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Recently, Fici, Restivo, Silva, and Zamboni introduced the notion of a k-anti-power, which is defined as a word of

the form w(1)w(2) · · ·w(k), where w(1), w(2), . . . , w(k) are distinct words of the same length. For an infinite word

w and a positive integer k, define APj(w, k) to be the set of all integers m such that wj+1wj+2 · · ·wj+km is a

k-anti-power, where wi denotes the i-th letter of w. Define also Fj(k) = (2Z+ − 1) ∩ APj(t, k), where t denotes

the Thue-Morse word. For all k ∈ Z
+, γj(k) = min(APj(t, k)) is a well-defined positive integer, and for k ∈ Z

+

sufficiently large, Γj(k) = sup((2Z+ − 1) \Fj(k)) is a well-defined odd positive integer. In his 2018 paper, Defant

shows that γ0(k) and Γ0(k) grow linearly in k. We generalize Defant’s methods to prove that γj(k) and Γj(k)

grow linearly in k for any nonnegative integer j. In particular, we show that 1/10 ≤ lim inf
k→∞

(γj(k)/k) ≤ 9/10 and

1/5 ≤ lim sup
k→∞

(γj(k)/k) ≤ 3/2. Additionally, we show that lim inf
k→∞

(Γj(k)/k) = 3/2 and lim sup
k→∞

(Γj(k)/k) = 3.

Keywords: Thue-Morse word, anti-power, infinite word some

1 Introduction

A finite word is called a k-power if it is of the form wk for some word w. A particularly famous con-

sequence of the study of k-powers is Axel Thue’s 1912 paper Thue (1912), which introduces an infinite

binary word that does not contain any 3-powers as subwords. This word has since caught the interest of nu-

merous academicians Allouche and Cohen (1985); Allouche and Shallit (1999); Brlek (1989); Bugeaud

and Han (2014); Cooper and Dutle (2013); Defant (2017); Dejean (1972); Mahler (1929); Narayanan

(2020); Palacios-Huerta (2012) spanning the fields of combinatorics, analytic number theory Allouche

and Cohen (1985), game theory Cooper and Dutle (2013), and economics Palacios-Huerta (2012). It is

now known as the Thue-Morse word.

Definition 1.1 Let A0 = 0. For each nonnegative integer n, let Bn = An be the Boolean complement of

An, and let An+1 = AnBn. The Thue-Morse word t is defined as

t = lim
n→∞

An = 0110100110010110 · · · .

As a natural adaptation of the Ramsey-type notion of a k-power, Fici, Restivo, Silva, and Zamboni Fici

et al. (2018) introduce the anti-Ramsey-type notion of a k-anti-power. A k-anti-power is a word w of

the form w = w(1)w(2) · · ·w(k), where w(1), w(2), . . . , w(k) are distinct words of the same length. For

example, 110100 is a 3-anti-power, while 101011 is not. Since the introduction of this notion in 2016,
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k-anti-powers have received much attention Badkobeh et al. (2018); Burcroff (2018); Defant (2017);

Narayanan (2020).

As their main result, Fici et al. show that every infinite word contains powers of any order or anti-

powers of any order. In doing so, they define the following set, which corresponds to an infinite word w
and a positive integer k:

AP (w, k) = {m ∈ Z
+ | w1w2 · · ·wkm is a k-anti-power}.

Here, wi indicates the i-th letter of the infinite word w. Such subwords (i.e. those starting from the first

index of w) are called prefixes of w. In Defant (2017), Defant introduces the generalized definition

APj(w, k) = {m ∈ Z
+ | wj+1wj+2 · · ·wj+km is a k-anti-power},

himself studying AP0(t, k) = AP (t, k). Subwords beginning at the (j + 1)-st index of a word w will

be referred to as j-fixes of w. An easy consequence of (Fici et al., 2018, Theorem 6) is that APj(t, k) is

nonempty for any nonnegative integer j and all positive integers k. Therefore, we can make the following

definition:

Definition 1.2 Let γj(k) = min(APj(t, k)).

For j = 0, it is the case that m ∈ AP0(t, k) if and only if 2m ∈ AP0(t, k) (see Remark 2.1). As

a consequence, the only interesting elements of AP0(t, k) are those that are odd. Thus, Defant Defant

(2017) makes the following definition for j = 0 (which we have written in terms of arbitrary j ∈ Z
≥0):

Definition 1.3 Let Fj(k) denote the set of odd positive integers m such that the j-fix of t of length km is

a k-anti-power. Let Γj(k) = sup((2Z+ − 1) \ Fj(k)).

For sufficiently large k, Γj(k) is a well-defined odd positive integer (see Remark 4.8). However, if

j 6= 0, it is not necessarily the case that m ∈ APj(t, k) if and only if 2m ∈ APj(t, k). For example,

4 ∈ AP2(t, 3), whereas 2 6∈ AP2(t, 3). However, we will later prove that the statement “m ∈ APj(t, k)
if and only if 2m ∈ APj(t, k)” holds for sufficiently large m (see Corollary 4.4), so it still makes sense

to define Γj(t, k) in this way. See Section 4 for further motivation for this definition.

Remark 1.4 It is immediate from Definition 1.3 that Fj(1) ⊇ Fj(2) ⊇ Fj(3) ⊇ · · · for any j ∈ Z
≥0. It

follows that γj(1) ≤ γj(2) ≤ γj(3) ≤ · · · and that Γj(k) is nondecreasing when it is finite.

As a means to understanding γj(k) and Γj(k), it will often be useful to consider the following related

function:

Definition 1.5 For a positive integer m, let Kj(m) denote the smallest positive integer k such that the

j-fix of t of length km is not a k-anti-power.

A simple application of the Pigeonhole Principle gives that Kj(m) ≤ 2m + 1. However, Defant Defant

(2017) and Narayanan Narayanan (2020) prove significantly better bounds on K0(m), showing it grows

linearly in m. Using these bounds, Defant Defant (2017) is ultimately able to show the following:

Theorem 1.6 (Defant (2017))

•
1

4
(i)≤ lim inf

k→∞

γ0(k)

k
≤

9

10

(i) Erroneously stated in Defant (2017) as 1/2 (as will later be explained)
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•
1

2
(ii)≤ lim sup

k→∞

γ0(k)

k
≤

3

2

• lim inf
k→∞

Γ0(k)

k
=

3

2

• lim sup
k→∞

Γ0(k)

k
= 3.

