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Y. Manoussakis (J. Graph Theory 16, 1992, 51-59) proposed the following conjecture.

Conjecture. Let D be a 2-strongly connected digraph of order n such that for all distinct pairs of non-adjacent

vertices x, y and w, z, we have d(x) + d(y) + d(w) + d(z) ≥ 4n− 3. Then D is Hamiltonian.

In this paper, we confirm this conjecture. Moreover, we prove that if a digraph D satisfies the conditions of this

conjecture and has a pair of non-adjacent vertices {x, y} such that d(x) + d(y) ≤ 2n− 4, then D contains cycles of

all lengths 3, 4, . . . , n.

Keywords: digraph, hamiltonian cycle, strong digraph, pancyclic digraph

1 Introduction

In this paper, we consider finite digraphs (directed graphs) without loops and multiple arcs. Every cycle

and path are assumed simple and directed; its length is the number of its arcs. A digraphD is Hamiltonian

if it contains a cycle passing through all the vertices of D. There are many conditions that guarantee that a

digraph is Hamiltonian (see, e.g., Bang-Jensen and Gutin (Springer-Verlag, London, 2000), Bermond and

Thomassen (1981), Kühn and Osthus (2012), Manoussakis (1992), Meyniel (1973)). Manoussakis (1992)

the following theorem was proved.

Theorem 1.1 (Manoussakis (1992)). Let D be a strong digraph of order n ≥ 4. Suppose that D satisfies

the following condition for every triple x, y, z ∈ V (D) such that x and y are non-adjacent: If there is

no arc from x to z, then d(x) + d(y) + d+(x) + d−(z) ≥ 3n − 2. If there is no arc from z to x, then

d(x) + d(y) + d−(x) + d+(z) ≥ 3n− 2. Then D is Hamiltonian.

Definition 1.2. Let D be a digraph of order n. We say that D satisfies condition (M) when d(x)+d(y)+
d(w) + d(z) ≥ 4n− 3 for all distinct pairs of non-adjacent vertices x, y and w, z.
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Manoussakis (1992) proposed the following conjecture. This conjecture is an extension of Theorem

1.1.

Conjecture 1.3 (Manoussakis (1992)). Let D be a 2-strong digraph of order n such that for all distinct

pairs of non-adjacent vertices x, y and w, z we have d(x) + d(y) + d(w) + d(z) ≥ 4n− 3. Then D is

Hamiltonian.

Manoussakis (1992) gave an example, which showed that if this conjecture is true, then the minimum

degree condition is sharp. Notice that another examples can be found in a paper by Darbinyan (1983),

where for any two integers k ≥ 2 and m ≥ 1, the author constructed a family of k-strong digraphs of

order 4k + m with minimum degree 4k + m − 1, which are not Hamiltonian. This result improves a

conjecture of Thomassen (see Bermond and Thomassen (1981) Conjecture 1.4.1: Every 2-strong (n− 1)-
regular digraph of order n, except D5 and D7, is Hamiltonian). Moreover, when m = 1, then from these

digraphs we can obtain k-strong non-Hamiltonian digraphs of order n = 4k + 1 with minimum degree

equal to n − 1 and the minimal semi-degrees equal to (n − 3)/2. Thus, if in Conjecture 1.3 we replace

4n− 3 with 4n− 4, then for every n there are many digraphs of order n with high connectivity and high

semi-degrees, for which Conjecture 1.3 is not true.

The cycle factor in a digraph D is a collection of pairwise vertex disjoint cycles C1, C2, . . . , Cl such

that
⋃l

i=1
V (Ci) = V (D). It is clear that the existence of a cycle factor in a digraph D is a necessary

condition for a digraph to be Hamiltonian. The following theorem gives a necessary and sufficient condi-

tion for the existence of a cycle factor in a digraph.

Theorem 1.4 (Yeo (1999)). Let D be a digraph. Then D has a cycle factor if and only if V (D) cannot be

partitioned into subsets Y , Z , R1, R2 such that A(Y → R1) = A(R2 → R1 ∪ Y ) = ∅, |Y | > |Z| and Y
is an independent set.

Using theorem Theorem 1.4, it is not difficult to construct 2-strong digraphs satisfying the condition

that d(x) + d(y) + d(w) + d(z) ≥ 4n− 4 for every distinct pairs {x, y}, {w, z} of non-adjacent vertices,

but these digraphs do not even contain a cycle factor.

Thomassen suggested (see Bermond and Thomassen (1981)) the following two conjectures:

1. Conjecture 1.6.7. Every 3-strong digraph of order n and with minimum degree at least n+1 is strongly

Hamiltonian-connected.

2. Conjecture 1.6.8. Let D be a 4-strong digraph of order n such that the sum of the degrees of any pair

of non-adjacent vertices is at least 2n+ 1. Then D is strongly Hamiltonian-connected.

Investigating these conjectures, Darbinyan (1990) disproved the first conjecture (proving that for every

integer n ≥ 9 there exists a 3-strong non-strongly Hamiltonian-connected digraph of order n with the

minimum degree at least n+ 1) and for the second proved the following two theorems.

Theorem 1.5. Any k-strong (k ≥ 1) digraph D of order n ≥ 8 satisfying the condition that the sum of

degrees of any pair of non-adjacent vertices x, y ∈ V (D) \ {z} at least 2n− 1, where z is some vertex in

V (D), is Hamiltonian if and only if any (k+1)-strong digraph of order n+1 satisfying the condition that

the sum of degrees of any pair of non-adjacent vertices at least 2n+3 is strongly Hamiltonian-connected.
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Theorem 1.6. Let D be a strong digraph of order n ≥ 3. Suppose that d(x) + d(y) ≥ 2n− 1 for every

pair of non-adjacent vertices x, y ∈ V (D) \ {z}, where z is some vertex of V (D). Then D contains a

cycle of length at least n− 1.

It is easy to see that if a digraph D satisfies the condition (M), then it contains at most one pair of

non-adjacent vertices x, y such that d(x) + d(y) ≤ 2n − 2. From this and Theorem 1.6, the following

corollary immediately follows.

Corollary 1.7. Let D be a strong digraph of order n satisfying condition (M). Then D contains a cycle

of length at least n− 1 (in particular, D contains a Hamiltonian path).

Corollary 1.7 was also later proved by Ning (2015).

It is worth to note that Darbinyan (2017), Darbinyan (2015) and Darbinyan and Karapetyan (2015)

studied some properties in digraphs with the conditions of Theorem 1.1. They obtained the following

results (in first two results D is a digraph of order n satisfying the degree condition of Theorem 1.1).

(i) (Darbinyan and Karapetyan (2015)). If D is strong, then it contains a cycle of length n− 1 or D is

isomorphic to the complete bipartite digraph K∗

n/2,n/2.

(ii) (Darbinyan (2015)). If D is strong, then it contains a Hamiltonian path in which the initial vertex

dominates the terminal vertex or D is isomorphic to one tournament of order 5.

(iii) (Darbinyan (2017)). Let D be a digraph of order n and let Y be a non-empty subset of V (D).
Suppose that for every triple of the vertices x, y, z ∈ Y such that x and y are non-adjacent: If there

is no arc from x to z, then d(x) + d(y) + d+(x) + d−(z) ≥ 3n − 2. If there is no arc from z to x,

then d(x) + d(y) + d−(x) + d+(z) ≥ 3n− 2. If there is a path from u to v and a path from v to u in D
for every pair of distinct vertices u, v ∈ Y , thenD has a cycle which contains at least |Y |−1 vertices of Y .

The last result is best possible in some situations and gives an answer to a question posted by Li et al.

(2007).

Theorem 1.8 (Meyniel (1973)). Let D be a strong digraph of order n ≥ 2. If d(x) + d(y) ≥ 2n− 1 for

all pairs of non-adjacent vertices x, y in D, then D is Hamiltonian.

