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We provide a pair of ribbon graphs that have the same rotor routing and Bernardi sandpile torsors, but different

topological genus. This resolves a question posed by M. Chan. We also show that if we are given a graph, but not its

ribbon structure, along with the rotor routing sandpile torsors, we are able to determine the ribbon graph’s genus.
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1 Introduction

In this paper, we work with connected graphs that may have multiple edges between the same pair of

vertices but we will not allow self loops. We will follow much of the same notation that is used in Chan

et al. (2014). For a graph G, denote the set of vertices by V (G), the set of edges by E(G), and the set of

spanning trees by T (G).

1.1 The Sandpile Group

For any graph G, define the group Div(G) of divisors of G as:

Div(G) := {
∑

v∈V (G)

nvv | nv ∈ Z}.

Define the subgroup Div0(G) of degree-0 divisors of G as:

Div0(G) := {
∑

v∈V (G)

nvv | nv ∈ Z,
∑

v∈V (G)

nv = 0}

where in general, the degree of a divisor is the sum
∑

v∈V (G) nv .

The Laplacian matrix ∆ of G is the symmetric matrix defined by:

∆vw =

{

−deg(v) if v = w

number of edges connecting v to w if v 6= w
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Finally, define the sandpile group or Picard group Pic0(G) as:

Pic0(G) := Div0(G)/im(∆)

We can view the elements of Div0(G) as configurations on a graph where we place some number of

“chips” on each vertex (allowing for negative chips but not fractional chips). The image of the graph

Laplacian is generated by “firing” and “unfiring” vertices of G. When a vertex v fires, it sends one chip

along each edge incident to v. This decreases the number of chips at v by the degree of v and increases

the number of chips at every other vertex w by the number of edges incident to both v and w. When a

vertex v unfires, it takes in one chip along each edge incident to v. This increases the number of chips at

v by the degree of v and decreases the number of chips at every other vertex w by the number of edges

incident to both v and w.

Thus, an equivalent definition of Pic0(G) is the abelian group whose elements are configurations of zero

total chips on the vertices of G, whose binary operation is pointwise addition, and with the equivalence

relation given by firing and unfiring vertices. In fact, since unfiring a single vertex is equivalent to firing

every other vertex, we can generate our equivalence relation purely by firing vertices. This gives the

following useful lemma:

Lemma 1. Two elements S and S′ of Div0(G) are equivalent as elements of Pic0(G) if and only if there

is a sequence of vertex firings that leads from S to S′.

1.2 Sandpile Torsors

1.2.1 Relating Pic0(G) and T (G)

The narrative of this section is similar to the narrative given in the introduction of Chan et al. (2014)

and some of these ideas were also explored in Wagner (2000).

It is a well known fact that the size of the sandpile group of a graph G is the same as the number of

spanning trees of G (as shown e.g. in Biggs (1999) and Holroyd et al. (2008)). Thus, it is natural to ask

whether there exists a canonical (automorphism invariant) bijection between these two sets. However, this

is impossible in general because there is not always a distinguished spanning tree to associate with the

identity element of the sandpile group. For example, a complete graph with more than two vertices has

no distinguished spanning tree.

The next best hope would be if there were a canonical free transitive action of Pic0(G) acting on T (G).
A free transitive action of a group G on a set S is a function f : G × S → S such that for any pair

s, s′ ∈ S, there is a unique g ∈ G such that f(g, s) = s′. A canonical free transitive action is also too

much to ask for on a general graph. For example, on a graph with two vertices and three or more edges,

each edge is a spanning tree and they are all indistinguishable. Furthermore, even after we select one of

the edges, the remaining edges are still indistinguishable.

To resolve this issue, we introduce additional structure on G. For each vertex v ∈ V (G), assign a cyclic

order ρv to the edges incident to v. When this information is provided, (G, ρ) is called a ribbon graph,

sometimes referred to as a combinatorial embedding or a combinatorial map. Even with the ribbon graph

structure provided, there is not always a canonical choice of free transitive action. For example, if we

have a graph with two vertices v and w and three edges e1, e2 and e3 such that ρv = ρw = (e1, e2, e3),
then there is no canonical way to decide whether the equivalence class of the sandpile group containing

(v−w) or the equivalence class of the sandpile group containing (w−v) should send e1 to e2 (see Figure

1).
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v w
1 1

e1

2 2e2

3 3

e3

Fig. 1: A ribbon graph with no canonical free transitive action of its sandpile group acting on its spanning trees.

The numbers give the cyclic order around each vertex. For the rest of this paper, if no labels are given, the order is

assumed to be clockwise.

This final ambiguity can be fixed by associating our free transitive action with a distinguished vertex,

that we call the basepoint.

Definition 1.1. A sandpile torsor of a ribbon graph (G, ρ) is a free transitive action of Pic0(G) on T (G)
given a basepoint v ∈ V (G).

Definition 1.2. A sandpile torsor algorithm α is a function whose input is a ribbon graph (G, ρ) and one

of its vertices v ∈ V (G) and whose output is a sandpile torsor on (G, ρ) with basepoint v.

The two sandpile torsor algorithms we will work with in this paper are the rotor routing process and the

Bernardi process. We give a full description of these algorithms in Section 2.

1.3 Summary of Results

From a ribbon graph (G, ρ), we obtain an associated surface by thickening the edges of G and then

gluing disks to the boundary components while respecting the cyclic orders given by ρ. The genus of a

ribbon graph (G, ρ) is the genus of its associated surface.(i) A ribbon graph is called planar if its genus is

equal to 0. The inspiration for this paper comes from the following theorem proven in Chan et al. (2014)

for the rotor routing case and Baker and Wang (2017) for the Bernardi case.

Theorem 2. The rotor routing and Bernardi processes on a ribbon graph (G, ρ) are invariant to the

choice of basepoint if and only if (G, ρ) is planar.

This theorem suggests that we may be able to determine the genus of a ribbon graph from the structure

of the sandpile torsors given by a sandpile torsor algorithm, a question posed by Melody Chan Chan.