Narayanan Narayanan (2020) improves the above asymptotic bounds in the following way:

Theorem 1.7 (Narayanan (2020))

•
3

4
≤ lim inf

k→∞

γ0(k)

k
≤

9

10

• lim sup
k→∞

γ0(k)

k
=

3

2
.

The goal of this paper is to demonstrate similarly good bounds on the asymptotic growth of γj(k) and

Γj(k) for general j. To do so, we will roughly follow the outline of Defant’s paper Defant (2017),

generalizing his bounds for K0(m) to bounds for Kj(m); this will in turn allow us to prove that γj(k) and

Γj(k) grow linearly in k. Specifically, we aim to prove the following:

•
1

10
≤ lim inf

k→∞

γj(k)

k
≤

9

10

•
1

5
≤ lim sup

k→∞

γj(k)

k
≤

3

2

• lim inf
k→∞

Γj(k)

k
=

3

2

• lim sup
k→∞

Γj(k)

k
= 3.

Remark 1.8 Note that we follow the methods of Defant Defant (2017) rather than those of Narayanan

Narayanan (2020), which seem more difficult to generalize to arbitrary j ∈ Z
≥0.

In Section 2, we cover preliminary results relating to the Thue-Morse word. In Section 3 (resp. Section

4), we prove the aforementioned asymptotic bounds on γj(k)/k (resp. Γj(k)/k).

2 Properties of the Thue-Morse Word

In this section, we will discuss some properties of the Thue-Morse word t = t1t2t3 · · · that will be of

use throughout the remainder of the paper. It is well known that the i-th letter ti of the Thue-Morse word

has the same parity as the number of 1’s in the binary expansion of i− 1. In his 1912 paper Thue (1912),

Thue proved that t is overlap-free, meaning that if x and y are finite words (with x nonempty), then t

(ii) Erroneously stated in Defant (2017) as 1 (as will later be explained)
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does not contain xyxyx as a subword. Taking y to be empty shows that t does not contain any 3-powers

as subwords.

Let W1 and W2 be sets of words. We say a function f : W1 → W2 is a morphism if f(xy) = f(x)f(y)
for all words x, y ∈ W1. We will write A

≤ω to refer to the set of all words over an alphabet A. Using

this notation, let µ : {0, 1}≤ω → {01, 10}≤ω be the morphism uniquely defined by µ(0) = 01 and

µ(1) = 10. Similarly, let σ : {01, 10}≤ω → {0, 1}≤ω be the morphism uniquely defined by σ(01) = 0
and σ(10) = 1. The Thue-Morse word t and its Boolean complement t are the unique one-sided infinite

words over the alphabet {0, 1} that are fixed by µ. Similarly, t and t, as viewed over the alphabet {01, 10},

are the unique one-sided infinite words fixed by σ. The observation that µ(t) = t allows us to view t

as a word over the alphabet {01, 10}. More generally, if we recall the definitions of An and Bn from

Definition 1.1 and note the equalities An = µn(0) and Bn = µn(1), we can view t as a word over the

alphabet {An, Bn}.

Remark 2.1 Using that µ(t) = t and σ(t) = t, it is straightforward to see that m ∈ AP0(t, k) if and

only if 2m ∈ AP0(t, k).

We will follow Defant Defant (2017) in using the notation 〈α, β〉 = tαtα+1 · · · tβ for any positive

integers α, β with α ≤ β. We are now in a position to establish some preliminary results relating to t.

Fact 2.2 For any positive integers n and r, 〈2nr + 1, 2n(r + 1)〉 = µn(tr+1).

Lemma 2.3 For m ∈ Z
+, t2m+1 6= t2m+2.

Proof: If tm+1 = 1, then µ(tm+1) = t2m+1t2m+2 = 10. Similarly, if tm+1 = 0, then µ(tm+1) =
t2m+1t2m+2 = 01. In either case, t2m+1 6= t2m+2. ✷

Lemma 2.4 Let k ∈ Z
+. Then t2k+1t2k+2 = t4k+1t4k+2.

Proof: Fix some k ∈ Z
+ and suppose that tk+1 = 1. (The case in which tk+1 = 0 can be done

similarly.) Note that µ(tk+1) = t2k+1t2k+2 = 10. Similarly, µ(t2k+1) = t4k+1t4k+2 = 10. So we have

that t2k+1t2k+2 = 10 = t4k+1t4k+2, as desired. ✷

3 Asymptotics for γj(k)

In this section, we prove that
1

10
≤ lim inf

k→∞

γj(k)

k
≤

9

10
and

1

5
≤ lim sup

k→∞

γj(k)

k
≤

3

2
. These asymptotic

results relate to a conjecture from a recent paper of Berger and Defant Berger and Defant (2020), which

states that for any sufficiently well-behaved aperiodic, morphic word W (see Berger and Defant (2020)

for the relevant definitions), there exists a constant C = C(W ) such that for all integers j ≥ 0 and k ≥ 1,

W contains a k-anti-power j-fix of length at most Ck2. The lower bounds proved in this section indicate

that the quadratic upper bound in this conjecture is the best that could be true in general. Our upper bounds

obtained in the next section also prove an effective version of this conjecture in the case of W = t (which

Berger and Defant do not obtain).

Many of the statements proved in this section for general j have j = 0 analogues in Defant (2017).

Moreover, many of the proofs of these general statements closely follow the corresponding proofs in

Defant (2017). In these cases, we highlight the key differences between the corresponding proofs and

refer the reader to Defant (2017) for the remaining details.
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3.1 Lower Bounds for γj(k)/k

In this subsection, we present a series of lemmas that collectively establish an upper bound for Kj(m) for

any integerm ≥ 2. This will allow us to establish lower bounds for lim inf
k→∞

(γj(k)/k) and lim sup
k→∞

(γj(k)/k).