For a short proof of Theorem 1.8, see Bondy and Thomassen (1977). Darbinyan (1985) characterized

those digraphs which satisfy Meyniel’s condition, but are not pancyclic. Before stating the main result

obtained by Darbinyan (1985), we need to define a family of digraphs.

Definition 1.9. For integers n and m, (n+1)/2 < m ≤ n−1, let Φm
n denote the set of digraphs D, which

satisfy the following conditions: (i) V (D) = {x1, x2, . . . , xn}; (ii) xnxn−1 . . . x2x1xn is a Hamiltonian

cycle in D; (iii) for each k, 1 ≤ k ≤ n − m + 1, the vertices xk and xk+m−1 are not adjacent; (iv)

xjxi /∈ A(D) whenever 2 ≤ i + 1 < j ≤ n and (v) the sum of degrees for any two distinct non-adjacent

vertices is at least 2n− 1.



4 Samvel Kh. Darbinyan

Theorem 1.10 (Darbinyan (1979), Darbinyan (1985)). Let D be a strong digraph of order n ≥ 3. Sup-

pose that d(x) + d(y) ≥ 2n− 1 for all pairs of distinct non-adjacent vertices x, y in D. Then either (a)

D is pancyclic or (b) n is even and D is isomorphic to one of K∗

n/2,n/2, K∗

n/2,n/2 \ {e}, where e is an

arbitrary arc of K∗

n/2,n/2, or (c) D ∈ Φm
n (in this case D does not contain a cycle of length m).

Later on, Theorem 1.10 was also proved by Benhocine (1986). Darbinyan (2019) investigated the pan-

cyclicity of digraphs with the condition (M). Using Theorem 1.10 and the Moser theorem for a strong

tournament to be pancyclic (see Harary and Moser (1966)), we proved the following theorem.

Theorem 1.11 (Darbinyan (2019)). Let D be a 2-strong digraph of order n ≥ 6 satisfying condition (M).
Suppose that there exists a pair of non-adjacent vertices x, y in D such that d(x) + d(y) ≤ 2n− 4. Then

D contains cycles of all lengths 3, 4, . . . , n− 1.

In this paper we confirm Conjecture 1.3.

Theorem 1.12. Let D be a 2-strong digraph of order n ≥ 3 satisfying condition (M). Then D is

Hamiltonian.

Theorem 1.12 also has the following immediate corollaries.

Corollary 1.13 (Woodall (1972)). A digraph of order n is Hamiltonian if, for any two vertices x and y,

either x → y or d+(x) + d−(y) ≥ n.

Corollary 1.14 (Nash-Williams (1969)). Let D be a digraph of order n ≥ 2. If for every vertex x,

d+(x) ≥ n/2 and d−(x) ≥ n/2, then D is Hamiltonian.

Note that Corollary 1.14 immediately follows from well-known theorem of Ghouila-Houri Ghouila-

Houri (1960).

Corollary 1.15 ( Ore (1960)). Let G be a simple graph of order n ≥ 3, in which the degree sum of any

two non-adjacent vertices is at least n. Then G is Hamiltonian.

As an immediate corollary of Theorems 1.12 and 1.11, we obtain the following theorem.

Theorem 1.16. Let D be a 2-strong digraph of order n ≥ 6 satisfying condition (M). Suppose that D
contains a pair of non-adjacent vertices x, y such that d(x) + d(y) ≤ 2n− 4. Then D is pancyclic.

In view of Theorem 1.16, it is natural to set the following problem.

Problem 1.17. Let D be a 2-strong connected digraph of order n satisfying condition (M). Suppose that

{x, y} is a pair of non-adjacent vertices in D such that 2n− 3 ≤ d(x) + d(y) ≤ 2n− 2. Whether D is

pancyclic?
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2 Terminology and notation

In this paper we consider finite digraphs without loops and multiple arcs. We shall assume that the

reader is familiar with the standard terminology on digraphs and refer to the book Bang-Jensen and Gutin

(Springer-Verlag, London, 2000) for terminology and notations not defined here. The vertex set and the

arc set of a digraph D are denoted by V (D) and A(D), respectively. The order of D is the number of its

vertices. For any x, y ∈ V (D), we also write x → y if xy ∈ A(D). We use the notations −→a [x, y] = 1
if xy ∈ A(D) and −→a [x, y] = 0 if xy /∈ A(D). If xy ∈ A(D), y is an out-neighbour of x and x is

an in-neighbour of y. If x → y and y → z, we write x → y → z. Two distinct vertices x and y are

adjacent if xy ∈ A(D) or yx ∈ A(D) (or both). If there is no arc from x to y, we shall use the notation

xy /∈ A(D).

We let N+(x), N−(x) denote the set of out-neighbours, respectively the set of in-neighbours of a

vertex x in a digraph D. If A ⊆ V (D), then N+(x,A) = A∩N+(x) and N−(x,A) = A∩N−(x). The

out-degree of x is d+(x) = |N+(x)| and d−(x) = |N−(x)| is the in-degree of x. Similarly, d+(x,A) =
|N+(x,A)| and d−(x,A) = |N−(x,A)|. The degree of the vertex x in D is defined as d(x) = d+(x) +
d−(x) (similarly, d(x,A) = d+(x,A)+d−(x,A)). The subdigraph of D induced by a subset A of V (D)
is denoted by D〈A〉. If z is a vertex of a digraph D, then the subdigraph D〈V (D) \ {z}〉 is denoted by

D − z.

For integers a and b, a ≤ b, let [a, b] denote the set of all integers, which are not less than a and are not

greater than b.

The path (respectively, the cycle) consisting of the distinct vertices x1, x2, . . . , xm (m ≥ 2) and the

arcs xixi+1, i ∈ [1,m− 1] (respectively, xixi+1, i ∈ [1,m− 1], and xmx1), is denoted by x1x2 · · ·xm

(respectively, x1x2 · · ·xmx1). We say that x1x2 · · ·xm is a path from x1 to xm or is an (x1, xm)-path.

Let x and y be two distinct vertices of a digraph D. Cycle that passing through x and y in D, we denote

by C(x, y).

A cycle (respectively, a path) that contains all the vertices of D, is a Hamiltonian cycle (respectively,

is a Hamiltonian path). A digraph is Hamiltonian if it contains a Hamiltonian cycle. A digraph D
is strongly Hamiltonian-connected if, for every ordered pair {x, y} of distinct vertices of D there is a

Hamiltonian path from x to y. A digraph D of order n ≥ 3 is pancyclic if it contains cycles of all lengths

m, 3 ≤ m ≤ n. For a cycle C = x1x2 · · ·xkx1 of length k, the subscripts considered modulo k, i.e.,

xi = xs for every s and i such that i ≡ s (modk). If P is a path containing a subpath from x to y, we

let P [x, y] denote that subpath. Similarly, if C is a cycle containing vertices x and y, C[x, y] denotes the

subpath of C from x to y. If j < i, then {xi, . . . , xj} = ∅.

A digraph D is strongly connected (or just strong), if there exists a path from x to y and a path from

y to x for every pair of distinct vertices x, y. A digraph D is k-strongly connected (or k-strong), where

k ≥ 1, if |V (D)| ≥ k + 1 and D〈V (D) \ A〉 is strongly connected for any subset A ⊂ V (D) of at most

k − 1 vertices.

For a pair of disjoint subsets A and B of V (D), we define A(A → B) = {xy ∈ A(D) |x ∈ A, y ∈ B}
and A(A,B) = A(A → B) ∪ A(B → A).