However, the following theorem shows that this is not the case:

Theorem 3. Let (G, ρ) and (G′, ρ′) be two ribbon graphs with genera g and g′ respectively and let αv be

the rotor routing or Bernardi process with basepoint v. Assume that V (G) = V (G′), ϕ : T (G) → T (G′)
is a bijection, and γ : Pic0(G) → Pic0(G′) is an isomorphism such that for every vertex v ∈ V (G) the

following diagram commutes:

(i) Note that this is not the same as the combinatorial genus of G which is defined as E(G)− V (G) + 1.
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Pic0(G)× T (G) T (G)

Pic0(G′)× T (G′) T (G′)

αv(Pic0(G))

γ×ϕ ϕ

αv(Pic0(G′))

There exist (G, ρ) and (G′, ρ′) satisfying the above conditions where g 6= g′.

We will construct two ribbon graphs demonstrating this theorem in Section 3.1. In fact, we give a very

small counterexample where V (G) = V (G′) = 2 and E(G) = E(G′) = 5. Note that if we require

g = 0, Theorem 3 does not hold (this is a corollary to Theorem 2).

For certain G and G′, we can strengthen Theorem 3 by requiring γ to be a particular kind of map, which

we will define in Section 3.2.

Theorem 4. Consider the same conditions as Question 3, but where we require γ to be induced by the

identity on a suitable Vgen ⊆ V (G). We can still find (G, ρ) and (G′, ρ′) satisfying the above conditions

where g 6= g′.

While we could prove Theorem 3 by restricting to 2-vertex ribbon graphs, we show in Proposition 11

that we need more vertices to prove Theorem 4. Nevertheless, we give a family of 3-vertex ribbon graphs

that demonstrate this theorem in Section 3.2.

Because of the failure of these conjectures, any algorithm for determining the genus of a ribbon graph

must require more information than just the orbits of the sandpile torsors produced by the rotor routing or

Bernardi process. In Section 4, we consider the case where we are given V (G) and E(G) but not ρ. In

this setting, we show that if we are given the map rv (i.e. the rotor routing torsor with basepoint v) for

every v , we can determine the genus of (G, ρ). Specifically, in Section 4 we prove:

Theorem 5. Let (G, ρ) be a ribbon graph such that V (G) and E(G) are known but ρ is not. Suppose

that for every v ∈ V (G), we are given the map

Pic0(G) × T (G)
rv(Pic0(G))
−−−−−−−→ T (G)

where rv is the rotor routing torsor with basepoint v (and each T ∈ T is given as a subset of E(G)).
Then, it is possible to determine the genus of (G, ρ).

2 Two Sandpile Torsor Algorithms

2.1 Rotor Routing Process

The rotor routing process is a sandpile torsor algorithm described in Holroyd et al. (2008) and based

on the “Eulerian walkers model” from Priezzhev et al. (1996).

For v ∈ V (G), denote rv as the sandpile torsor with basepoint v determined by the rotor routing process

(or the rotor routing torsor with basepoint v for short). For S ∈ Pic0(G) and T ∈ T (G), define rv(S, T )
in the following way:
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v
-1

1

v
-1

1 v
-1

1

v
-1

1

v v

Fig. 2: A demonstration of the rotor routing torsor with basepoint v acting on the given spanning tree by the configu-

ration with 1 chip on the bottom right vertex, -1 chips on v, and no chips elsewhere.

Choose a representative of S with a nonnegative number of chips away from v. Then, direct the edges

of T so that they point towards v along the path of T . There is now one directed edge coming out of every

vertex w 6= v. This edge is called the rotor at w. Choose any vertex w that has a positive number of chips.

Then, rotate the rotor at w to the next edge in ρw and send a chip from w to the other vertex incident to

this edge. Continue this process until every vertex has zero chips (at which point the chips have all been

deposited at v). The resulting position of the rotors is independent of the order that the rotors are rotated

and, after removing the directional information, produces a new spanning tree T ′. See Figure 2 for an

example.

It is proven in Holroyd et al. (2008) that rv is a well-defined free transitive action.

2.2 Bernardi Process

The Bernardi process is another sandpile torsor algorithm that is described in Baker and Wang (2017)

based on results from Bernardi (2008).

For v ∈ V (G), denote βv as the sandpile torsor with basepoint v determined by the Bernardi process

(or the Bernardi torsor with basepoint v for short). For S ∈ Pic0(G) and T ∈ T (G), define βv(S, T ) in

the following way:

Consider an edge e incident to vertices v1 and v2 to be composed of two half-edges (e, v1) and (e, v2).
Choose an arbitrary edge e incident to v. (The choice of e does not affect the action). We first need to

find the break divisor associated with each spanning tree. To get the break divisor associated with T , we

follow a recursive procedure beginning at the half-edge (e, v) and continuing until we return to (e, v).
Informally, this procedure traces around T and places chips the first time it crosses each edge that is not

in T . Say that our current edge is (e′, v′). There are 2 cases:

1) If e′ ∈ T , we consider the other half edge associated to e′, say (e′, w′). Then, we move to the half

edge (e′′, w′) where e′′ is the next edge after e′ in ρw′ and restart the procedure with (e′′, w′) as our new

half edge.
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v v v
2

1

v
1

1 1

v v

x

x

x

Fig. 3: A demonstration of the Bernardi torsor with basepoint v acting on the given spanning tree by the configuration

with 1 chip on the bottom right vertex, −1 chips on v and no chips elsewhere. Note that it is not a coincidence that

this action produces the same spanning tree as the rotor routing action in figure 2. It is shown in Baker and Wang

(2017) that the rotor routing and Bernardi actions are identical to each other on planar graphs.

2) If e′ 6∈ T , we consider the half edge (ẽ, v′) where ẽ is the next edge after e′ in ρv′ . Furthermore,

if we have not already passed through the other half edge involving e′, we place a chip on v′. Then we

restart the procedure with (ẽ, v′) as our new half edge.