We begin with three lemmas that we will apply in the proofs of many of the lemmas later in this subsection.

Lemma 3.1 Let m, j ∈ Z
≥0 with m ≥ 2, and let ℓ = ⌈log2(m+ j)⌉. For any s, a ∈ Z

+, there exists a

nonnegative integer r such that

2ℓ(s− 1) + 1 ≤ rm+ j + 1 < (r + 1)m+ j < 2ℓ(s+ a).

Proof: Fix some s, a ∈ Z
+. Note that

2ℓ(s+ a)− 2ℓ(s− 1) = 2ℓ(a+ 1) ≥ 2ℓ+1 ≥ 2(m+ j) ≥ 2m. (1)

Since (r + 1)m+ j − (rm + j) = m for any integer r, it follows that there exists r ∈ Z satisfying

2ℓ(s− 1) + 1 ≤ rm+ j + 1 < (r + 1)m+ j < 2ℓ(s+ a). (2)

Moreover, we can always choose r to be nonnegative; to verify this fact, it suffices to check that r = 0
satisfies (2) when s = 1:

2ℓ(s− 1) + 1 = 1 ≤ j + 1 < m+ j < 2ℓ+1 ≤ 2ℓ(s+ a). (3)

When s ≥ 2, any integer r satisfying (2) is clearly positive. ✷

Lemma 3.2 (cf. (Defant, 2017, Lemma 12)) Let j ∈ Z
≥0, m ∈ Z

+, and ℓ = ⌈log2(m+ j)⌉. If

Kj(m) > 2ℓ + 1, then tm+1tm+2 = 11 and t2m+1t2m+2 = 10.

Proof: Suppose Kj(m) > 2ℓ + 1. Let w0 = 〈j + 1,m+ j〉, w1 = 〈2ℓ−1m+ j + 1, (2ℓ−1 + 1)m+ j〉,
and w2 = 〈2ℓm+ j + 1, (2ℓ + 1)m+ j〉. By our assumption that Kj(m) > 2ℓ + 1, we have that w0, w1,

and w2 are distinct. Notice that for each n ∈ {0, 1, 2}, the word wn is a j-fix of

〈nm2ℓ−1 + 1, (nm+ 2)2ℓ−1〉 = µℓ−1(tnm+1tnm+2). (4)

It follows that t1t2, tm+1tm+2, and t2m+1t2m+2 are distinct. Note that t1t2 = 01 and that t2m+1 6=
t2m+2 (by Lemma 2.3); hence, t2m+1t2m+2 = 10. Therefore, µ(tm+1) = t2m+1t2m+2 = 10, which

implies that tm+1 = 1. Consequently, tm+1tm+2 = 11. ✷

Lemma 3.3 (cf. (Defant, 2017, Lemma 13)) Let j,m ∈ Z
≥0 with m ≥ 2, and let ℓ = ⌈log2(m+ j)⌉.

Suppose there exists s ∈ Z
+ such that tsts+1 = tm+stm+s+1. Then

Kj(m) < 2ℓ +
2ℓ(s+ 1)− j

m
.
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Proof: This proof follows from a straightforward modification of the proof of (Defant, 2017, Lemma 13)

and an application of Lemma 3.1 with a = 1. ✷

Now that we have established the preceding preliminary results, we are ready to derive upper bounds

for Kj(m) for all integers m ≥ 2. We consider the cases m ≡ 0 (mod 2), m ≡ 1 (mod 8), m ≡ 29
(mod 32), and remaining values of m. We then combine the bounds derived in each of these cases into a

uniform upper bound on Kj(m). We first consider the case in which m ≡ 0 (mod 2).

Lemma 3.4 Let m = 2Lk, where L, k ∈ Z
+. Let j ∈ Z

≥0, and let ℓ = ⌈log2(m+ j)⌉. Then

Kj(m) < 2ℓ+1 +
2ℓ+1 − j

m
.

Proof: By Lemma 2.4, we have that t2Lk+1t2Lk+2 = t2L+1k+1t2L+1k+2. It follows that

〈2ℓm+ 1, 2ℓ(m+ 2)〉 = µℓ(tm+1tm+2) = µℓ(t2m+1t2m+2) = 〈2ℓ+1m+ 1, 2ℓ+1(m+ 1)〉. (5)

Applying Lemma 3.1 with s = 1 and a = 1 shows that there exists r ∈ Z
≥0 such that

1 ≤ rm+ j + 1 < (r + 1)m+ j < 2ℓ+1. (6)

We can thus write the prefix of t of length 2ℓ+1 as

〈1, 2ℓ+1〉 = w〈rm + j + 1, (r + 1)m+ j〉z, (7)

where w = 〈1, rm + j〉 and z = 〈(r + 1)m + j + 1, 2ℓ+1〉. Adding 2ℓm everywhere in (6) similarly

shows that we can write

〈2ℓm+ 1, 2ℓ(m+ 2)〉 = w′〈(2ℓ + r)m+ j + 1, (2ℓ + r + 1)m+ j〉z′, (8)

where w′ = 〈2ℓm+ 1, (2ℓ + r)m+ j〉 and z′ = 〈(2ℓ + r + 1)m+ j + 1, 2ℓ(m+ 2)〉. In the same way,

adding 2ℓ+1m everywhere in (6) gives that

〈2ℓ+1m+ 1, 2ℓ+1(m+ 1)〉 = w′′〈(2ℓ+1 + r)m+ j + 1, (2ℓ+1 + r + 1)m+ j〉z′′, (9)

where w′′ = 〈2ℓ+1m+1, (2ℓ+1+ r)m+ j〉 and z′′ = 〈(2ℓ+1 + r+1)m+ j+1, 2ℓ+1(m+1)〉. Observe

that |w′′| = rm+ j = |w′|. As a result, Equations (8) and (9) give that

〈(2ℓ + r)m + j + 1, (2ℓ + r + 1)m+ j〉 = 〈(2ℓ+1 + r)m+ j + 1, (2ℓ+1 + r + 1)m+ j〉. (10)

Using (6) to note that r + 1 <
2ℓ+1 − j

m
, we get

Kj(m) ≤ 2ℓ+1 + r + 1 < 2ℓ+1 +
2ℓ+1 − j

m
, (11)

as desired. ✷

The following two lemmas establish upper bounds for Kj(m) when m ≡ 1 (mod 8). Setting j = 0 in

Lemma 3.5 implies Defant’s result (Defant, 2017, Lemma 15), while setting j = 0 in Lemma 3.7 gives a

bound for K0(m) that is worse than the one given in (Defant, 2017, Lemma 16) by a factor of two.
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Lemma 3.5 (cf. (Defant, 2017, Lemma 15)) Let j ∈ Z
≥0, and suppose m = 2Lh + 1, where L and h

are integers with L ≥ 3 and h odd. Let ℓ = ⌈log2(m+ j)⌉. We have

Kj(m) < 2ℓ +
2ℓ(2L+1 + 4)− j

m
.

