}.

We aim to prove that Li = Mi. We first list the evolution of S(w) depending on the rule that is played.

• The rule a
k−→ ε is played on a block a

ir . Table 3 gives the vector (in a compact form) that is

applied to S(w) in function of the values of i′r and the rule a
k. As an example, consider the case

i′r = 2 and the rule a3−→ ε. One block of size 2 is replaced by a block of size 2 − 3 = 3 mod 4.

Thus the vector applied to S(w) is (0, 1, 1) (values are taken modulo 2)..

k

i′r 0 1 2 3

1 001 100 110 011

2 010 101 010 101

3 100 110 011 001

Tab. 3: Variation of S(w) with the rules ai−→ ε on a block a
ir .

• The rule b−→ ε is played. Let aim and aim+1 be the two blocks around the b that is removed. Table

4 gives the vector applied to S(w) depending on the values of i′m and i′m+1.

i′m

i′m+1 0 1 2 3

0 100 100 100 100

1 100 110 011 001

2 100 011 100 011

3 100 001 011 110

Tab. 4: Variation of S(w) when the rule b−→ ε is applied to a b between two blocks of a’s respectively of length

i′m and i′m+1 modulo 4.

In both cases, there is no variation with vector 000 or 111 which proves that all the sets Mi are stable.

We now prove that for any word in Mi there is a move to a word in Mj if i > j.

First note that, except if w contains only a’s and an even number of them, it is always possible to change

S(w) by either vector 100 or 011. Indeed, consider such a word w. If there is a block of a’s of size 1 or

3, then playing a−→ ε to any a of this block changes the value of S(w) by 100 or 011. Otherwise, there

are only blocks of size 0 or 2 (modulo 4), and necessarily one b. Then playing b−→ ε to any b changes

the value of S(w) by 100 or 011 (according to Table 4). This remark implies that there is always a move

from a word in M1 to M0 and from a word in M3 to M2.
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Second, we prove that if w belongs to M2 ∪M3, it is always possible to change S(w) by either vector

001 or vector 110. By definition of M2 and M3, there is always in w either a block of size 2 or a block

of size 3 modulo 4. Then, using Table 3, playing a−→ ε (in the first case) or a3−→ ε (in the second case)

changes the value of S(w) with vector 110 (in the first case) or 001 (in the second case). This implies that

there is always a move from a word in M2 to M1 and from a word in M3 to M0.

Third we prove that if w belong to M2 ∪ M3, it is always possible to change S(w) by either vector

010 or vector 101. As before, w ∈ M2 ∪M3 must contain either a block of size 2 or a block of size 3
modulo 4. Then playing a

2−→ ε changes the value of S(w) with vector 010 (in the first case) or 101 (in

the second case). This implies that there is always a move from a word in M2 to M0 and from a word in

M3 to M1.

Lemma 5 yields that Mi = Li for all i ∈ {0, 1, 2, 3}.

Theorem 16. The Grundy values of the game {a, a2, a3, b} can be computed by a DFA.

Proof: We construct a DFA that computes the Grundy values of the game {a, a2, a3, b}. By Lemma 15,

one just needs to compute the value of S(w), which, by definition of S(w), can be done by an automaton

that stores the value of k, αi, i ∈ {1, 2, 3} modulo 2 and the number modulo 4 of a in the last block.

Remark 17. In the proof of Theorem 16, we don’t need to maintain S(w) entirely, if all we want is the

Grundy value. Indeed, it is enough to store the Grundy value and the parity of the last block of a.

This is due to the fact that, with a given parity for the last block of a’s, in order to obtain S(wx)
from S(w) for some word w and letter x, we apply some vector or its complement to S(w). For instance,

if w ends with an odd number of a’s and that a is read, then the vector applied to S(w) is 110 if w ends

with one a and 001 if it ends with a
3. The automaton computing the Grundy values in this way is depicted

in Figure 4. It has eight states and the label (g.i) in a state indicates that g is the Grundy value and i the

parity of the number of a in the last block. As an example, from state (3.1), when reading a, S(w) changes

by vector 110 or 001 and thus the Grundy value that was 3 is now 0 and there are now an even number of

a. Hence the new state is 0.0. When reading b, S(w) changes by vector 100 and thus the Grundy value is

now 2 and the final letter is b, thus the new state is (2.0).

1.0

0.12.1

3.0 2.0

1.13.1

0.0
a

b

a

a

b

a

a

b

a

a

b

ab

b

b

b

Fig. 4: DFA for the game {a, a2, a3, b}.