3 Auxiliary known results

Lemma 3.1 (Häggkvist and Thomassen (1976)). Let D be a digraph of order n ≥ 3 containing a cycle

C of length m, m ∈ [2, n− 1]. Let x be a vertex not contained in this cycle. If d(x, V (C)) ≥ m+1, then
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D contains a cycle of length k for all k ∈ [2,m+ 1] .

It is not difficult to prove the following lemma.

Lemma 3.2. Let D be a digraph of order n. Assume that xy /∈ A(D) and the vertices x, y in D satisfy

the degree condition d+(x) + d−(y) ≥ n − 2 + k, where k ≥ 1. Then D contains at least k internally

disjoint (x, y)-paths of length two.

The following results were proved by Darbinyan (2019) and its preliminary version presented at Emil

Artin International Conference (Darbinyan (2018)).

Theorem 3.3. Let D be a 2-strong digraph of order n ≥ 3 satisfying condition (M). Suppose that {x, y}
is a pair of non-adjacent vertices in V (D) such that d(x) + d(y) ≤ 2n − 2. Then D is Hamiltonian if

and only if D contains a cycle through the vertices x and y.

Theorem 3.4. Let D be a 2-strong digraph of order n ≥ 3. Suppose that D contains at most one pair of

non-adjacent vertices. Then D is Hamiltonian.

Remark. There is a strong non-Hamiltonian digraph of order n ≥ 5, which is not 2-strong and has

exactly one pair of non-adjacent vertices.

Using Lemma 3.2, it is not difficult to prove the following lemma.

Lemma 3.5. Let D be a 2-strong digraph of order n ≥ 3 and let u, v be two distinct vertices in V (D).
If D contains no cycle through u and v, then u, v are not adjacent and there is no path of length two

between them. In particular, d(u) + d(v) ≤ 2n− 4.

Theorem 3.6. Let D be a 2-strong digraph of order n ≥ 3 satisfying condition (M). Suppose that {u, v}
is a pair of non-adjacent vertices in V (D) such that d(u) + d(v) ≤ 2n− 2. Then D is Hamiltonian or D
contains a cycle of length n− 1 passing through u and avoiding v (passing through v and avoiding u).

As an immediate corollary of Theorems 3.6, 3.3 and Lemma 3.1, we obtain

Corollary 3.7. Let D be a 2-strong non-Hamiltonian digraph of order n ≥ 3 satisfying condition (M).
Suppose that {u, v} is a pair of non-adjacent vertices in V (D) such that d(u) + d(v) ≤ 2n − 2. Then

d(u) ≤ n− 1, d(v) ≤ n− 1 and D contains at most one cycle of length two passing through u (v) .

4 Preliminaries

Lemma 4.1. Let D be a 2-strong digraph of order n ≥ 3 satisfying condition (M). Suppose that {y, z}
is a pair of non-adjacent vertices in V (D) such that d(y)+d(z) ≤ 2n− 2 and C = x1x2 . . . xn−kx1 is a

cycle inD passing through y and avoiding z, where 2 ≤ n−k ≤ n−2. If the subdigraphD〈V (D)\V (C)〉
contains a cycle passing through z and d(y, V (D) \ V (C)) = 0, then D is Hamiltonian.
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Proof: Suppose, on the contrary, that D〈V (D) \ V (C)〉 contains a cycle passing through z, but D is

not Hamiltonian. Since D contains at most one cycle of length two passing through y (Corollary 3.7),

from d(y, V (D) \ V (C)) = 0 it follows that d(y) ≤ n − k. Let y1y2 . . . ysy1 be a cycle through z in

D〈V (D) \ V (C)〉, where s ∈ [2, k].
By Theorem 3.3 we have that D contains no cycle through y and z. Therefore, for each pair of integers

i and j, where i ∈ [1, n − k] and j ∈ [1, s], −→a [xi, yj ] + −→a [yj−1, xi+1] ≤ 1 (here, y0 = ys and

xn−k+1 = x1). This implies that for every j ∈ [1, s] we have

d−(yj , V (C)) + d+(yj−1, V (C)) =

n−k∑

i=1

(−→a [xi, yj ] +−→a [yj−1, xi+1])) ≤ n− k.

Hence,

d(y1, V (C)) + · · ·+ d(ys, V (C)) =

s∑

j=1

(d−(yj , V (C)) + d+(yj−1, V (C))) ≤ s(n− k). (1)

Since there is at most one cycle of length two through z (y) (Corollary 3.7), it follows that for A :=
V (D) \ V (C) and for every yj ∈ {y1, . . . , ys} \ {z, y1} (we may assume that y1 6= z) the following

holds:

d(z, A) ≤ k, d(y1, A) ≤ 2k − 2 and d(yj , A) ≤ 2(k − 2) + 1 = 2k − 3.

Therefore,

d(y1, A) + · · ·+ d(ys, A) ≤ (s− 2)(2k − 3) + k + 2k − 2 = 2ks− 3s− k + 4.

Combining this with (1), we obtain

d(y1) + · · ·+ d(ys) ≤ ns+ ks− 3s− k + 4.

The last inequality together with d(y) ≤ n− k implies that

d(y1) + · · ·+ d(ys) + sd(y) ≤ 2ns− 3s− k + 4. (2)

Notice that {y, y1}, . . . , {y, ys} are s distinct pairs of non-adjacent vertices. We will consider the cases

when s is even and s is odd separately.

Assume first that s is even. Using condition (M) and (2), we obtain

s(4n− 3)/2 ≤ d(y1) + · · ·+ d(ys) + sd(y) ≤ 2ns− 3s− k + 4.

Therefore, 2ns− 1.5s ≤ 2ns − 3s − k + 4, i.e., 1.5s+ k ≤ 4. The last inequality is impossible, since

k ≥ s ≥ 2.

Assume next that s is odd. Then s ≥ 3. Since d(y) ≤ n − k, and d(z) ≤ n − 1 by Corollary 3.7

(we may assume that z 6= ys), from condition (M) it follows that d(y) + d(ys) ≥ 2n+ k − 2. Now, by

condition (M) and (2) we have,

(s− 1)(4n− 3)/2 + 2n+ k − 2 ≤ d(y1) + · · ·+ d(ys−1) + d(ys) + sd(y)
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≤ 2ns− 3s− k + 4.

Hence,

2n(s− 1)− 1.5(s− 1) + 2n+ k − 2 ≤ 2ns− 3s− k + 4.

This means that 1.5s + 2k ≤ 4.5, which is a contradiction. This contradiction completes the proof of

Lemma 4.1. ✷

Lemma 4.2. Let D be a 2-strong digraph of order n ≥ 3 satisfying condition (M). Suppose that {y, z}
is a pair of non-adjacent vertices in V (D) such that d(y) + d(z) ≤ 2n− 2 and C = x1x2 . . . xn−2zx1 is

a cycle of length n− 1 passing through z and avoiding y in D. Then either D is Hamiltonian or for every

k ∈ [2, n− 3], the following holds:

A({x1, . . . , xk−1} → {xk+1, . . . , xn−2}) 6= ∅.

Proof: Suppose that D is not Hamiltonian. Since D is 2-strong, n ≥ 5. Then by Theorem 3.3,

there is no cycle through y and z. Therefore, we have that if xi → y with i ∈ [1, n − 3], then

d+(y, {xi+1, . . . , xn−2}) = 0 (for otherwise, x1 . . . xiyxj . . . xn−2zx1, where j ∈ [i + 1, n − 2], is

a cycle through y and z, a contradiction). Let xr → y → xp, 1 ≤ p < r ≤ n− 2, and p, r be chosen so

that p is minimal and r is maximal with these properties. Then

d(y, {x1, . . . , xp−1}) = d(y, {xr+1, . . . , xn−2}) = 0. (3)

If p = 1 and r = n−2, then by a similar argument as above, we conclude that if xi → z with i ∈ [1, n−3],
then d+(z, {xi+1, . . . , xn−2}) = 0. Assume that p ≥ 2 or r ≤ n− 3. Observe that Q := yxp . . . xry is

a cycle through y which does not contain z, and d(y, V (D) \ V (Q)) = 0 because of (3). Therefore by

Lemma 4.1, the subdigraph D〈V (D) \ V (Q)〉 contains no cycle through z since D is not Hamiltonian.