Proof: Suppose, for the sake of contradiction, that Kj(m) ≥ 2ℓ +
2ℓ(2L+1 + 4)− j

m
. We obtain a

contradiction to Lemma 3.3 by finding a positive integer s ≤ 2L+1 +3 such that tsts+1 = tm+stm+s+1.

Note that m has a binary expansion of the form x01r0L−11, where x is a (possibly empty) binary string.

Since m ≥ 23 · 1 + 1 = 9, we have that r ≥ 1. Let N be the number of 1’s in x. The binary expansion of

m + 2L + 2 can be expressed as x10r+L−211, which has N + 3 1’s. Similarly, we obtain the following

table:

i Binary Expansion of i Number of 1’s in Binary Expansion of i
m+ 2L + 2 x10r+L−211 N + 3
m+ 2L + 3 x10r+L−3100 N + 2

m+ 2L+1 + 2 x10r−110L−211 N + 4
m+ 2L+1 + 3 x10r−110L−3100 N + 3

Recall that the parity of ti is the same as the parity of the number of 1’s in the binary expansion of i−1. It

follows that tm+2L+3tm+2L+4 = 01 if N is odd and tm+2L+1+3tm+2L+1+4 = 01 if N is even. Observe

that t2L+3t2L+4 = t2L+1+3t2L+1+4 = 01. Therefore, setting s = 2L+3 yields a contradiction to Lemma

3.3 if N is odd, and setting s = 2L+1 + 3 yields the desired contradiction if N is even. ✷

Remark 3.6 The proof of Lemma 3.5 closely follows that of (Defant, 2017, Lemma 15). Note, how-

ever, that in Defant’s proof of (Defant, 2017, Lemma 15), he mistakenly claims that t2L+3t2L+4 =
t2L+1+3t2L+1+4 = 10, rather than t2L+3t2L+4 = t2L+1+3t2L+1+4 = 01. Setting j = 0 in the above

proof yields a correct proof of (Defant, 2017, Lemma 15).

Lemma 3.7 (cf. (Defant, 2017, Lemma 16)) Let j ∈ Z
≥0. Suppose m = 2Lh + 1, where L and h are

integers with L ≥ 3 and h odd. Let ℓ = ⌈log2(m+ j)⌉. If n is an integer such that 2 ≤ n ≤ 2L−1,

tm−n = tm−n+1, and m+ j ≤
(

1− 1
2n+2

)

2ℓ, then

Kj(m) ≤ 2ℓ+1 −
2ℓ+1(n− 1

2 ) + j

m
.

Proof: By the proof of (Defant, 2017, Lemma 16), we have that tm−2ntm−2n+1 = t2m−2nt2m−2n+1

for any m and n satisfying the hypotheses of the lemma. Consequently,

〈(m− 2n− 1)2ℓ + 1, (m− 2n+ 1)2ℓ〉 = µℓ(tm−2ntm−2n+1) (12)

= µℓ(t2m−2nt2m−2n+1) (13)

= 〈(2m− 2n− 1)2ℓ + 1, (2m− 2n+ 1)2ℓ〉. (14)

We want to show that there is an integer r ≤ 2ℓ − 1 such that

(m− 2n− 1)2ℓ + 1 ≤ (2ℓ − r − 1)m+ j + 1 < (2ℓ − r)m+ j < (m− 2n+ 1)2ℓ. (15)
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To this end, note that

(m− 2n+ 1)2ℓ − (m− 2n− 1)2ℓ = 2 · 2ℓ ≥ 2(m+ j) ≥ 2m (16)

and that

((2ℓ − r)m + j)− ((2ℓ − r − 1)m+ j) = m. (17)

It follows that there exists r ∈ Z satisfying (15). To see that r can always be chosen such that r ≤ 2ℓ − 1,

it suffices to note that our choice of r is forced to be largest when n is maximal (i.e. when n = 2L−1), and

that (15) is satisfied by r = 2ℓ − 1 in this case. Therefore, for some integer r ≤ 2ℓ − 1, we have

〈(m− 2n− 1)2ℓ + 1, (m− 2n+ 1)2ℓ〉 = w〈(2ℓ − r − 1)m+ j + 1, (2ℓ − r)m + j〉z, (18)

where w = 〈(m − 2n− 1)2ℓ + 1, (2ℓ − r − 1)m+ j〉 and z = 〈(2ℓ − r)m + j + 1, (m− 2n+ 1)2ℓ〉.
Adding 2ℓm everywhere in (15) similarly gives that

〈(2m− 2n− 1)2ℓ + 1, (2m− 2n+ 1)2ℓ〉 = w′〈(2ℓ+1 − r − 1)m+ j + 1, (2ℓ+1 − r)m+ j〉z′, (19)

where w′ = 〈(2m−2n−1)2ℓ+1, (2ℓ+1−r−1)m+j〉 and z′ = 〈(2ℓ+1−r)m+j+1, (2m−2n+1)2ℓ〉.
Note that |w′| = −rm−m+ j + 2ℓ+1m+ 2ℓ = |w|. Therefore, (18) and (19) give that

〈(2ℓ − r − 1)m+ j + 1, (2ℓ − r)m+ j〉 = 〈(2ℓ+1 − r − 1)m+ j + 1, (2ℓ+1 − r)m + j〉. (20)

Noting from (15) that r >
2ℓ+1(n− 1

2 ) + j

m
, we have

Kj(m) ≤ 2ℓ+1 − r ≤ 2ℓ+1 −
2ℓ+1(n− 1

2 ) + j

m
, (21)

as desired. ✷

Remark 3.8 We make note of an error in Defant’s proof of (Defant, 2017, Lemma 16). In his proof,

Defant claims that for m, n, and ℓ satisfying his hypotheses,

(

2ℓ−1,

(

1−
1

2n+ 2

)

2ℓ
]

⊆
2n−1
⋃

r=n

[

2n− 2

r
2ℓ−1,

2n+ 1

r + 1
2ℓ−1

]

. (22)

However, the intervals in the RHS of (22) do not always overlap, so we see that (22) is in fact false.