This process continues until we return to (e, v). At this point, we will have placed one chip for each

edge not in T , so this gives us an element of Divg(G) for g = E(G)− V (G) + 1 where

Divg(G) := {
∑

v∈V (G)

nvv|nv ∈ Z,
∑

v∈V (G)

nv = g}

It is shown in An et al. (2014) that when we apply the Bernardi process to each spanning tree, the resulting

chip configurations are all unique as elements of

Picg(G) := Divg(G)/im(∆).

The element of Picg(G) associated to the spanning tree T by this process is called the break divisor

associated to T .(ii) βv(S, T ) is given by adding S to the break divisor associated to T , which gives us a

new element of Picg(G), and then finding the spanning tree T ′ for which this is the break divisor. See

Figure 3 for an example.

It is proven in Baker and Wang (2017) that βv is a well-defined free transitive action, and an efficient

algorithm is provided to find the tree associated with a given break divisor.

(ii) See Baker and Wang (2017) for a complete definition of break divisor.
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3 Counterexamples

We first give an algebraic result that will help to prove both Theorem 3 and Theorem 4. In particular,

this result says that in order to show that the diagrams commute, we only need to test on a set of generators

of Pic0(G).

Lemma 6. Let H be a group and X be a set such that γ is an automorphism on H , ϕ is an automorphism

on X , and α is a group action from H ×X → X .

Let {hi} be a set of generators forH and x be an arbitrary element of X . Ifϕ(α(hi, x)) = α(γ(hi), ϕ(x))
for all hi, then ϕ(α(h, x)) = α(γ(h), ϕ(x)) for all h ∈ H .

Proof: By definition, we can write any h ∈ H as hk1

1 hk2

2 ...hkn

n . We will proceed by induction on the

degree of this monomial.

When the degree is 1, h is a generator and the result holds automatically. For an arbitrary h, assume

without loss of generality that k1 > 0. Then, we can write h = h1h
′ where the degree of h′ is one less

than the degree of h.

For any x ∈ X , the lemma follows from this chain of equalities (which hold by the definition of a group

action and the induction hypothesis):

ϕ(α(h1h
′, x)) = ϕ(α(h1, α(h

′, x))) = α(γ(h1), ϕ(α(h
′, x))) =

= α(γ(h1), α(γ(h
′), ϕ(x))) = α(γ(h1)γ(h

′), ϕ(x)) = α(γ(h), ϕ(x)).

3.1 Unrestricted γ (Theorem 3)

We can prove Theorem 3 while only considering ribbon graphs with 2 vertices. For these graphs, each

edge is a spanning tree, and there are several other nice properties. We begin with a well known result

that is straightforward to prove either by the definition of Pic0(G) or by the chip-firing perspective.

Lemma 7. If G is a graph with 2 vertices and n edges then Pic0(G) ∼= Z/nZ. Furthermore, two

configurations are equivalent as elements of Pic0(G) if and only if the number of chips on a fixed vertex

differ by a multiple of n.

There is a known formula for the genus of a ribbon graph (G, ρ). Define a cycle on a ribbon graph

(G, ρ) as a closed loop such that whenever we enter a vertex, we exit along the next edge in the cyclic

order at that vertex. It was shown in Edmonds Jr (1960) that these cycles are the faces of the surface

associated to (G, ρ). Thus, we have the following by Euler’s formula (where cyc(G, ρ) is the number of

cycles of (G, ρ)):

Proposition 8. For a ribbon graph (G, ρ), the genus g satisfies 2g = 2− |V (G)|+ |E(G)| − cyc(G, ρ).

With this formula in mind, we can construct a pair of ribbon graphs that prove Theorem 3. Consider

2 ribbon graphs, (G, ρ) and (G′, ρ′), such that V (G) = {v1, w1}, V (G′) = {v2, w2}, and |E(G)| =
|E(G′)| = 5 (see Figure 4). Furthermore, label the edges of G as a1 through a5 such that ρv1 =
(a1, a2, a3, a4, a5) and ρw1

= (a1, a3, a2, a5, a4) and label the edges ofG′ such that ρv2 = (b1, b4, b2, b5, b3)
and ρw2

= (b1, b5, b3, b4, b2) (again, see Figure 4). Finally, let ϕ be the map that sends ai to bi for each i
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v1 w1 v2 w2

G G′

1

a1

1

2
a2

3

3 a3 2

4

a4
5

5

a5

4

1

b1

1

2
b4

4

3 b2 5

4

b5
2

5

b3

3

Fig. 4: Two ribbon graphs with the same sandpile torsor structure but different genus.

and γ be the map that doubles the number of chips at each vertex. Note that γ is an isomorphism because

Pic0(G) ∼= Z/5Z.

Proposition 9. Let (G, ρ), (G′, ρ′), γ, and ϕ be constructed as above and identify v1 with v2 and w1 with

w2. For every vertex v ∈ V (G) the following diagram commutes, where αv is the rotor routing process r
or the Bernardi process β with basepoint v:

Pic0(G)× T (G) T (G)

Pic0(G′)× T (G′) T (G′)

αv(Pic0(G))

γ×ϕ ϕ

αv(Pic0(G′))

However, the genus of (G, ρ) is 2 while the genus of (G′, ρ′) is 1.

Proof:

First, we observe that βvi = rwi
and βwi

= rvi . To see this, it suffices to show that they match on a

generator.