This implies that

d−(z, {x1, . . . , xp−1}) = d+(z, {xr+1, . . . , xn−2}) = 0

since xn−2 → z → x1. From the last equalities it follows that if there are i, j such that xi → z and

z → xj with i < j, then i ≥ p, j ≤ r and yxp . . . xizxj . . . xry is a cycle passing through y and z, a

contradiction. Thus, we may assume that for every pair of integers i and j, 1 ≤ i < j ≤ n− 2,

if xi → y, then yxj /∈ A(D) and if xi → z, then zxj /∈ A(D). (4)

Now suppose that the theorem is not true. Then D is not Hamiltonian and there is an integer k ∈ [2, n−3]
such that

A({x1, . . . , xk−1} → {xk+1, . . . , xn−2}) = ∅. (5)

It is easy to see that there are vertices xm and xl such that y → xm, z → xl and

d+(y, {xm+1, . . . , xn−2}) = d+(z, {xl+1, . . . , xn−2}) = 0. (6)

Then by (4),

d−(y, {x1, . . . , xm−1}) = d−(z, {x1, . . . , xl−1}) = 0. (7)

Assume first that m ≤ l. Since D is 2-strong, (4) and (7) imply that 2 ≤ m ≤ l ≤ n− 3. Now from (5),

(6) and (7) it follows that:
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(i) if k ≤ m or k ≥ l, then (respectively)

A({x1, x2, . . . , xk−1} → {y, z, xk+1, xk+2, . . . , xn−2}) = ∅

or

A({y, z, x1, x2, . . . , xk−1} → {xk+1, xk+2, . . . , xn−2}) = ∅,

(ii) if m < k < l, then A({y, x1, x2, . . . , xk−1} → {z, xk+1, xk+2, . . . , xn−2}) = ∅. Thus, in each case

we have that D − xk is not strong, which contradicts the condition that D is 2-strongly connected.

Assume next that m > l. This case is similar to the first case and we omit the details. Lemma 4.2 is

proved. ✷

The following lemma is proved by Darbinyan (2019). We present its proof for completeness.

Lemma 4.3. Let D be a 2-strong digraph of order n ≥ 3 satisfying condition (M). Suppose that {y, z}
is a pair of non-adjacent vertices in V (D) such that d(y) + d(z) ≤ 2n− 2 and C = x1x2 . . . xn−2zx1 is

a cycle of length n− 1 passing through z and avoiding y in D. If xa → xb and there are integers l, s, f, t
such that 1 ≤ l ≤ a < s ≤ f < b ≤ t ≤ n− 2 and {xf , xt} → y → {xl, xs}, then D is Hamiltonian.

Proof: Suppose, on the contrary, that D is not Hamiltonian. By Theorem 3.3, D contains no cycle

through y and z. Therefore, there are no integers i and j, 1 ≤ i < j ≤ n− 2, such that xi → y → xj (for

otherwise, x1 . . . xiyxj . . . xn−2zx1 is a cycle through y and z). Since the arcs yxl, yxs, xfy, xty are in

D and l ≤ a < s ≤ f < b ≤ t, it is easy to check that:

(i) if z → xi with i ∈ [a+ 1, f ], then C(y, z) = yxl . . . xaxb . . . xn−2zxi . . . xfy;

(ii) if xj → z with j ∈ [s, b − 1], then C(y, z) = x1 . . . xaxb . . . xtyxs . . . xjzx1. Thus, in both cases

we have a contradiction. Therefore,

d+(z, {xa+1, . . . , xf}) = d−(z, {xs, . . . , xb−1}) = 0,

in particular, d(z, {xs, . . . , xf}) = 0 and the vertices z and xs (z and xf ) are not adjacent. The last

equality together with the fact that D contains at most one cycle of length two passing through z (Corollary

3.7) implies that

d(z) = d(z, {x1, . . . , xs−1}) + d(z, {xf+1, . . . , xn−2}) ≤ n+ s− f − 2. (8)

Now we consider the vertex xs. It is not difficult to check that:

(iii) if xi → xs with i ∈ [1, l− 1], then C(y, z) = x1 . . . xixs . . . xfyxl . . . xaxb . . . xn−2zx1;

(iv) if xs → xj with j ∈ [t+ 1, n− 2], then C(y, z) = x1 . . . xaxb . . . xtyxs xj . . . xn−2zx1. In both

cases we have a contradiction. Therefore, we may assume that

d−(xs, {x1, . . . , xl−1}) = d+(xs, {xt+1, . . . , xn−2}) = 0.

This implies that

d(xs) = d+(xs, {x1, . . . , xl−1}) + d−(xs, {xt+1, . . . , xn−2}) + d(xs, {xl, . . . , xt}) + d(xs, {y})

≤ l− 1 + n− 2− t+ 2(t− l + 1) = n+ t− l− 1. (9)
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Without loss of generality, we may assume that l, f are chosen as maximal as possible and s, t are chosen

as minimal as possible, i.e.,

d(y, {xl+1, . . . , xs−1}) = d(y, {xf+1, . . . , xt−1}) = 0.

This, since D contains at most one cycle of length two passing through y, implies that

d(y) = d(y, {x1, . . . , xl}) + d(y, {xs, . . . , xf}) + d(y, {xt, . . . , xn−2})

≤ l + f − s+ 1 + n− 2− t+ 2 = n+ l + f − s− t+ 1.

Since {y, z} and {xs, z} are two distinct pairs of non-adjacent vertices, from (8), (9), the last inequality

and condition (M) it follows that

4n− 3 ≤ d(y) + 2d(z) + d(xs) ≤ n+ l + f − s− t+ 1 + 2n+ 2s− 2f − 4 + n+ t− l − 1

= 4n− 4− (f − s) ≤ 4n− 4,

which is a contradiction. Lemma 4.3 is proved. ✷

5 Proof of Theorem 1.12

Recall the statement of Theorem 1.12.

Theorem 1.12. Let D be a 2-strong digraph of order n ≥ 3 satisfying condition (M). Then D is

Hamiltonian.

Proof: By Theorem 3.4, the theorem is true if D contains at most one pair of non-adjacent vertices.

We may therefore assume that D contains at least two distinct pairs of non-adjacent vertices. If the

degrees sum of any two non-adjacent vertices at least 2n − 1, then by Meyniel’s theorem, the theorem

is true. We may therefore assume that D contains a pair of non-adjacent vertices, say y, z, such that

d(y) + d(z) ≤ 2n − 2. By Theorem 3.3, to prove the theorem, it suffices to prove that D contains a

cycle through y and z. If d(y) + d(z) ≥ 2n − 3, then by Lemma 3.5 we have that D contains a cycle

trough y and z, which, in turn, implies that D is Hamiltonian (by Theorem 3.3). Thus, we may assume

that d(y) + d(z) ≤ 2n− 4. By Theorem 3.6 we have that either D is Hamiltonian or D contains a cycle

of length n− 1 passing through z and avoiding y (passing through y and avoiding z).