Fortunately, setting j = 0 in Lemma 3.7 gives the bound K0(m) ≤ 2ℓ+1 −
2ℓ+1(n− 1

2 )

m
, which is only

slightly worse than Defant’s intended bound of K0(m) ≤ 2ℓ − n. This worsens Defant’s lower bound for

lim inf
k→∞

(γ0(k)/k) from 1/2 to 1/4, and his lower bound for lim sup
k→∞

(γ0(k)/k) from 1 to 1/2. However,

Narayanan Narayanan (2020) proves lim infk→∞(γ0(k)/k) ≥ 3/4 and lim supk→∞(γ0(k)/k) = 3/2,

so we still know Defant’s claimed lower bounds to be true.

We now address the case in which m ≡ 29 (mod 32).



Anti-power j-fixes of the Thue-Morse word 9

Lemma 3.9 (cf. (Defant, 2017, Lemma 14)) Let m be a positive integer satisfying m ≡ 29 (mod 32).
Let j ∈ Z

≥0, and let ℓ = ⌈log2(m+ j)⌉. We have

Kj(m) < 2ℓ+1 +
8 · 2ℓ − j

m
.

Proof: Suppose m = 32n − 3. Let N be the number of 1’s in the binary expansion of n. It is straight-

forward to verify that the binary expansion of m+ 6 = 32n+ 3 has N + 2 1’s. Similarly, we obtain the

following table:

i Number of 1’s in Binary Expansion of i
m+ 6 N + 2
m+ 7 N + 1
2m+ 6 N
2m+ 7 N + 1

Consequently, we have that tm+7tm+8 = t2m+7t2m+8. It follows that

〈(m+ 6)2ℓ + 1, (m+ 8)2ℓ〉 = µℓ(tm+7tm+8) (23)

= µℓ(t2m+7t2m+8) = 〈(2m+ 6)2ℓ + 1, (2m+ 8)2ℓ〉. (24)

Applying Lemma 3.1 with s = 7 and a = 1 gives that there exists r ∈ Z
≥0 such that

2ℓ · 6 + 1 ≤ rm+ j + 1 < (r + 1)m+ j < 2ℓ · 8. (25)

Therefore, we can write

〈2ℓ · 6 + 1, 2ℓ · 8〉 = w〈rm + j + 1, (r + 1)m+ j〉z, (26)

where w = 〈2ℓ · 6 + 1, rm + j〉 and z = 〈(r + 1)m + j + 1, 2ℓ · 8〉. Adding 2ℓm everywhere in (25)

similarly gives that

〈2ℓ(m+ 6) + 1, 2ℓ(m+ 8)〉 = w′〈(r + 2ℓ)m+ j + 1, (r + 2ℓ + 1)m+ j〉z′, (27)

where w′ = 〈2ℓ(m+ 6) + 1, (r+ 2ℓ)m+ j〉 and z′ = 〈(r + 2ℓ + 1)m+ j + 1, 2ℓ(m+ 8)〉. In the same

way, adding 2ℓ+1m everywhere in (25) gives that

〈2ℓ(2m+ 6) + 1, 2ℓ(2m+ 8)〉 = w′′〈(r + 2ℓ+1)m+ j + 1, (r + 2ℓ+1 + 1)m+ j〉z′′, (28)

where w′′ = 〈2ℓ(2m + 6) + 1, (r + 2ℓ+1)m + j〉 and z′′ = 〈(r + 2ℓ+1 + 1)m + j + 1, 2ℓ(2m + 8)〉.
Observe that |w′′| = rm+ j − 6 · 2ℓ = |w′|. Therefore, (27) and (28) imply

〈(r + 2ℓ)m+ j + 1, (r + 2ℓ + 1)m+ j〉 = 〈(r + 2ℓ+1)m+ j + 1, (r + 2ℓ+1 + 1)m+ j〉. (29)

Noting from (25) that r + 1 <
8 · 2ℓ − j

m
, we get

Kj(m) ≤ r + 2ℓ+1 + 1 < 2ℓ+1 +
8 · 2ℓ − j

m
, (30)

as desired. ✷
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Remark 3.10 We make note of an error in Defant’s proof of an upper bound for K0(m) in the case

m ≡ 29 (mod 32). In Defant’s proof of (Defant, 2017, Lemma 14), he claims that

17
⋃

r=9

(

17

2r
,

10

r + 1

)

=

(

1

2
, 1

)

, (31)

which implies the existence of some r ∈ {9, 10, . . . , 17} such that
17

2r
<

m

2ℓ
<

10

r + 1
, where ℓ =

⌈log2 m⌉. However, (31) is in fact false. This mistake can be highlighted by observing that for m =
32 · 15− 3 = 477, there does not exist r ∈ {9, 10, . . . , 17} satisfying the desired inequality. Fortunately,

setting j = 0 in Lemma 3.9 gives the bound K0(m) < 2ℓ+1 +
8 · 2ℓ

m
, which is only slightly worse than

Defant’s intended bound of K0(m) ≤ 2ℓ+18. In the same way as the error noted in Remark 3.8, this error

worsens Defant’s lower bounds for lim inf
k→∞

(γ0(k)/k) and lim sup
k→∞

(γ0(k)/k), but we still know Defant’s

claimed lower bounds to be true Narayanan (2020).

Finally, we consider the case in which m is an odd positive integer with m 6≡ 1 (mod 8) and m 6≡ 29
(mod 32).