βv1(v1 − w1, {a1, a2, a3, a4, a5}) = {a2, a3,a4, a5, a1} = rw1
(v1 − w1, {a1, a2, a3, a4, a5})

βv2(v2 − w2, {b1, b2, b3, b4, b5}) = {b4, b5,b1, b2, b3} = rw2
(v2 − w2, {b1, b2, b3, b4, b5})

βw1
(w1 − v1, {a1, a2, a3, a4, a5}) = {a3, a5,a2, a1, a4} = rv1(w1 − v1, {a1, a2, a3, a4, a5})

βw2
(w2 − v2, {b1, b2, b3, b4, b5}) = {b5, b1,b4, b2, b3} = rv2 (w2 − v2, {b1, b2, b3, b4, b5})

Therefore, we only need to prove the result for the rotor routing torsors. Furthermore, by Lemma 6, it

suffices to check a generator of Pic0(G) (and we do not have to choose the same generator for rv as for

rw).
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Using vi − wi as our generator, we get the following diagram for rw:

(vi − wi, {a1, a2, a3, a4, a5}) {a2, a3, a4, a5, a1}

(2vi − 2wi, {b1, b2, b3, b4, b5}) {b2, b3, b4, b5, b1}

rwi
(Pic0(G))

γ×ϕ ϕ

rwi
(Pic0(G′))

Using wi − vi as our generator, we get the following diagram for rv:

(wi − vi, {a1, a2, a3, a4, a5}) {a3, a5, a2, a1, a4}

(2wi − 2vi, {b1, b2, b3, b4, b5}) {b3, b5, b2, b1, b4}

rvi (Pic0(G))

γ×ϕ ϕ

rvi (Pic0(G′))

Finally, we find from direct computation that cyc(G, ρ) = 3 while cyc(G′, ρ′) = 1. By Proposition 8,

this means that the genus of (G, ρ) is 1 while the genus of (G′, ρ′) is 2.

3.2 Restricted γ (Theorem 4)

For any G and G′ on the same set of vertices, the identity map on V (G) induces a natural isomorphism

from Div0(G) → Div0(G′). However, this isomorphism does not always induce an isomorphism from

Pic0(G) → Pic0(G′) because it is possible that two chip configurations will be firing equivalent on G but

not G′ (or vice versa). Nevertheless, for certain graphs, we can find natural isomorphisms with respect to

appropriate subsets of vertices.

Let G and G′ be two graphs on the same set of vertices. Furthermore, suppose that there is some

Vgen ⊂ V (G) satisfying the following properties:

• Every element of either Pic0(G) and Pic0(G′) can be written as a linear combination of vertices in

Vgen. In other words, any chip configuration is firing equivalent to one with no chips on vertices

outside of Vgen.

• Two chip configurations with no chips outside of Vgen are firing equivalent in G if and only if they

are firing equivalent on G′.

Then, let γ̂ be a map from Pic0(G) → Pic0(G′) that we get from the following procedure. Given

S ∈ Pic0(G), we first choose a representative for S with no chips outside of Vgen, which exists by

Property 1. Then, we let γ̂(S) be the equivalence class of Pic0(G′) containing Id(S) where Id is the

map from Div0(G) → Div0(G′) induced by the identity on V (G). By the second property, we have the

following:

Lemma 10. γ̂ is a well-defined isomorphism.
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v1 z1 w1 v2 z2 w2

G G′

1
x + 1

2
x + 2

1 1

2 2

x-1 x-1

x x

1 2x + 1

1 1

2 2

2x-1
2x-1

2x

2x

Fig. 5: Two ribbon graphs with the same rotor routing/ Bernardi torsors but different genus

If (G, ρ) and (G′, ρ′) are ribbon graphs on two vertices with the same number of edges, then G and G′

must be isomorphic because we do not allow loop edges. This means that we can take Vgen = V (G) and

this will always give us a isomorphism γ̂ : Pic0(G) → Pic0(G′). Note that γ̂ maintains the number of

chips on each vertex while the γ we used for Proposition 9 doubles them, so this is not sufficent to prove

Theorem 4. In fact, we show the following:

Proposition 11. There are no examples of 2-vertex graphs satisfying Theorem 4.

Proof: Let V (G) = {v1, w2} and V (G′) = {v2, w2} where we identify v1 with v2 and w1 with w2, and

also refer to them as vi and wi respectively (similarly to the notation used in the proof of Proposition 9).

We can use rw and rv (or equivalently βv and βw) to determine ρv2 and ρw2
in relation to ρv1 and ρw1

.

Then, we show that cyc(ρv1 · ρw1
) = cyc(ρv2 · ρw2

).
Label one of the edges of G as t1 and then for each k ∈ [2, n], label rw1

((k − 1)v − (k − 1)w, t1) as

tk. It follows by definition that ρv1 = (t1, ...., tn). Then, since γ̂ is induced by the identity, for every k,

we have rw2
((k − 1)v − (k − 1)w,ϕ(t1)) = ϕ(tk). Thus, ρv2 = (ϕ(t1)...., ϕ(tn)).

Next, we define σ ∈ Sn to be the permutation such that σ(tk) = rv1((k − 1)w − (k − 1)v, t1).
This means that ρw1

= (σ(t1), .., σ(tn)). By the same reasoning as above, it follows that ρw2
=

(ϕ(σ(t1)), .., ϕ(σ(tn))).
Finally,

ρv2 · ρw2
= (ϕ(t1)...., ϕ(tn)) · (ϕ(σ(t1)), .., ϕ(σ(tn))) = ϕ((t1, ..., tn)) · ϕ((σ(t1), .., σ(tn))) =

= ϕ((t1, ..., tn) · (σ(t1), .., σ(tn))) = ϕ(ρv1 · ρw1
).

ϕ is a bijection, so it does not affect the number of cycles in the resulting product. This means that

(G, ρ) and (G′, ρ′) must have the same genus.

Proposition 11 says that in order to prove Theorem 4, we will need to work with ribbon graphs that

have at least 3 vertices. Let x be any odd integer. Consider two ribbon graphs, (G, ρ) and (G′, ρ′) such
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v w

Gv G′ Gw

G

Fig. 6: The Rotor Routing/ Bernardi torsors at v and w are the same on (G, ρ) when (G′, ρ′) is planar

that |V (G)| = |V (G′)| = 3. Call the elements of V (G) v1, z1, and w1, and call the elements of V (G′)
v2, z2, and w2. Connect v1 and z1 with 2 edges, z1 and w1 with x edges, v2 and z2 with 1 edge, and z2
and w2 with 2x edges (see Figure 5). For the cyclic ordering ρz1 , set the 2 edges that connect to v1 to be

next to each other. Furthermore, set the cyclic order of edges connecting z1 to w1 to be the same for ρz1
as ρw1

, and likewise, set the cyclic ordering of edges connecting z2 to w2 to be the same for ρ′z2 as ρ′w2

(again see Figure 5).