One could hope to show a similar result for each game of the form {a, a2, ..., ak, b}, by computing the

number of b and blocks of a of size 1, 2, 3, ..., k − 1 modulo 2 and finding some invariant for the Grundy
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values. However, this method already fails for k = 4 since the word a
2
ba

2 is a P-position for this game

whereas b is not. We have computed the Grundy values for all words of length up to 23 for this game and

already found 14 Grundy values:

(max{G(u)})|u|=0,1,2,... = 0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 13, 14

This suggests that the automaton, if it exists for this game, is not as simple as it was for k = 2 or k = 3.

4 Does a regular set of P-positions imply regular sets of Grundy

values?

Given a rewrite game, deciding whether each set Li forms a regular language remains an open problem in

a certain number of cases. Therefore, it seems natural to know whether a positive or a negative answer can

be given without considering all the sets. A first step towards this direction has been given by Waldmann,

who obtained the following result [9, Thm. 6].

Theorem 18 (Waldmann, 2002). For all taking-and-breaking games, if the language L0 is regular, then

the Grundy function is bounded, and all the Grundy languages Li are regular.

Hence in the case of taking-and-breaking games, the regularity of L0 implies the regularity of all

the languages Li. In our different setting of taking-and-merging games, Waldmann’s proof cannot be

transposed easily. In addition, the situation does not seem that clear. Let us consider a particular game.

Proposition 19. For the game {a, a2, b, b2}, the set L0 of P-positions is regular.

Proof: Consider the partition of A∗ into two sets

P = {w ∈ A∗ : |w|a − |w|b = 0 (mod 3)} and N = A∗ \ P.

The set P satisfies the stability property of Lemma 5: take any word w 6= ε in P and apply one of the

reductions. The resulting word u is such that

|u|a − |u|b ∈
(

|w|a − |w|b + {−2,−1, 1, 2}
)

.

Hence there is no move between two words in P .

The set P is absorbing: take a word w such that |w|a − |w|b = 1 mod 3. If |w|a > 0, then using

the reduction a−→ ε leads to the set P . Otherwise, w contains only b’s. Notice that it contains at

least two b’s and using the reduction b
2−→ ε leads again to the set P . Now take a word w such that

|w|a − |w|b = 2 mod 3. The argument is similar. If |w|b > 0, then using the reduction b−→ ε leads to

the set P . Otherwise, w contains only a’s. Notice that it contains at least two a’s and using the reduction

a
2−→ ε leads again to the set P .

Hence according to Lemma 5, the set P is the set of the P-positions of the game and is exactly L0. It is

a straightforward exercise to see that P is a regular language recognized by a DFA with three states.

In parallel with this result, we have computed the first few elements from the sets Li of {a, a2, b, b2}
for all words of length less than 24:

(max{G(u)})|u|=0,1,2,... = 0, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8, . . .

Our program that iteratively builds the DFA for the Grundy function did not found any reasonable candi-

date up to this length. Hence a natural question arises.



14 Eric Duchêne, Victor Marsault, Aline Parreau, Michel Rigo

Question 20. For the game {a, a2, b, b2}, is there a set Li that is not regular?

In addition, our program found that new Grundy values regularly appear when the length of the words

grows. For example, there are words of length 22 with a Grundy value of 8. This correlation between

the regularity of L0 and a finite number of Grundy values has already been established for some rewrite

games. Indeed, in the game DUOTAIRE, as well as for taking-and-breaking games (see Theorem 18), an

argument to ensure that L0 is not regular consists in showing that the Grundy values are not bounded. We

wonder whether this property remains true for taking-and-merging games:

Question 21. Are there taking-and-merging games for which the set L0 is regular but the Grundy function

is not bounded?

Note that in Question 21, the converse property does not hold. Indeed, a game for which the Grundy

values are bounded does not necessarily has a regular language for L0. Consider the example of the game

{a2, b2} detailed in Section 2.2, for which L0 is proved to be not regular (and where the Grundy values

do not exceed 1).

5 Winning positions and regular languages

Here we consider slightly more general rewriting rules and show that a very simple problem then become

undecidable. More precisely we consider strongly terminating rewriting games, as defined below.

Definition 22. A rewriting game G is called strongly terminating if every reduction u−→ v is such

that |u| > |v|.

As the name suggests, a strongly terminating game is such that, from any given starting position, the

game is terminating. For such a game, there is a trivial algorithm computing the Grundy value of a given

position, although in the worst case, this algorithm runs in exponential time with respect to the length of

the starting position. We consider here the following more general problem.

Problem 23. Given a strongly terminating game G, and a language L of “starting positions”, decide

whether there is a N -position for G belonging to L.

The main result of this section is the following.