Suppose thatD is not Hamiltonian, i.e., D contains no cycle through y and z. LetC := x1x2 . . . xn−2zx1

be a cycle of length n−1 in D, which does not contain y. Let q be the maximum integer such that y → xq

and k be the minimum integer such that xk → y. Since D is 2-strong and contains no cycle passing

through y and z, it follows that k ≥ q and there are some integers p, r, 1 ≤ p < q ≤ k < r ≤ n− 2, such

that xr → y → xp and

d(y, {x1, . . . , xp−1}) = d(y, {xq+1, . . . , xk−1}) = d(y, {xr+1, . . . , xn−2})

= d−(y, {xp, . . . , xq−1}) = d+(y, {xk+1, . . . , xr}) = 0. (10)
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Note that if D contains a cycle of length two passing trough y, then k = q, otherwise k > q, yxk /∈ A(D)
and xqy /∈ A(D). Therefore, it is not difficult to see that

d(y) = d+(y, {xp, . . . , xq}) + d−(y, {xk, . . . , xr}) ≤ q − p+ r − k + 2. (11)

In order to prove the theorem, it is convenient for the digraph D and the cycle C to prove the following

claims.

Claim 5.1. If p ≥ 2, then d−(xn−2, {z, x1, . . . , xp−1}) = 0.

Proof: Notice that Q := yxp . . . xry is a cycle passing through y and avoiding z. By (10) we have that

d(y, V (D) \ V (Q)) = 0. Now by Lemma 4.1 , the induced subdigraph D〈V (D) \ V (Q)〉 contains no

cycle through z. Then, since xn−2 → z → x1, we have

d−(z, {x1, . . . , xp−1}) = 0 and A({z, x1, . . . , xp−1} → {xr+1, . . . , xn−2}) = ∅.

The first equality together with 2-connectedness of D implies that there is an integer t ∈ [p, n − 3] such

that xt → z. The last equality means that if r ≤ n− 3, then d−(xn−2, {z, x1, . . . , xp−1}) = 0. Assume

that r = n− 2, i.e., xn−2 → y. In this case, we have that if xi → xn−2 with i ∈ [1, p− 1] (respectively,

z → xn−2), then C(y, z) = x1 . . . xixn−2yxp . . . xtzx1 (respectively, C(y, z) = yxp . . . xtzxn−2y),

which is a contradiction. This proves that d−(xn−2, {z, x1, . . . , xp−1}) = 0. ✷

Claim 5.2. Suppose that k ≥ q + 1 and xh → xl, where h ∈ [q, k − 1] and l ∈ [k + 1, n − 2]. Then

d−(xk, {x1, . . . , xq−1}) = 0.

Proof: Assume that Claim 5.2 is not true. Then for some i ∈ [1, q−1], xi → xk. Then, since the arcs yxq ,

xky, xhxl are inD and i < q ≤ h < k < l, we have a cycleC(y, z) = x1 . . . xixkyxq . . . xhxl . . . xn−2zx1,

which contradicts our initial supposition. ✷

Claim 5.3. Suppose that k ≥ q+ 1, xh → xl with h ∈ [q, k− 1] and l ∈ [k+ 1, r] (possibly, r = n− 2).

Then there is an integer f ≥ 0 such that l + f ≤ r, xl+f → y, d(y, {xl, . . . , xl+f−1}) = 0 (possibly,

{xl, . . . , xl+f−1} = ∅). Moreover, either there is a vertex xg with g ∈ [l+f+1, n−2] such that xk → xg

or there is a vertex xc with c ∈ [k, l − 1] such that xc → z.

Proof: By Claim 5.2,

d−(xk, {x1, . . . , xq−1}) = 0. (12)

Since l ≤ r and xr → y, obviously there is an integer f ≥ 0 such that l + f ≤ r, xl+f → y,

d−(y, {xl, . . . , xl+f−1}) = 0 (possibly {xl, . . . , xl+f−1} = ∅). This together with

d+(y, {xl, . . . , xl+f−1}) = 0 implies that

d(y, {xl, . . . , xl+f−1}) = 0. (13)

Now suppose that the claim is not true. Then

d+(xk, {xl+f+1, . . . , xn−2}) = 0 and d−(z, {xk, . . . , xl−1}) = 0. (14)

The second equality of (14) together with d+(y, {xk, . . . , xl−1}) = 0 and the fact that there is no path of

length two between y and z (Lemma 3.5) implies that the vertices xk, z are not adjacent and

d(z, {xk, . . . , xl−1}) + d(y, {xk, . . . , xl−1}) ≤ l− k.
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This together with (13), (10) and the fact that there is at most one cycle of length two through z (Corollary

3.7) implies that

d(y) + d(z) = d+(y, {xp, . . . , xq}) + d(y, {xk, . . . , xl−1}) + d(z, {xk, . . . , xl−1})

+d−(y, {xl+f , . . . , xr}) + d(z, {x1, . . . , xk−1}) + d(z, {xl, . . . , xn−2})

≤ q − p+ 1 + l − k + r − l − f + 1 + k − 1 + n− 2− l + 2

= n+ q + r + 1− p− l − f.

Now consider the vertex xk. Note that d(xk, {y}) = 1 since k ≥ q + 1. Using (12) and the first equality

of (14), we obtain

d(xk) = d+(xk, {x1, . . . , xq−1}) + d(xk, {xq, . . . , xl+f}) + d−(xk, {xl+f+1, . . . , xn−2})

+d+(xk, {y}) ≤ q − 1 + 2l + 2f − 2q + n− 2− l − f + 1 = n+ l + f − q − 2.

Combining the last two inequalities, d(z) ≤ n− 1 (Corollary 3.7) and r ≤ n− 2, we obtain

d(y) + d(z) + d(xk) + d(z) ≤ 3n+ r − p− 2 ≤ 4n− 4− p,

which contradicts condition (M), since {y, z}, {z, xk} are two distinct pairs of non-adjacent vertices.

This contradiction completes the proof of Claim 5.3. ✷

Claim 5.4. If p ≥ 2, then A({x1, . . . , xp−1} → {xk+1, . . . , xn−2}) = ∅.

Proof: Suppose, on the contrary, that p ≥ 2 and xa → xb with a ∈ [1, p− 1] and b ∈ [k + 1, n− 2]. Let

b be the maximum with these properties, i.e.,

A({x1, . . . , xp−1} → {xb+1, . . . , xn−2}) = ∅. (15)

Notice that Q := yxp . . . xry is a cycle in D and d(y, V (D) \ V (Q)) = 0 by (10). Therefore by Lemma

4.1, the subdigraph D〈V (D) \ V (Q)〉 does not contain a cycle through z. In particular,

d−(z, {x1, . . . , xp−1}) = 0, (16)

and if r ≤ n− 3, then

d+(z, {xr+1, . . . , xn−2}) = 0 and A({x1, . . . , xp−1} → {xr+1, . . . , xn−2}) = ∅. (17)

By Claim 5.1, we have

d−(xn−2, {z, x1, . . . , xp−1}) = 0. (18)

From (17) and (18) it follows that b ≤ r and, if r = n − 2, then b ≤ n − 3. In both cases we have that

b ≤ n− 3.

If xi → z with i ∈ [p, b− 1], then C(y, z) = x1 . . . xaxb . . . xryxp . . . xizx1, a contradiction. We may

therefore assume that d−(z, {xp, . . . , xb−1}) = 0. This together with (16) implies that

d−(z, {x1, . . . , xb−1}) = 0. (19)
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Applying Lemma 4.2 to the vertex xb, we obtain that

A({x1, . . . , xb−1} → {xb+1, . . . , xn−2}) 6= ∅.