Theorem 12. For any g ∈ Z>0, let (G, ρ) and (G′, ρ′) be constructed as above with x = 2g + 1. If

we identify the vertices of G with the vertices of G′, then Pic0(G) ∼= Pic0(G′) and {vi, wi} the Vgen

requirements of Lemma 10. Furthermore, the diagram in Theorem 4 commutes. However, the genus of

(G, ρ) is g while the genus of (G′, ρ′) is 2g.

Note that if x is even, then this theorem does not hold. In particular, Pic0(G) ∼= Z/2Z ⊕ Z/xZ and

Pic0(G′) ∼= Z/2xZ. These two groups are only isomorphic if x is odd.

Before we prove the theorem, we prove a lemma which gives a sufficient condition for two specific

basepoints to be equivalent with respect to either of our sandpile torsor algorithms. In particular, when we

apply this lemma to the ribbon graphs in Figure 5, we find that the rotor routing process is the same with

basepoint vi as with zi (where i is either 1 or 2) and the same is true for the Bernardi process.

Let (G, ρ) be a ribbon graph and let v, w ∈ V (G). We split G into 3 subgraphs labeled G′, Gv, and

Gw using the following construction (which is given in Figure 6):

For any e ∈ E(G),

• If every path from e to w passes through v, e ∈ Gv .

• If every path from e to v passes through w, e ∈ Gw.

• If neither above condition is met, e ∈ G′.

When including an edge in any of these subgraphs, we also include both incident vertices. Furthermore,

we always require v ∈ Gv and w ∈ Gw, even when Gv or Gw contains no edges. It is immediate that

Gv ∩G′ = {v} and Gw ∩G′ = {w}. Let (G′, ρ′) be the restriction of (G, ρ) to G′.
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Lemma 13. For a ribbon graph (G, ρ) with v, w ∈ V (G), construct (G′, ρ′) as above. Let the following

conditions hold:

• (G′, ρ′) is planar.

• The edges of G′ that are incident to v are all sequential in ρv.

• The edges of G′ that are incident to w are all sequential in ρw.

Then, αv and αw are equivalent sandpile torsors when α is replaced by either r or β.

Proof: First, we consider the case where α is the rotor routing process. Let S be any element of Div0(G)
that has a nonnegative number of chips away from v. Let S′ be an element of Div0(G) that is equivalent

to S as an element of Pic0(G) and has a nonnegative number of chips away from w.

We need to show that for any spanning tree T ∈ T (G), we have rv(S, T ) = rw(S
′, T ). We can begin

our evaluation of each of these rotor routing torsors by performing rotor routing on Gv and Gw until all

vertices in G\G′ have no chips on them. Because S and S′ are in the same sandpile equivalence class, and

because the rotors in Gv and Gw will always point towards v and w respectively, the resulting portions of

the spanning tree outside of G′ is the same with either basepoint. Furthermore, if a chip ever leaves G′

during rotor routing (say WLOG that it enters Gv), then this happens because the rotor at v rotates into

Gv . For the chip to return to G′ (which must happen eventually), the rotor at v must keep spinning until

it returns to an edge in G′. This drops one chip across each edge in Gv incident to v. The effect of this

rotation is the same as firing v in the subgraph Gv which has no effect on the resulting tree. By Theorem

2, we know that rv = rw when we restrict to (G′, ρ′) and the above analysis shows that this is also true

on (G, ρ).
The Bernardi action is even simpler. If we start each tour with the first edge in G′ connected to the

basepoint vertex, then the tours will go around Gv and Gw in the same direction. Thus, the effect of these

subgraphs on the break divisors will be the same for each basepoint vertex. Because the two Bernardi

actions are the same on G′ and we alter each of them in the same way, they are also the same on G.

Now we are ready to prove the Theorem 12.

Proof Proof of Theorem 12: For each ribbon graph, there are 2x spanning trees, which means that this

is also the size of the sandpile groups. We claim that the sandpile element vi − wi has order 2x in both

Pic0(G) and Pic0(G′). This means that it must generate the sandpile group for both graphs. Furthermore,

since there are no chips on zi, the pair {vi, wi} satisfies the Vgen requirements of Lemma 10.

Label the spanning trees of G1 as [a, b] where a is the index of the edge between v1 and z1 (either 1

or 2) and b is the index of the edge between z1 and w1 in cyclic order (ranging from 1 to x). Label the

spanning trees of G2 as [a] with a the index of the edge between z2 and w2 (ranging from 1 to 2x). Our

claim follows if we show that

{[1, 1], rw1
(1, 0,−1)[1, 1], rw1

(2, 0,−2)[1, 1], ..., rw1
(2x− 1, 0, 1− 2x)[1, 1]} (1)

are all distinct spanning trees of G1 and

{[1], rw2
(1, 0,−1)[1], rw2

(2, 0,−2)[1], ..., rw2
(2x− 1, 0, 1− 2x)[1]} (2)

are all distinct spanning trees of G2 (where we could replace rwi
with any other sandpile torsor).
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On G1, rw1
(1, 0,−1) switches the edge between v1 and z1 and then shifts the edge between z1 and w1

up by 1. The only special case is when we get to the last edge between z1 and w1 and shift over to the

edges between v1 and z1. However, this just causes the edge between v1 and z1 to shift twice which does

not change it and then we get the first edge between z1 and w1 before depositing the chip at w1. Thus, the

trees given in 1 are:

{[1, 1], [2, 2], [1, 3], ..., [1, x], [2, 1], ..., [2, x]}.

On G2, rw2
(1, 0,−1) simply switches to the next edge between z2 and w2. Thus, the trees given in 2

are:

{[1], [2], [3], ..., [2x− 1], [2x]}.