Theorem 24. Problem 23 is undecidable, even though the language L is a star-free regular language.

We will prove Theorem 24 by a reduction from the halting problem of a deterministic Turing machine

on the empty word. It takes indeed the rest of Section 5.

5.1 Instantiation of Problem 23

In the following, we consider a deterministic Turing machine T defined by

• Q, the finite set of states;

• q0 ∈ Q, the initial state;

• qaccept, qreject ∈ Q, the accept and reject state;

• Γ, the finite alphabet of tape symbols;

• $ ∈ Γ, the left marker of the tape;

• β ∈ Γ, the blank symbol;
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• Σ ⊆ Γ, the set of input symbols(i); and

• δ : ((Q \ F )× Γ) → (Q × Γ× {⊳, ⊲}), the partial transition function.

We denote by F the set of halting states, that is: F = {qaccept, qreject}. As usual, we assume that the head

of T is on the symbol $ at the beginning of a computation. We also assume for every state q in (Q \ F )
that δ(q, $), if it is defined, is always equal to (r, $, ⊲) for some state r. For more details on Turing machine

or the Halting Problem, see for instance [3, 7].

Now, let us define the instance (G,L) of Problem 23 to which we reduce the halting of T on the empty

word.

In the following, the first player is called A(lice) and the second one is called B(ob).

First, the alphabet of the game G is Q ⊎ Γ ⊎ {#} ⊎M , where Q,Γ are defined above, where # is the

‘erasable’ symbol that will make G strongly terminating, and where

M = { ⊲A , ⊲B , ⊳A , ⊳B } (1)

is the set of ‘head symbols’, which indicate the position and direction of the head, as well as the current

player (A or B).

Second, the reductions are defined by equations (2) to (11), below. For every state q in Q, the left-shift

reductions are as follows.

#### ⊳A q −→G # ⊳B q## (2)

# ⊳B q −→G ⊳A q (3)

Symmetrically, the right-shift reductions are as follows, for every state q in Q.

q ⊲A#### −→G ##q ⊲B # (4)

q ⊲B # −→G q ⊲A (5)

The right-transition reductions are as follows, for every states p, q in (Q \ F ) and for every tape sym-

bol α, γ in Γ such that δT (p, α) = (q, γ, ⊳).

####α ⊳A p −→G # ⊳B q## γ (6)

#### p ⊲A α −→G # ⊳B q## γ (7)

Similarly, if δT (p, α) = (q, γ, ⊲), the left-transition reductions are as follows.

α⊳A p#### −→G γ## q ⊲B # (8)

p ⊲A α#### −→G γ## q ⊲B # (9)

Finally, the halting reductions are as follows, for every states p in (Q \ F ) and for every tape symbol c

in Γ such that δT (p, c) = (q, d, x), for some q ∈ F , d ∈ Γ and x ∈ {⊳, ⊲}.

c ⊳A p −→G q (10)

p ⊲A c −→G q (11)

(i) Since we only consider the empty word as input, the set of input symbols is irrelevant.
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Third, the language L of starting positions is

L = $ ⊳A q0(# + β)∗ . (12)

It may be verified that, thus defined, G is indeed strongly terminating and L is a star-free regular

language.

5.2 Game G is a zero-player game

First, easy inductions show the following.

Lemma 25. Let us consider the game G starting from a starting position w0 ∈ L. Let w be a later

position in a run of the game.

• Position w contains exactly one occurrence of a symbol from Q.

• If it is player A’s turn, w contains no occurrence of ⊲B or ⊳B , and contains exactly one occurrence

of either ⊲A or ⊳A .

• If it is player B’s turn, then w contains no occurrence of ⊲A or ⊳A and w contains at most one

occurrence of a symbol in { ⊲B , ⊳B }.

Moreover, if w contains no head symbol, then the last reduction applied was either (10) or (11).

It follows immediately that the game is in fact asymmetrical. The only reduction that player B can ever

apply are (3) and (5); while the only reduction that player A can ever apply are the other ones (i.e., rules

(2), (4), (6), (7), (8), (9), (10) and (11)). Next lemma states the condition for the game to end.

Lemma 26. Let us consider the game G starting from a position in L. If player A makes a halting move,

then she wins the game. Otherwise, player B always has a move to make afterwards.

Proof: After applying (10) or (11), then no symbol in { ⊲A , ⊲B , ⊳A , ⊳B } appear in the position; hence

no reduction can be applied any longer. After applying (2), (6) or (7), then player B can always apply (3).

Similarly, after applying (4), (8) or (9), then player B can always apply (5).

Finally, let us show that G is a zero-player game, i.e., each move of the game is forced.