Let xs → xt, where s ∈ [1, b− 1] and t ∈ [b+ 1, n− 2]. Choose t maximal with these properties, i.e.,

A({x1, . . . , xb−1} → {xt+1, . . . , xn−2}) = ∅. (20)

From (15) it follows that s ≥ p, i.e., s ∈ [p, b − 1]. If xi → y with i ∈ [b, t − 1], then C(y, z) =
x1 . . . xaxb . . . xiyxp . . . xsxt . . . xn−2zx1, a contradiction. We may therefore assume that

d−(y, {xb, . . . , xt−1}) = 0. This together with d+(y, {xb, . . . , xt−1}) = 0 implies that

d(y, {xb, . . . , xt−1}) = 0. (21)

In particular, the vertices xb and y are not adjacent, t ≤ r and b ≤ r − 1 since b + 1 ≤ t ≤ r (i.e.,

A({xp, . . . , xb−1} → {xr+1, . . . , xn−2}) = ∅). Using Lemma 4.3, we obtain

A({xp, . . . , xq−1} → {xk+1, . . . , xr}) = ∅ and d−(xk+1, {xp, . . . xq−1}) = 0. (22)

Then, since t ≤ r and (20), we have that A({xp, . . . , xq−1} → {xb+1, . . . , xn−2}) = ∅. This together

with (15) implies that

A({x1, . . . , xq−1} → {xb+1, . . . , xn−2}) = ∅.

Therefore, s ≥ q, i.e., s ∈ [q, b− 1]. Since b ≤ r− 1, and xb, y are not adjacent, there is an integer f ≥ 0
such that d−(y, {xb, . . . , xb+f}) = 0 and xb+f+1 → y. Then, since (21) and d+(y, {xb, . . . , xb+f}) = 0
we have that t ≤ b+ f + 1 and

d(y, {xb, . . . , xb+f}) = 0. (23)

This together with (10) implies that

d(y) = d+(y, {xp, . . . , xq}) + d−(y, {xk, . . . , xb−1}) + d−(y, {xb+f+1, . . . , xr})

≤ q − p+ 1+ b− k + r − b− f = q + r + 1− p− k − f. (24)

From (19), d+(y, {xk, . . . , xb−1}) ≤ 1 and the fact that there is no path of length two between y and z
(Lemma 3.5) it follows that

d(y, {xk, . . . , xb−1}) + d(z, {xk, . . . , xb−1}) ≤ b− k + 1.

This together with (10), (23) and the fact that there is at most one cycle of length two through z (Corollary

3.7) implies that

d(y) + d(z) = d+(y, {xp, . . . , xq}) + d(y, {xk, . . . , xb−1}) + d(z, {xk, . . . , xb−1})

+d−(y, {xb+f+1, . . . , xr}) + d(z, {x1, . . . , xk−1}) + d(z, {xb, . . . , xn−2})

≤ q − p+ 1 + b− k + 1 + r − b− f + k − 1 + n− 2− b+ 2

= n+ 1 + q − p+ r − b− f. (25)
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Since t ≤ b+ f + 1 and (20), it follows that

A({xp, . . . , xb−1} → {xb+f+2, . . . , xn−2}) = ∅. (26)

In particular, from b ≥ k + 1 and (26) it follows that

d+(xk, {xb+f+2, . . . , xn−2}) = 0. (27)

We will consider the cases b ≥ k + 2, b = k + 1 separately.

Case 1. b ≥ k + 2.

Then by the first equality of (22) we have

d−(xb−1, {xp, . . . , xq−1}) = 0. (28)

Using the fact that there is no path of length two between y and z (Lemma 3.5) and (19), we obtain that

d(xb−1, {y, z}) ≤ 1. This together with d+(xb−1, {xb+f+2, . . . , xn−2}) = 0 (by (26)) and (28) implies

that

d(xb−1) = d(xb−1, {x1, . . . , xp−1}) + d+(xb−1, {xp, . . . , xq−1}) + d(xb−1, {xq, . . . , xb+f+1})

+d−(xb−1, {xb+f+2, . . . , xn−2}) + d(xb−1, {y, z}) ≤ 2p− 2 + q − p

+2b+ 2f + 2− 2q + n− 2− b − f − 1 + 1 = n+ p− q + b+ f − 2. (29)

Now we divide this case into the following subcases.

Subcase 1.1. The vertices xb−1 and y are not adjacent.

Then {y, xb−1} and {y, z} are two distinct pairs of non-adjacent vertices. Since p ≥ 2, r ≤ n − 2,

f ≥ 0 and k ≥ q, combining (25), (24) and (29), we obtain

d(y) + d(z) + d(y) + d(xb−1) ≤ n+ 1 + q − p+ r − b − f + q + r + 1− p− k − f

+n+ p− q + b+ f − 2 = 2n+ 2r + q − p− k − f ≤ 4n− 4− (k − q)− f − p,

which contradicts condition (M).

Subcase 1.2. The vertices xb−1 and y are adjacent.

Then xb−1 → y. Therefore by Lemma 3.5 and (19), the vertices z and xb−1 are not adjacent. Since

d(z) ≤ n − 2 (because of d(z, {y, xb−1}) = 0 and Corollary 3.7) and r ≤ n − 2, from (25) and (29) it

follows that

d(y) + d(z) + d(xb−1) + d(z) ≤ n+ 1 + q − p+ r − b− f + n+ p− q + b+ f − 2 + n− 2

= 3n− 3 + r ≤ 4n− 5,

which contradicts condition (M). The discussion of Case 1 is completed.

Case 2. b = k + 1.
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We divide this case into the following subcases.

Subcase 2.1. s ≤ k − 1.

Then k ≥ q + 1 since s ≥ q. Then yxk /∈ A(D) by the definition of q and k. Recall that the vertices

z, xk are not adjacent by (19) and Lemma 3.5. Now it is easy to see that d(z) ≤ n − 2. Since xs → xt

with s ∈ [q, k − 1] and t ∈ [b + 1, n− 2], by Claim 5.2 we have that d−(xk, {x1, . . . , xq−1}) = 0. This

together with (27) and b = k + 1 implies that

d(xk) = d+(xk, {x1, . . . , xq−1}) + d(xk, {xq, . . . , xb+f+1}) + d−(xk, {xb+f+2, . . . , xn−2})

+d+(xk, {y}) ≤ q − 1 + 2b+ 2f + 2− 2q + n− 2− b− f − 1 + 1 = n+ k − q + f.

This together with (24) and d(z) ≤ n− 2, we obtain

d(y) + d(xk) + 2d(z) ≤ q + r + 1− p− k − f + n+ k − q + f + 2n− 4

= 3n+ r − p− 3 ≤ 4n− 5− p,

which is a contradiction since {y, z} and {xk, z} are two distinct pairs of non-adjacent vertices.

Subcase 2.2. s = k.

From b = k + 1, t ∈ [b+ 1 = k + 2, b+ f + 1] and (23) it follows that

d(y, {xk+1, . . . , xt−1}) = 0, (30)

in particular, the vertices y and xk+1 are not adjacent. Observe that R := yxp . . . xkxt . . .
xry is a cycle in D passing through y, avoiding z and d(y, V (D) \ V (R)) = 0. By Lemma 4.1, the

induced subdigraph D〈V (D) \ V (R)〉 contains no cycle through z. In particular, this means that

A({xk+1, . . . , xt−1} → {xr+1, . . . , xn−2}) = ∅, hence d+(xk+1, {xr+1, . . . , xn−2}) = 0, (31)

for otherwise, if xi → xj with i ∈ [k+1, t− 1] and j ∈ [r+1, n− 2], then H := x1 . . . xaxk+1 . . . xixj

. . . xn−2zx1 is a cycle in D〈V (D) \ V (R)〉 through z, a contradiction.

Subcase 2.2.1. There is an integer l ∈ [b+ f + 2, n− 2] such that xk+1 → xl and

d+(xk+1, {xl+1, . . . , xn−2}) = 0. (32)

Then b+ f +2 ≤ n− 2, and l ≤ r because of the first equality of (31). Recall that t ≤ b+ f +1 ≤ l− 1.