Lemma 3.11 (cf. (Defant, 2017, Lemma 14)) Let m be an odd positive integer with m 6≡ 1 (mod 8)
and m 6≡ 29 (mod 32). Let j ∈ Z

≥0, and let ℓ = ⌈log2(m+ j)⌉. We have

Kj(m) < 2ℓ +
37 · 2ℓ − j

m
.

Proof: Defant’s proof of (Defant, 2017, Lemma 14) (up to where he considers the case m ≡ 29
(mod 32)) applies almost exactly: (Defant, 2017, Lemma 12) and (Defant, 2017, Lemma 13) should

merely be replaced by Lemma 3.2 and Lemma 3.3, respectively. ✷

The following two lemmas use the preceding results to establish a single upper bound for Kj(m) for

any integer m ≥ 2.

Lemma 3.12 (cf. (Defant, 2017, Lemma 17)) Let j ∈ Z
≥0, and suppose m = 2Lh+ 1, where L and h

are integers with L ≥ 3 and h odd. Let ℓ = ⌈log2(m+ j)⌉. Then

Kj(m) ≤ 2ℓ +
2ℓ+1(2ℓ + 2 + j)

m
.

Proof: First, assume that m+ j >

(

1−
1

2L − 4

)

2ℓ. Observe that 2ℓ−2Lh = 2ℓ−m+1. Since L < ℓ,

we have that 2L divides 2ℓ− 2Lh, which further gives that 2L divides 2ℓ−m+1. Since 2ℓ −m+1 > 0,

this gives that

2L ≤ 2ℓ −m+ 1 < 2ℓ −

(

2ℓ −
2ℓ

2L − 4
− j

)

+ 1 =
2ℓ

2L − 4
+ j + 1. (32)
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This implies that 22L − 4 · 2L < 2ℓ + j(2L − 4) + 2L − 4. Rearranging and dividing by 2L gives the first

inequality of

2L < 2ℓ−L + (j + 5)− 4(j + 1)2−L < 2ℓ−L+2 + 2ℓ −m− 4(j + 1)2−L; (33)

the second inequality is straightforward to verify. From Lemma 3.5, we have that Kj(m) < 2ℓ +
2ℓ(2L+1 + 4)− j

m
. Incorporating (33), we get

2ℓ(2L+1 + 4)− j = 2ℓ+1 · 2L + 2 · 2ℓ+1 − j (34)

< 2ℓ+1(2ℓ−L+2 + 2ℓ −m− 4(j + 1)2−L) + 8 · 2ℓ−1 − j (35)

≤ (2ℓ − 1)2ℓ−L+3 + (2ℓ+1 + 8)2ℓ−1 + (2ℓ+1 − 2ℓ−L+3 − 1)j (36)

≤ (2ℓ+1 + 3)2ℓ + (2ℓ+1 − 15)j, (37)

where, in the last step, we have used that ℓ = ⌈log2(m+ j)⌉ ≥ L+ 1 and that L ≥ 3. It follows that

Kj(m) < 2ℓ +
(2ℓ+1 + 3)2ℓ + (2ℓ+1 − 15)j

m
≤ 2ℓ +

2ℓ+1(2ℓ + 2+ j)

m
. (38)

Next, assume that m + j ≤

(

1−
1

2L − 4

)

2ℓ and L ≥ 4. Let n be the largest integer such that

m − n ≡ 2 (mod 4) and n ≤ 2L−1. Since n ≥ 2L−1 − 3, we have that m + j ≤

(

1−
1

2n+ 2

)

2ℓ.

By the condition m− n ≡ 2 (mod 4), we have tm−n = tm−n+1. We can, therefore, apply Lemma 3.7,

which gives

Kj(m) ≤ 2ℓ+1 −
2ℓ+1(n− 1

2 ) + j

m
< 2ℓ+1 −

2ℓ+1(2L−1 − 4)

m
≤ 2ℓ +

2ℓ+1(2ℓ + 2 + j)

m
. (39)

Finally, suppose L = 3. By Lemma 3.5,

Kj(m) < 2ℓ +
20 · 2ℓ − j

m
< 2ℓ +

2ℓ+1(2ℓ + 2 + j)

m
. (40)

✷

Lemma 3.13 Let j,m ∈ Z
≥0 with m ≥ 2 and m 6≡ 1 (mod 8). Let ℓ = ⌈log2(m+ j)⌉. Then

Kj(m) ≤ 2ℓ +
2ℓ+1 ·max{2ℓ + 2 + j, 20}

m
.

Proof: If m ≡ 0 (mod 2), we have by Lemma 3.4 that

Kj(m) < 2ℓ+1 +
2ℓ+1 − j

m
< 2ℓ +

2ℓ+1(2ℓ + 2 + j)

m
. (41)
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If m ≡ 29 (mod 32), we have by Lemma 3.9 that

Kj(m) < 2ℓ+1 +
8 · 2ℓ − j

m
< 2ℓ +

2ℓ+1(2ℓ + 2 + j)

m
. (42)

Finally, if m is an odd positive integer with m 6≡ 1 (mod 8) and m 6≡ 29 (mod 32), we have by Lemma

3.11 that

Kj(m) < 2ℓ +
37 · 2ℓ − j

m
< 2ℓ +

20 · 2ℓ+1

m
. (43)

✷

We are now ready to prove the lower bounds for lim inf
k→∞

(γj(k)/k) and lim sup
k→∞

(γj(k)/k).

Theorem 3.14 (cf. (Defant, 2017, Theorem 18)) For any nonnegative integer j,

lim inf
k→∞

γj(k)

k
≥

1

10
and lim sup

k→∞

γj(k)

k
≥

1

5
.