In both cases, we get 2x distinct trees. Additionally, this result, along with Lemma 6, tells us that there

is a unique bijection ϕ : T (G1) → T (G2) that will make the diagram from Theorem 4 commute when

our sandpile torsor is rwi
. In particular, we let ϕ([a, b]) = [b] when a and b have the same parity, and

ϕ([a, b]) = [b+ x] when a and b are of opposite parity.

We now need to check that this same bijection will cause the diagram to commute when we replace rwi

with rvi , βvi , or βwi
(and by Lemma 6, we only need to check on a generator).

By similar computation to above, we find that

{[1, 1], rv1(−1, 0, 1)[1, 1], rv1(−2, 0, 2)[1, 1], ..., rv1(1 − 2x, 0, 2x− 1)[1, 1]}

is equal to

{[1, 1], [2, 2], [1, 3], ..., [1, x], [2, 1], ..., [2, x]}

while

{[1], rv2(−1, 0, 1)[1], rv2(−2, 0, 2)[1], ..., rv2(1− 2x, 0, 2x− 1)[1]}

is equal to

{[1], [2], [3], ..., [2x− 1], [2x]}.

These trees occur in the same order that they did for rwi
, so the same bijection holds.

Now, we look at the Bernardi torsors. On G1, consider βv1(1, 0,−1). We will start the Bernardi tour

on the first edge connecting v1 to z1. If this edge is part of our spanning tree, we will place one chip on z1
when the tour reaches the other edge between v1 and z1. Otherwise, we place one chip at v1 at the very

beginning. Additionally, we place one chip on z1 for each edge between z1 and w1 before the edge of our

spanning tree, and one chip on w1 for each edge between z1 and w1 after the edge of our spanning tree.

Thus there are 2 cases:

If the spanning tree is [1, k] for some k, then the break divisor is (0, k, x − k). If the spanning tree

is [2, k] for some k, then the break divisor is (1, k − 1, x − k). In the first case, adding (1, 0,−1) gives

(1, k, x− k − 1) which is the break divisor for [2, k + 1] (if k = x, we have the divisor (1, x,−1) which

is equal to (1, 0, x − 1) after unfiring w1 once. This is the break divisor for [2, 1]). In the second case,

adding (1, 0,−1) gives (2, k − 1, x− k − 1). After firing v1 once, we get (0, k + 1, x− k − 1) which is
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the break divisor for [1, k+1] (if k = x, we have the divisor (0, x+1,−1) which is equal to (0, 1, x− 1)
after unfiring w1 once. This is the break divisor for [1, 1].) This means that

{[1, 1], βv1(1, 0,−1)[1, 1], βv1(2, 0,−2)[1, 1], ..., βv1(2x− 1, 0, 1− 2x)[1, 1]}

is equal to

([1, 1], [2, 2], [1, 3], ..., [1, x], [2, 1], ..., [2, x])

which is the same as the rw1
action.

The case for βw1
(−1, 0, 1) is completely similar and yields that

{[1, 1], βw1
(−1, 0, 1)[1, 1], βw1

(−2, 0, 2)[1, 1], ..., βw1
(1− 2x, 0, 2x− 1)[1, 1]}

is equal to

{[1, 1], [2, 2], [1, 3], ..., [1, x], [2, 1], ..., [2, x]}

which is the same as rv1 .

On G2, because the edge between v2 and z2 is in every spanning tree, we can ignore it and look at the

other two vertices. On a two vertex graph, the rotor routing process at one basepoint produces the same

tensor as the Bernardi process at the other basepoint. Thus, βv2 = rw2
and βw2

= rv2 . Combined with

our previous results that βv1 = rw1
and βw1

= rv1 , we conclude that βvi = rwi
and βwi

= rvi . This, the

diagram commutes for either sandpile torsor algorithm.

The only thing left to show is that the genus of G1 is g while the genus of G2 is 2g. This is a direct

application of Lemma 8.

4 Genus From Rotor Routing when the Graph is Known

In order to determine the genus of a ribbon graph, we need more information than just the rotor routing

or Bernardi torsors. For this final section of the paper, we work with a ribbon graph (G, ρ) for which G
is known, but ρ is not. This alone is not enough to determine the genus of (G, ρ), but we show that if we

are also given the rotor routing action at each basepoint, we can calculate the genus. In other words, we

prove Theorem 5.

Our method of proof is to take an arbitrary vertex of our ribbon graph and show that the cyclic order

of edges around it is essentially uniquely determined. Then, we can apply Proposition 8 to determine the

ribbon graph’s genus.

Definition 4.1. Let (G, ρ) be a ribbon graph and v ∈ V (G). A v-component of (G, ρ) is the full ribbon

subgraph induced on the vertices of a connected component of G \ v union {v}.

Note that (G, ρ) has multiple v-components if and only if v is a cut vertex. Furthermore, the intersection

of any two v-components is v. In Figure 7, the lower ribbon graph is a v-component of the upper ribbon

graph.
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Lemma 14. Let (G, ρ) be a ribbon graph with a vertex v. Let e1 and e2 be two edges incident to v in

the same v-component, and let w1 and w2 be their other incident vertices respectively. There exists a

spanning tree T of (G, ρ) such that:

• e1 ∈ T ,

• e2 6∈ T , and

• the path from w2 to v using edges in T passes through w1.

Proof: By the definition of v-components, there is a path between w1 and w2 that does not pass through

v. Because this path does not pass through v, adding e1 to the path will not give us a cycle. Then, we

expand to any spanning tree. This spanning tree must not contain e2 or we would have a cycle, so all three

conditions are met.

Consider (G, ρ), v, e1, e2, w1, and w2 as given in Lemma 14. Let T be a spanning tree satisfying the

conditions of this lemma and (G′, ρ′) be the v-component containing e1 and e2. Let T be a spanning tree

satisfying the conditions of Lemma 14, and let T ′ be the restriction of T to G′ (which is a spanning tree

of G′).

Let S ∈ Div0(G) be the configuration that places 1 chip on v, −1 chips on w2, and 0 chips elsewhere.