Hence, l ≥ t+1. If xi → z with i ∈ [t, l−1], thenC(y, z) = x1 . . . xaxk+1xl . . . xryxq . . . xkxt . . . xizx1,

a contradiction. We may therefore assume that d−(z, {xt, . . . , xl−1}) = 0. This together with

d+(y, {xt, . . . , xl−1}) = 0 and the fact that there is no path of length two between y and z implies that

d(y, {xt, . . . , xl−1}) + d(z, {xt, . . . , xl−1}) ≤ l − t.

Combining this, (10) and (30), we obtain

d(y) + d(z) = d+(y, {xp, . . . , xq}) + d−(y, {xk}) + d(y, {xt, . . . , xl−1}) + d(z, {xt, . . . , xl−1})
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+d−(y, {xl, . . . , xr}) + d(z, {x1, . . . , xt−1}) + d(z, {xl, . . . , xn−2})

≤ q − p+ 1 + 1 + l − t+ r − l + 1 + t− 1 + n− 2− l + 2

≤ n+ 2 + q + r − p− l. (33)

For the vertex xk+1, using (32) and the second equality of (22), we obtain

d(xk+1) = d(xk+1, {x1, . . . , xp−1}) + d+(xk+1, {xp, . . . , xq−1}) + d(xk+1, {xq, . . . , xl})

+d−(xk+1, {xl+1, . . . , xn−2}) + d(xk+1, {z})

≤ 2p− 2 + q − p+ 2l− 2q + n− 2− l+ 2 = n− 2 + p− q + l.

This together with (33), (24), r ≤ n− 2, k ≥ q and p ≥ 2 implies that

d(y) + d(z) + d(y) + d(xk+1) ≤ n+ 2 + q + r − p− l + q + r + 1− p− k − f + n− 2 + p− q + l

= 2n+ 1 + q + 2r − p− k − f ≤ 4n− 3− (k − q)− p− f ≤ 4n− 5,

which contradicts condition (M) since {y, z} and {y, xk+1} are two distinct pairs of non-adjacent ver-

tices.

Subcase 2.2.2. There is no l ∈ [b + f + 2, n− 2] such that xk+1 → xl.

Then d+(xk+1, {xb+f+2, . . . , xn−2}) = 0. This together with the second equality of (22) implies that

d(xk+1) = d(xk+1, {x1, . . . , xp−1}) + d+(xk+1, {xp, . . . , xq−1})

+d(xk+1, {xq, . . . , xb+f+1}) + d−(xk+1, {xb+f+2, . . . , xn−2}) + d(xk+1, {z})

≤ 2p− 2 + q − p+ 2b+ 2f + 2− 2q + n− 2− b− f − 1 + 2

= n− 1 + p− q + b+ f.

Combining this, b = k + 1, (24) and d(z) ≤ n− 2, we obtain

2d(y) + d(xk+1) + d(z) ≤ 2q + 2r + 2− 2p− 2k − 2f + n− 1 + p− q + b+ f

+n− 2 = 2n+ q + 2r − p− k − f ≤ 4n− 4− (k − q)− p− f,

which contradicts condition (M). In each case we obtain a contradiction and hence the discussion of Case

2 is completed. This completes the proof of Claim 5.4. ✷

Now we are ready to complete the proof of the main result.

By Claim 5.4, if p ≥ 2, then A({x1, . . . , xp−1} → {xk+1, . . . , xn−2}) = ∅. Similarly, if r ≤ n − 3,

then A({x1, . . . , xq−1} → {xr+1, . . . , xn−2}) = ∅. Using Lemma 4.3, we obtain A({xp, . . . , xq−1} →
{xk+1, . . . , xr}) = ∅. From the last three equalities it follows that

A({x1, . . . , xq−1} → {xk+1, . . . , xn−2}) = ∅. (34)
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From (34) and Lemma 4.2 it follows that k ≥ q + 1. Applying Lemma 4.2 to the vertices xq and xk, we

obtain

A({x1, . . . , xq−1} → {xq+1, . . . , xn−2}) 6= ∅, A({x1, . . . , xk−1} → {xk+1, . . . , xn−2}) 6= ∅.

Let xa → xb and xh → xl with a ∈ [1, q − 1], b ∈ [q + 1, n− 2], h ∈ [1, k − 1] and l ∈ [k + 1, n− 2].
Choose b maximal and h minimal with these properties, i.e.,

A({x1, . . . , xq−1} → {xb+1, . . . , xn−2}) = A({x1, . . . , xh−1} → {xk+1, . . . , xn−2}) = ∅. (35)

From (34) it follows that b ≤ k and h ≥ q, i.e., b ∈ [q + 1, k] and h ∈ [q, k − 1]. If h ≤ b − 1, then

C(y, z) = x1 . . . xaxb . . . xkyxq . . . xhxl . . . xn−2zx1, a contradiction. We may therefore assume that

h ≥ b, which in turn implies that k ≥ q+2. By Lemma 4.2, A({x1, . . . , xb−1} → {xb+1, . . . , xn−2}) 6=
∅. Let xs → xt, where s ∈ [1, b− 1] and t ∈ [b+ 1, n− 2]. Choose t maximal with this property, i.e.,

A({x1, . . . , xb−1} → {xt+1, . . . , xn−2}) = ∅. (36)

From (35) it follows that s ≥ q and t ≤ k, i.e., s ∈ [q, b − 1] and t ∈ [b + 1, k]. We may assume that l
(recall that xh → xl, l ≥ k + 1) is chosen so that

d+(xh, {xk+1, . . . , xl−1}) = 0. (37)

We consider the cases l ≤ r and l ≥ r + 1 separately.

Case 1. l ≤ r.

For this case, it is not difficult to check that the conditions of Claim 5.3 hold. Therefore, there is an

integer f ≥ 0 such that l+ f ≤ r, xl+f → y, d(y, {xl, . . . , xl+f−1}) = 0 (possibly, {xl, . . . , xl+f−1} =
∅), and either there is a vertex xg with g ∈ [l + f + 1, n− 2] such that xk → xg or there is a vertex xc

with c ∈ [k, l− 1] such that xc → z.

Assume first that t ≥ h + 1. Then, since the arcs yxq , xaxb, xsxt, xhxl, xky, xl+fy are in D and

1 ≤ a ≤ q − 1 < s < b ≤ h < t ≤ k < l ≤ l + f ≤ r ≤ n − 2, we have that C(y, z) =
x1 . . . xaxb . . . xhxl . . . xl+fyxq . . . xsxt . . . xczx1, or C(y, z) = x1 . . . xaxb . . . xhxl . . . xl+fyxq . . .
xsxt . . . xkxg . . . xn−2zx1 when xc → z or when xk → xg respectively. In each case we have a contra-

diction.

Assume next that t ≤ h. By Lemma 4.2, A({x1, . . . , xt−1} → {xt+1, . . . , xn−2}) 6= ∅. Let xs1 →
xt1 , where s1 ∈ [1, t− 1] and t1 ∈ [t+ 1, n− 2]. Choose t1 maximal with this property, i.e.,

A({x1, . . . , xt−1} → {xt1+1, . . . , xn−2}) = ∅. (38)

From (36) (respectively, from (35)) it follows that s1 ≥ b, i.e., s1 ∈ [b, t−1] (respectively, t1 ≤ k, i.e., t1 ∈
[t+ 1, k]). If t1 ≥ h+ 1, then C(y, z) = x1 . . . xaxb . . . xs1xt1 . . . xkyxq . . . xsxt . . . xhxl . . . xn−2zx1,

a contradiction. We may therefore assume that t1 ≤ h. By Lemma 4.2,

A({x1, . . . , xt1−1} → {xt1+1, . . . , xn−2}) 6= ∅.