Proof: Fix j ∈ Z
≥0. For sufficiently large ℓ ∈ Z

+ (precisely, for ℓ large enough so that 2ℓ−1−j > 0), de-

fine gj(ℓ) = 2ℓ+
2ℓ+1 ·max{2ℓ + 2+ j, 20}

2ℓ−1 − j
. Choose some k ∈ Z

+ large enough so that log2(γj(k)) >

j. Let ℓ = ⌈log2(γj(k) + j)⌉. By definition of γj , we have that k < Kj(γj(k)). Applying Lemmas 3.12

and 3.13 gives
γj(k)

k
>

γj(k)

gj(ℓ)
>

2ℓ−1 − j

gj(ℓ)
. Therefore, lim inf

k→∞

γj(k)

k
≥ lim

ℓ→∞

2ℓ−1 − j

gj(ℓ)
=

1

10
.

By Lemmas 3.12 and 3.13, we have that Kj(m) < ⌊gj(ℓ)⌋ + 1 for all positive integers m < 2ℓ − j.

Therefore, by the definition of γj , we have that γj(⌊gj(ℓ)⌋+ 1) ≥ 2ℓ − j + 1. Consequently,

lim sup
k→∞

γj(ℓ)

k
≥ lim sup

ℓ→∞

γj(⌊gj(ℓ)⌋+ 1)

⌊gj(ℓ)⌋+ 1
≥ lim

ℓ→∞

2ℓ − j + 1

gj(ℓ) + 1
=

1

5
. (44)

✷

3.2 Upper Bounds for γj(k)/k

In this subsection we establish upper bounds for lim inf
k→∞

(γj(k)/k) and lim sup
k→∞

(γj(k)/k). We start by

stating a result of Defant.

Proposition 3.15 ((Defant, 2017, Proposition 6)) Let m ≥ 2 be an integer, and let δ(m) = ⌈log2(m/3)⌉.
If y and v are words such that yvy is a factor of t and |y| = m, then 2δ(m) divides |yv|.

We proceed with a lemma and theorem whose proofs closely follow those of (Defant, 2017, Lemma

19) and (Defant, 2017, Theorem 20), respectively.

Lemma 3.16 (cf. (Defant, 2017, Lemma 19)) For each integer ℓ ≥ 3 and any nonnegative integer j, we

have

Kj(3 · 2
ℓ−2 + 1) >

5 · 22ℓ−3 − j

3 · 2ℓ−2 + 1
and Kj(2

ℓ−1 + 3) >
22ℓ−2 − j

2ℓ−1 + 3
.
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Proof: Fix ℓ ≥ 3 and j ∈ Z
≥0. Let m = 3 · 2ℓ−2 + 1 and m′ = 2ℓ−1 + 3. By the definitions of Kj(m)

and Kj(m
′), there exist nonnegative integers r < Kj(m)− 1 and r′ < Kj(m

′)− 1 such that

〈rm+ j + 1, (r + 1)m+ j〉 = 〈(Kj(m)− 1)m+ j + 1,Kj(m)m+ j〉 (45)

and

〈r′m′ + j + 1, (r′ + 1)m′ + j〉 = 〈(Kj(m
′)− 1)m′ + j + 1,Kj(m

′)m′ + j〉. (46)

Following the corresponding part of the proof of (Defant, 2017, Lemma 19) and using Proposition 3.15,

we may assume that Kj(m) = r + 2ℓ−1 + 1 and that Kj(m
′) = r′ + 2ℓ−2 + 1.

Assume for the sake of contradiction that Kj(m) ≤
5 · 22ℓ−3 − j

m
. Let u = 〈rm+ j+1, (r+1)m+ j〉

and v = 〈(Kj(m)−1)m+ j+1,Kj(m)m+ j〉. Following the corresponding part of the proof of (Defant,

2017, Lemma 19) and using the fact that t is overlap-free, we get that u 6= v, a contradiction.

Assume next that Kj(m
′) ≤

22ℓ−2 − j

m′
. Let u′ = 〈r′m′+ j+1, (r′ +1)m′+ j〉 and v′ = 〈(Kj(m

′)−

1)m′ + j + 1,Kj(m
′)m′ + j〉. Let q =

⌈

r′m′ + j + 1

2ℓ−2

⌉

and H = min
{

(r′ + 1)m′, (q + 2)2ℓ−2 + j
}

.

Set U = 〈r′m′ + j + 1, H + j〉 and V = 〈(r′ + 2ℓ−2)m′ + j + 1, H + 2ℓ−2m′ + j〉. Note that the word

U is the prefix of u′ of length H − r′m′. Recalling that Kj(m
′) = r′ + 2ℓ−2 + 1, we see that V is the

prefix of v′ of length H − r′m′. Since u′ = v′, it follows that U = V . Now, there are words w′, z′, w′′,

and z′′ such that we have the following:

µℓ−2(tqtq+1tq+2) = 〈(q − 1)2ℓ−2 + 1, (q + 2)2ℓ−2〉 = w′Uz′, (47)

µℓ−2(tq+m′tq+m′+1tq+m′+2) = 〈(q +m′ − 1)2ℓ−2 + 1, (q +m′ + 2)2ℓ−2〉 = w′′V z′′. (48)

Using that U = V and following the corresponding part of the proof of (Defant, 2017, Lemma 19), we

get that

0 ≤ |w′| = |w′′| = r′m′ + j − (q − 1)2ℓ−2 ≤ r′m′ + j −

(

r′m′ + j + 1

2ℓ−2
− 1

)

2ℓ−2 < 2ℓ−2, (49)

and hence that tq = tq+m′ . Note also that |z′| = |z′′| = (q + 2)2ℓ−2 − (H + j). We show that

H + 2ℓ−2m + j + 1 − (q + m′ + 1)2ℓ−2 > 0, which will show that z′′ is a suffix of µℓ−2(tq+m′+2).
Observe that

H + 2ℓ−2m′ + j + 1− (q +m′ + 1)2ℓ−2 = H + j + 1− q2ℓ−2 − 2ℓ−2 (50)

> H + j + 1−

(

r′m′ + j + 1

2ℓ−2
+ 1

)

2ℓ−2 − 2ℓ−2 (51)

= H − r′m′ − 2ℓ−1. (52)

If H = r′m′+m′, then H = r′m′+2ℓ−1+3 > r′m′+2ℓ−1, giving H−r′m′−2ℓ−1 > 0. Alternatively,

if H = (q + 2)2ℓ−2 − j, then we have

(q + 2)2ℓ−2 − j ≥

(

r′m′ + j + 1

2ℓ−2
+ 2

)

2ℓ−2 − j = r′m′ + 2ℓ−1 + 1 > r′m′ + 2ℓ−1, (53)
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and again H − r′m′ − 2ℓ−1 > 0. It follows that tq+2 = tq+m′+2. Similarly, tq+1 = tq+m′+1.