Proposition 27. Let us consider the game G starting from a position w0 in L. There is a unique sequence

of words w1, . . . , wn and a unique sequence of reductions r0, . . . , rn−1 such that for every integer i, 0 ≤
i < n, it holds wi−→ri wi+1. Moreover, player A wins if and only if n > 0 and rn−1 is an instance

of (10) or (11).

Proof: From Lemma 25, one may see than no position coming from w0 may ever have more than one

head symbol. Let u be a word with only one head symbol h and let us show that at most one reduction

may be applied to u. Indeed, if h is ⊳B or ⊲B , only reduction (5) or (3) may be applied, respectively.

If h = ⊳A , the only reductions that may be applied are (2), (6), (8), or (10), and it is easy to see that if one

may be applied the other ones cannot (sometimes because T was assumed to be deterministic). A similar

reasoning yields for the case h = ⊲A . Applying Lemma 26 concludes the proof.
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5.3 Game G simulates part of the run of T

In this section, we define how the current position in G bears the state and tape of a step of the run of the

Turing machine T .

Definition 28. Let u = a0a1 · · · an be a word in Γ∗
(

(Q⊲A Γ) + (Γ ⊳A Q)
)

Γ∗.

• We denote by TAPE(u) the infinite sequence vβω , where v is the word in Γ∗ resulting from erasing

from u each letter that belongs to
(

Q ∪ { ⊲A , ⊳A }
)

.

• We denote by STATE(u) the unique symbol in Q that appears in u.

• We denote by HEAD(u) the integer j − 1, where j is such that aj ∈ { ⊲A , ⊳A } in u.

Note that the letter at index HEAD(u) in TAPE(u) is exactly the letter pointed at by ⊲A or ⊳A in u. For

instance if u = $α1α3α3p ⊲A α2ββ, then TAPE(u) = $α1α3α3α2β
ω, STATE(u) = p and HEAD(u) = 4,

that is, the index of α2 in TAPE(u).

Proposition 29. We again take notation of Proposition 27. Let ϕ be the word morphism erasing the sym-

bols #. Let i be an even integer, 0 ≤ i < n (that is, a position where it is player A’s turn). Then, the run of

the Turing machine T on the empty word eventually reaches state STATE(ϕ(wi)) with tape TAPE(ϕ(wi))
and head at position HEAD(ϕ(wi)).

Proof: By induction on i. Case i = 0 yields STATE(w0) = q0, TAPE(w0) = $βω, HEAD(w0) = 0, that

is, the initial setup of the Turing machine T .

Let (i + 2) be an even integer, 0 ≤ i < (n − 2). If ri is (2) (resp. (4)), then ri+1 is (3) (resp. (5))

and ϕ(wi+2) = ϕ(wi), and induction hypothesis concludes the case. Reduction ri cannot be (10) or (11),

because then player B would have no rule to apply and it would hold (i + 2) = n. Reduction ri is

either (6), (7), (8) or (9). We will assume that ri is (8); other cases are treated similarly.

Since we may apply reduction (8), wi is equal to u(α⊳A p####)v with u, v ∈ (Γ+ {#})∗ and such

that δT (p, α) is defined and equal to (q, γ, ⊲) for some q ∈ (Q \ F ) and γ ∈ Γ. It follows that wi+2 =
u(γ## q ⊲A )v, since player A uses reduction (8) and then player B necessarily uses reduction (5). We

write

STATE(ϕ(wi)) = p , HEAD(ϕ(wi)) = j and TAPE(ϕ(wi)) = u′αv′ ,

where u′ is such that |u′| = j. Hence, the following equalities hold.

STATE(ϕ(wi+2)) = q HEAD(ϕ(wi+2)) = j + 1 TAPE(ϕ(wi+2)) = u′γv′

It is exactly the state, tape and head position one obtains by applying the transition defined by δT (p, α) =
(q, γ, ⊲) from the state p, tape u′αv′ and head position j.

Corollary 30. We again take notation of Proposition 29. If w0 is a winning position for player A, then T

halts on the empty word.

Proof: Let j ∈ N, α ∈ Γ, p ∈ Q and u, v ∈ Γ∗ be such that |u| = j,

STATE(ϕ(wn−1)) = p , HEAD(ϕ(wn−1)) = j and TAPE(ϕ(wn−1)) = uαv .