Let rw2
be the rotor routing torsor on (G, ρ) with basepoint w2. Let T̂ = rw2

(S, T ) and T̂ ′ be the

restriction of T̂ to E(G′).

Proposition 15. Consider the construction above. The edge e2 is directly after e1 in ρ′v if and only if

T̂ ′ = T ′ ∪ e2 \ e1.

Proof: In the evaluation of rw2
(S, T ), the single chip on v travels around the graph until it reaches w2.

Whenever the chip enters a v-component other than (G′, ρ′), say (G′′, ρ′′), it remains in (G′′, ρ′′) until it

returns to v. While the chip is in (G′′, ρ′′), it can only shift edges within (G′′, ρ′′). In particular, it will

not affect T̂ ′. After the chip has returned to v, it will move on to the next edge in the cyclic order around

v, and the effect on T̂ ′ will be the same as if the rotor had spun an extra time without sending the chip.

Hence, it suffices to consider the case where G has only one v-component.

After this simplification, the forward direction of the proof is immediate because if e2 is the next edge

after e1 in the cyclic order around v, the rotor routing torsor will have a single step which exchanges e1
for e2 and then deposits the chip to w2. The result is our desired tree.

For the other direction, we proceed by contradiction. Assume that the edges a1, .., ak all fall between

e1 and e2 in the cyclic order around v. Consider the configuration S′ ∈ Div0(G) that places k + 1 chips

on v and −dx chips on each other vertex x where dx is the number of edges in {a1, .., ak, e2} that are

incident to x. Then, the evaluation of rw2
(S′, T ) rotates the rotor at v around k + 1 times so that it is

now at e2. Thus, the resulting tree is T ′ ∪ e2 \ e1. To establish our contradiction, we need to show that

rw2
(S′, T ) 6= rw2

(S, T ). Because the rotor routing action is free and transitive, this statement reduces

to showing that S and S′ are not equivalent as elements of Pic0(G), which is the same as showing that

S − S′ is not equivalent to the identity.

The configurationS−S′ has −k chips on v and dx chips on each other vertex x, where dx is the number

of edges in {a1, .., ak} that are incident to x. By Lemma 1, if S − S′ is equivalent to the identity, then we

can get from this configuration to the configuration where there are no chips on the graph merely by firing
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vertices. Because firing a vertex is the only way to decrease the number of chips it has, every vertex that

begins with chips must be fired. Additionally, any non-v vertex adjacent to a fired vertex must be fired

because it begins with no chips and gains a chip once the adjacent vertex has been fired. By recursion,

this means that any vertex that is connected to a fired vertex by a path not passing through v must fire.

We assumed that every vertex is on the same v-component, so every non-v vertex must fire. Additionally,

since every edge in E(G) is incident to a non-v vertex, every edge must have a chip travel across it. Since

there are at least k + 2 edges incident to v, v will eventually have a positive number of chips and must

also fire. However, firing every vertex is equivalent to firing no vertices, meaning S − S′ must be the

configuration where there are no chips. This is a contradiction because we assumed that there were edges

between e1 and e2

This proposition implies that on any cut-free ribbon graph (G, ρ), given the necessary inputs for The-

orem 5, we can precisely calculate ρvk and thus, by Proposition 8, also the genus of (G, ρ). However,

knowing the restriction of ρv to each v-component is not generally enough information to determine

genus. We will also need information about when edges from one v-component fall between edges of a

second v-component. This is the content of the next two lemmas.

Let (G, ρ) be a ribbon graph with a vertex v. Let e1 and e2 be two sequential edges within a v-

component, and w1 and w2 be their other incident vertices respectively. Consider a different v-component

(G′, ρ′) such that a1, ..., ak are the edges in E(G′) that are between e1 and e2 in ρv. Let T be a spanning

tree satisfying the conditions of Lemma 14, and T ′ be the restriction of T to E(G′).

Let S ∈ Div0(G) be the configuration with 1 chip on v, −1 chips on w2, and 0 chips elsewhere.

Additionally, let rw2
be the rotor routing action on (G, ρ) with basepoint w2, T̂ = rw2

(S, T ), and T̂ ′ be

the restriction of T̂ to E(G′).

We compare the tree T̂ ′ to a tree we obtain by restricting to (G′, ρ′) from the start. Let S′ ∈ Div0(G′)
be the configuration with −k chips on v and dx chips on each other vertex x ∈ V (G′), where dx is the

number of edges incident to x in {a1, ..., ak}. Finally, let r′v be the rotor routing torsor on (G′, ρ′) with

basepoint v.

Lemma 16. In the construction above, r′v(S
′, T ′) = T̂ ′.

Proof: As the rotor at v rotates from e1 to e2, it will pass through each of the edges {a1, .., ak} once.

By the same reasoning as discussed in the previous proof, any edges not in E(G′) that the rotor passes

through will have no effect on T̂ ′. Every time the rotor reaches edge ai, one chip is transferred from v to

the other vertex incident to ai (call this vertex bi). Then, the chip travels around in (G′, ρ′) until it returns

to v. This has the same effect on the rotors in (G′, ρ′) as if we placed a single chip on bi and evaluated r′v .

Combining these single chip addition configurations gives us the element of the sandpile group S′. See

Figure 7

Let (G′, ρ′) be a ribbon graph with a vertex v such that v is not a cut vertex.(iii) Let {e1, ..., en} be the

edges of G′ incident to v. For any E ⊆ {e1, ..., en}, let SE ∈ Div0(G′) be the configuration that places

−k chips on v and dx chips on each other vertex x ∈ V (G′) where dx is the number of edges incident to

x in E .

(iii) We use (G′, ρ′) instead of (G, ρ) because we want to think of (G′, ρ′) as a v-component of a larger ribbon graph.
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v
w1 w2 v

v v

1 -1

-1

1

Fig. 7: A demonstration of Lemma 16.

Lemma 17. In the construction above, if SE = SE′ then either E = E ′ or one is {e1, ..., en} and the other

is ∅.