Let xs2 → xt2 , where s2 ∈ [1, t1− 1] and t2 ∈ [t1+1, n− 2]. Choose t2 maximal with this property, i.e.,

A({x1, . . . , xt1−1} → {xt2+1, . . . , xn−2}) = ∅.
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From (38) (respectively, from (35)) it follows that s2 ≥ t, i.e., s2 ∈ [t, t1 − 1] (respectively, t2 ≤ k, i.e.,

t2 ∈ [t1 + 1, k]).
Assume first that t2 ≥ h+ 1. Then it is not difficult to see that C(y, z) = x1 . . . xaxb . . . xs1xt1 . . .

xhxl . . . xl+fyxq . . . xsxt . . . xs2xt2 . . . xczx1 or C(y, z) = x1 . . . xaxb . . . xs1xt1 . . . xhxl . . . xl+fy
xq . . . xsxt . . . xs2xt2 . . . xkxg . . . xn−2zx1 when xc → z or when xk → xg , respectively. In each case

we have a contradiction.

Continuing this process, we finally conclude that for some m ≥ 0, tm ∈ [h+ 1, k] (here, t0 = t) since

all the vertices xt, xt1 , . . . , xtm are distinct and in {xq+1, . . . , xk}. We already have constructed a cycle

C(y, z) when m ∈ {0, 1, 2}. Assume that m ≥ 3. By the above arguments we have that:

If m ≥ 3 is odd, then C(y, z) = x1 . . . xaxb . . . xs1xt1 . . . xsmxtm . . . xkyxq . . . xsxt . . . xs2xt2 . . .
xsm−1

xtm−1
. . . xhxl . . . xn−2zx1.

If m ≥ 4 is even, then C(y, z) = x1 . . . xaxb . . . xs1xt1 . . . xsm−1
xtm−1

. . . xhxl . . . xl+fyxq . . . xsxt

. . . xs2xt2 . . . xsmxtm . . . xczx1 or C(y, z) = x1 . . . xaxb . . . xs1xt1 . . . xsm−1
xtm−1

. . . xhxl . . .
xl+fyxq . . . xsxt . . . xs2xt2 . . . xsmxtm . . . xkxg . . . xn−2zx1 when xc → z or when xk → xg , respec-

tively. In all cases we have a cycle through y and z, which contradicts our supposition and hence the

discussion of Case 1 is completed.

Case 2. l ≥ r + 1.

Then r ≤ n− 3. Recall that h ∈ [b, k − 1], xh → xl and xs → xt, where l ≤ n− 2, s ∈ [q, b− 1] and

t ∈ [b + 1, k]. Note that {y, xh}, {y, z} are two distinct pairs of non-adjacent vertices.

Subcase 2.1. t ≥ h+ 1.

Since s ∈ [q, b − 1] and t ∈ [h + 1, k], we have that Q := yxp . . . xsxt . . . xry is a cycle in D
and d(y, V (D) \ V (Q)) = 0. If a ≤ p − 1, then H := x1 . . . xaxb . . . xhxl . . . xn−2zx1 is a cycle in

D〈V (D)\V (Q)〉 passing through z, which contradicts Lemma 4.1. We may therefore assume that a ≥ p,

i.e., a ∈ [p, q − 1].
Assume first that b ≤ h− 1. Then q + 1 ≤ b ≤ h− 1 ≤ k − 2 and k ≥ q + 3. From the first equality

of (35) it follows that d−(xh, {x1, . . . , xq−1}) = 0. This equality together with (37) implies that

d(xh) = d+(xh, {x1, . . . , xq−1}) + d(xh, {xq, . . . , xk}) + d−(xh, {xk+1, . . . , xl−1})

+d(xh, {xl, . . . , xn−2}) + d(xh, {z}) ≤ q − 1 + 2k − 2q + l − 1− k + 2n− 2l − 2 + 2

= 2n− 2− q + k − l.

This together with (11) and d(z) ≤ n− 1 implies that

2d(y) + d(xh) + d(z) ≤ 2q − 2p+ 2r − 2k + 4 + 2n− 2− q + k − l + n− 1

≤ 4n− 2 + (r − l) + (q − k)− 2p,

which contradicts condition (M).
Assume that b = h, i.e., xa → xh. We may assume that a is chosen so that d−(xh, {x1, . . . , xa−1}) =

0. This and (37) imply that

d(xh) = d+(xh, {x1, . . . , xa−1}) + d(xh, {xa, . . . , xk}) + d−(xh, {xk+1, . . . , xl−1})
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+d(xh, {xl, . . . , xn−2}) + d(xh, {z}) ≤ a− 1 + 2k − 2a+ l − 1− k + 2n− 2l − 2 + 2

= 2n− 2− a+ k − l. (39)

Since a ≥ p, it is not difficult to check that if z → xi with i ∈ [a+1, s], thenC(y, z) = yxp . . . xaxhxl . . .
xn−2zxi . . . xsxt . . . xky, which is a contradiction. Therefore, d+(z, {xa+1, . . . , xs}) = 0. This together

with d−(y, {xa+1, . . . , xs}) = 0 and the fact that there is no path of length two between y and z implies

that

d(y, {xa+1, . . . , xs}) + d(z, {xa+1, . . . , xs}) ≤ s− a.

Using this and (10), we obtain

d(y) + d(z) = d+(y, {xp, . . . , xa}) + d(y, {xa+1, . . . , xs}) + d(z, {xa+1, . . . , xs})

+d−(y, {xk, . . . , xr}) + d(z, {x1, . . . , xa}) + d(z, {xs+1, . . . , xn−2})

≤ a− p+ 1 + s− a+ r − k + 1 + a+ n− 2− s+ 1 = n+ 1 + a− p+ r − k.

Combining this, (11) and (39), we obtain

2d(y) + d(z) + d(xh)

≤ 3n+ 1 + 2r − 2p+ q − l − k ≤ 4n− 2− (l − r)− (k − q)− 2p < 4n− 6,

which contradicts condition (M) and hence the discussion of Subcase 2.1 is completed.

Subcase 2.2. t ≤ h.

Then b ≤ h− 1 since h ≥ t ≥ b+ 1.

Assume first that t = h. Then xs → xh → xl. By Lemma 4.2,

A({x1, . . . , xh−1} → {xh+1, . . . , xn−2}) 6= ∅.

Let xi → xj , where i ∈ [1, h − 1] and j ∈ [h + 1, n − 2]. From the second equality of (35) it follows

that j ≤ k, i.e., j ∈ [h + 1, k]. By (36) we have that i ≥ b, i.e., i ∈ [b, h − 1]. Therefore, C(y, z) =
x1 . . . xaxb . . . xixj . . . xkyxq . . . xsxhxl . . . xn−2zx1, a contradiction.

Assume next that t ≤ h−1. From the maximality of b and t it follows that d−(xh, {x1, . . . , xb−1}) = 0.

This last equality together with (37) implies that

d(xh) = d+(xh, {x1, . . . , xb−1}) + d(xh, {xb, . . . , xk}) + d−(xh, {xk+1, . . . , xl−1})

+d(xh, {xl, . . . , xn−2}) + d(xh, {z}) ≤ b − 1 + 2k − 2b+ l − 1− k + 2n− 2l− 2 + 2

= 2n− l − 2 + k − b.

This together with (11), d(z) ≤ n− 1 and r ≤ n− 3 implies that

2d(y) + d(xh) + d(z) ≤ 2q − 2p+ 2r − 2k + 4 + 2n− l − 2 + k − b+ n− 1

≤ 4n− 2− (l − r) − (k − q)− (b− q)− 2p,

which contradicts condition (M), since k − q ≥ 0, b − q ≥ 1. The discussion of Case 2 is completed.

Theorem 1.12 is proved. ✷
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