Since w0 is a winning position for player A, n is odd and rn−1 is an instance of a halting reduction. It

follows that δT (p, α) is defined and that its first component is an accepting state. Moreover, n− 1 is even

and we apply Proposition 29: the Turing machine T eventually reaches state p with its head on α, hence

accepts.
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5.4 From the proper starting position, G may simulate each finite run of T

Application of left-transition, right-transition or halting reductions (i.e., reductions from (6) to (11)),

corresponds to the actual simulation of transitions of T . Other reductions simply allow to shift the head

symbol to the next tape symbol. Next lemma states a sufficient condition for a ‘complete’ simulation of

one (non-halting) transition of T , that is 1) applying the transition and 2) shifting entirely the head to the

next tape symbol.

Lemma 31. Let α, γ, θ ∈ Γ be three tape symbols, p, q ∈ Q be two states, u, v be two positions of G

and n be a positive integer. Then u reduces to v in 2n moves in the following cases.

(i) δT (p, α) = (q, γ, ⊲) , u = α⊳A p#4nθ , v = γ#2nq ⊲A θ

(ii) δT (p, α) = (q, γ, ⊲) , u = p ⊲A α#4nθ , v = γ#2nq ⊲A θ

(iii) δT (p, α) = (q, γ, ⊳) , u = θ#4n α ⊳A p , v = θ ⊳A q#2n γ

(iv) δT (p, α) = (q, γ, ⊳) , u = θ#4n p ⊲A α , v = θ ⊳A q#2n γ

Proof: For item (i), apply reduction (8), then alternatively n times reduction (5) and (n − 1) times

reduction (4). Proofs of items (ii), (iii) and (iv) are similar.

In other words, if a transition of T makes the head shift right (resp. left) then it will be executed ‘com-

pletely’ in G if there are 4n consecutive occurrences of symbol #, for some positive n, right of (resp. left

of) the factor of u that belongs to
(

(Γ ⊲AQ) + (Q⊳A Γ)
)

. Then, an induction yields the following.

Proposition 32. Let us assume that T halts on the empty word after m transitions. Then, the following

word w is a winning position for G.

w = $ ⊳A q0

(

#2
(m+1)

β
)m

Corollary 33. If T halts on the empty word, then L contains a winning position for G.

Finally, Corollaries 30 and 33 directly yield Theorem 24. Indeed, assume to the contrary that Prob-

lem 23 is decidable, then one would conclude that the halting problem on the empty word is decidable.

Nevertheless the latter problem is well-known to be undecidable [7]. Let us conclude Section 5 with a

conjecture.

Problem 34. Given a strongly terminating game G, decide whether the winning positions of G form a

regular language.

Conjecture 35. Problem 34 is undecidable.

6 Perspectives

Rewrite games open the door to a large field of new interesting questions, as it generalizes a large set of

combinatorial games. In the previous sections, we have given a couple of open problems that we found the

most relevant ones in the context of taking-and-merging games. Could they be adapted with an alphabet

of a larger size?

Moreover, there are other instances of rewrite games that would make sense to be investigated as their

rules can also be expressed with piles of tokens. Consider for example taking-and-merging games where
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rules of the form a
k−→ b

ℓ are adjoined. Such games can be seen as taking games where tokens have

two colors, say black (for a) and white (for b). Moves consist in either removing tokens or flipping black

tokens (that become white). In such games, what would the Li languages look like? For example, in the

game {a−→b, a−→ ε, b−→ ε}, each Grundy language is regular.
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[1] L. Beaudou, E. Duchêne and S. Gravier: A survey about Solitaire Clobber, in Games of No Chance

4, MSRI Publ. (R.J. Nowakowski, ed.), Vol. 63, Cambridge University Press, Cambridge, 2015.

[2] E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning ways for your mathematical plays, Academic

Press, 1983.

[3] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to automata theory, languages, and com-

putation, Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Co., Reading,

Mass., 2006.

[4] C. Moore, D. Eppstein, One-Dimensional Peg Solitaire, and Duotaire, in More games of no chance

(Berkeley, CA, 2000), 341–350, Math. Sci. Res. Inst. Publ., 42, Cambridge Univ. Press, Cambridge,

2002.

[5] B. Ravikumar, Peg-solitaire, string rewriting systems and finite automata, Theoret. Comput. Sci. 321

(2004), 383–394.

[6] A. N. Siegel, Combinatorial Game Theory, San Francisco, CA, (2013).

[7] M. Sipser, Introduction to the Theory of Computation, Third Int. Ed. Cengage Learning, 2013.

[8] Terese, Term Rewriting Systems, Cambridge Tracts in Theoret. Comput. Sci., Vol. 55, Cambridge

University Press, 2003

[9] J. Waldmann, Rewrite games, in Rewriting techniques and applications, 144–158, Lecture Notes in

Comput. Sci. 2378, Springer, Berlin, 2002.