Proof: SE = SE′ if and only if SE − SE′ = Id. Because SE − SE′ and SE′ − SE sum to the all zeros

configuration, at least one of them must have a nonnegative number of chips placed on v. Call this con-

figuration S′. By Lemma 1, if S′ is equivalent to the identity, then we can get from S′ to the all zeros

configuration by firing vertices. Consider a sequence of firings that results in the all zeros configuration.

Because the only way for a vertex to lose chips is to be fired, if v starts with a positive number of chips,

it must be fired. Furthermore, if v starts with 0 chips, then unless S′ is already the all zeros configuration

(which only occurs when E = E ′), some vertex must have a positive number of chips, and must therefore

fire. By definition of SE and SE′ , the only vertices with a possibly nonzero number of chips in S′ are

those adjacent to v, so some vertex adjacent to v must fire. This deposits at least one chip to v, which

means that v now has a finite number of chips and must fire as well.

We have shown that if E 6= E ′, then v must fire at some point. Since the ordering of firings is irrelevant,

we can assume that v fires first. Note that every vertex x in S′ has either 0, dx, or −dx chips on it where

dx is the number of edges connecting v to x. Thus, after firing v, each edge has either 0, dx, or 2dx
chips. If every vertex ends up with 0 chips, then we have reached the all zeros configuration with only

a single firing. This only occurs if every vertex began with −dx chips. By construction, we see that this

occurs if E = {e1, ..., en} and E′ = ∅ (or vice versa). Otherwise, some vertex has a positive number

of chips and every other vertex has a nonnegative number of chips. By the same reasoning used in the

previous proposition, since we have only a single v-component, all non v vertices must fire at least once.

However, since v also must fire, this means that every vertex must fire at least once when going from S′
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G′ G′′

G

Fig. 8: The genus of the full ribbon graph is the sum of the genera of the two ribbon subgraphs

to the all zeros configuration. This cannot be required since firing every vertex is equivalent to firing no

vertices.

By combining the results of the last two lemmas, for a ribbon graph (G, ρ) we are able to find ex-

actly which edges from one v-component (G′, ρ′) fall between two sequential edges in a second v-

component(G′′, ρ′′) with one exception. If all of the edges of (G′, ρ′) fall between the same two edges of

(G′′, ρ′′), then we cannot always determine which pair of edges they fall between. However, the following

lemma shows that any ambiguities in ρv can be resolved with no effect on the genus of (G, ρ).
Let (G, ρ) be a ribbon graph, and v ∈ V (G) such that ρv = (e1, ..., ei+j). Assume that for all 1 ≤ k ≤ i

and i+ 1 ≤ l ≤ i+ j, ek and el are on different v-components of (G, ρ). Let (G′, ρ′) be the union of all

v-components non-trivially intersecting {e1, .., ei} and (G′′, ρ′′) be the union of all v-components non-

trivially intersecting {ei+1, .., ei+j} where {ρ′vk} and {ρ′′vk} are defined naturally as restrictions of {ρvk}
(see Figure 8).

Lemma 18. In the above construction, the genus of (G, ρ) is the sum of the genus of (G′, ρ′) and the

genus of (G′′, ρ′′).

Proof: First, we note that |E(G′)|+ |E(G′′)| = |E(G)| because every edge in G is in exactly one of the

subgraphs. Furthermore, |V (G′)| + |V (G′′)| = |V (G)| + 1 because every vertex in G is in exactly one

of the subgraphs, except for v which is in both.

Next note that every cycle of (G, ρ) is entirely contained in either (G′, ρ′) or (G′′, ρ′′) unless it enters

v on the edge ei or the edge ei+j . We also know that these two half edges must be part of the same cycle

because after the cycle leaves (G′, ρ′) via ei, it must enter (G′, ρ′) again via ei+j or it would not be a

closed loop. Because this cycle remains a cycle when restricted to either (G′, ρ′) or (G′′, ρ′′) it is double

counted when summing |cyc(G′)| and |cyc(G′′)|. Thus, we have |cyc(G′)|+ |cyc(G′′)| = |cyc(G)| + 1.

Now, we use the genus formula given in Proposition 8,

g((G, ρ)) =
|E(G)| − |V (G)| − |cyc(G)|+ 2

2
=

=
|E(G′)|+ |E(G′′)| − |V (G′)| − |V (G′′)|+ 1− |cyc(G′)| − |cyc(G′′)|+ 1 + 2

2
=
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=
(|E(G′)| − V (G′)− |cyc(G1)|+ 2) + (|E(G′′)| − |V (G′′)| − |cyc(G′′)|+ 2)

2
=

= g((G′, ρ′)) + g((G′′, ρ′′)).

We are now ready to prove Theorem 5.

Proof Proof of Theorem 5: Choose any vertex v ∈ V (G) and consider its v-components. Lemma 15

gives us the order of edges for each v-component while Lemma 16 gives which edges of one v-component

are between two given edges of another v-component. Lemma 17 tells us that there is potential ambiguity

if all of the edges in one v-component fall between the same two edges of another v-component. However,

Lemma 18 resolves this ambiguity by allowing us to choose arbitrarily when we cannot deduce cyclic

order from the previous lemmas with no effect on the ribbon graph’s genus. If we repeat this procedure

for every vertex of G, we have deduced the cyclic orders for a ribbon graph with the same genus as (G, ρ).
Thus, we can use Proposition 8 to determine the genus of (G, ρ).

Finally, we conjecture that the same theorem holds for the Bernardi process.

Conjecture 19. Let (G, ρ) be a ribbon graph. Suppose that we are given V (G), E(G), Pic0(G), T (G) ⊂
E(G) and for every v ∈ V (G), we are given the map

Pic0(G)× T (G)
βv(Pic0(G))
−−−−−−−→ T (G)

where βv is the Bernardi process with basepoint v. Then, it is possible to determine the genus of (G, ρ).

The challenge for this conjecture is that even on a cut-free graph, it is not easy to use the Bernardi

process to detect information about the cyclic order around a fixed vertex without information about the

cyclic order around other vertices. In other words, there is no clear analogue to Proposition 15.
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