Now,

r′ = Kj(m
′)− 2ℓ−2 − 1 ≤

22ℓ−2 − j

m′
− 2ℓ−2 − 1 =

22ℓ−3 − 5 · 2ℓ−2 − j − 3

m′
. (54)

It follows that r′m′+ j+1 ≤ 22ℓ−3−5 ·2ℓ−2−2, which gives that
r′m′ + j + 1

2ℓ−2
≤ 2ℓ−1−5. Therefore,

q + 4 < 2ℓ−1. Consequently, for each s ∈ {0, 1, 2}, the binary expansion of q +m′ + s− 1 has exactly

one more 1 than the binary expansion of q + s+ 2. Thus,

tq+3tq+4tq+5 = tq+m′tq+m′+1tq+m′+2 = tqtq+1tq+2. (55)

As in the proof of (Defant, 2017, Lemma 19), this contradicts the fact that t is cube-free. ✷

Theorem 3.17 (cf. (Defant, 2017, Theorem 20)) For any nonnegative integer j,

lim inf
k→∞

γj(k)

k
≤

9

10
and lim sup

k→∞

γj(k)

k
≤

3

2
.

Proof: This proof works in exactly the same way as the proof of (Defant, 2017, Theorem 20) with

fj(ℓ) =

⌊

5 · 22ℓ−3 − j

3 · 2ℓ−2 + 1

⌋

, hj(ℓ) =

⌊

22ℓ−2 − j

2ℓ−1 + 3

⌋

, and Lemma 3.16 in place of f(ℓ), h(ℓ), and (Defant,

2017, Lemma 19), respectively. ✷

4 Asymptotics for Γj(k)

Having established asymptotic bounds showing that γj(k) grows linearly in k, we now turn our attention

to Γj(k). In this section, we prove that lim inf
k→∞

(Γj(k)/k) = 3/2 and lim sup
k→∞

(Γj(k)/k) = 3. We start by

motivating our definition of Γj(k).
Recall that we have defined Γj(k) := sup((2Z+ − 1) \ Fj(k)). Also recall that Defant’s motivation

for defining Γ0(k) := sup((2Z+ − 1) \ F0(k)) is the property that m ∈ AP0(t, k) if and only if 2m ∈
AP0(t, k), meaning that the only interesting elements of AP0(t, k) are those that are odd. However, as

previously noted, it is not necessarily the case for nonzero j that m ∈ APj(t, k) if and only if 2m ∈
APj(t, k). As such, it is not initially clear that we are motivated in generalizing Defant’s definition of

Γ0(k) in the way we have. In other words, if even elements of APj(t, k) can be interesting, why would

we consider only the odd elements? The following proposition demonstrates a drawback of considering

all even elements of APj(t, k).

Proposition 4.1 For k ≥ 3, the set 2Z+ \ (AP0(t, k) ∩ 2Z+) is unbounded.

Proof: Since t1t2 · · · t9 = 011010011 has two occurrences of 011, we have that 3 ∈ Z
+ \ AP0(t, k)

for all k ≥ 3. Recall that m ∈ AP0(t, k) if and only if 2m ∈ AP0(t, k). Therefore, 3 · 2L ∈ 2Z+ \
(AP0(t, k) ∩ 2Z+) for all L ∈ Z

+. The proposition follows. ✷
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As a consequence of Proposition 4.1, if we were to include even numbers by defining Γj(k) :=
sup(Z+ \ APj(t, k)), we would have that Γ0(k) = ∞ for k ≥ 3, which is contrary to the result we

are trying to generalize (namely, that Γ0(k) grows linearly in k). Corollary 4.4 below shows that only

finitely many even elements of APj(t, k) are interesting, and consequently further motivates our defi-

nition of Γj(k). To prove Corollary 4.4, we first require a lemma and proposition, both of which were

suggested by an anonymous referee. The lemma follows closely from a much more general result in

Queffélec (2010) regarding “recognizability” in certain sequences.

Lemma 4.2 Fix x ∈ Z
+. Then there exists N ∈ Z

+ such that 〈n1 + 1, n1 + N〉 = 〈n2 + 1, n2 + N〉
implies 2x | (n1 − n2).

Proof: (Queffélec, 2010, Lemma 5.6) gives the following: For all x ∈ Z
+, there exists N ∈ Z

+ such

that if n is a nonnegative multiple of 2x and 〈n+ 1, n+N〉 = 〈n′ + 1, n′ +N〉, then n′ is a nonnegative

multiple of 2x. In the language of Queffélec (2010), each µx is “recognizable.”

Now, suppose we are given n1, n2 ∈ Z
≥0. Choose the smallest nonnegative multiple of 2x that is

greater than n1 (say, n1 + r). By (Queffélec, 2010, Lemma 5.6), there exists N ∈ Z
+ such that if

〈n1+r+1, n1+N〉 = 〈n2+r+1, n2+N〉, then n2+r is a nonnegative multiple of 2x. With this choice

of N , it follows that if 〈n1+1, n1+N〉 = 〈n2+1, n2+N〉, then 2x divides (n1+r)−(n2+r) = n1−n2.

✷

Proposition 4.3 Let J, k ∈ Z
+. Then there exists N ∈ Z

+ such that for all m ≥ N and all 1 ≤ j, j′ ≤ J ,

we have that m ∈ APj(t, k) if and only if m ∈ APj′ (t, k).

Proof: Take a, b ∈ Z
+ such that J < 2a and k < 2b. Set x := a+ b. Choose N ∈ Z

+ corresponding to

x, as provided by Lemma 4.2.

Assume that m 6∈ APj(t, k) for some m ≥ N . Then, by definition, 〈j + 1, j + km〉 is not a k-anti-

power, meaning there exist ℓ1 6= ℓ2 ∈ {0, . . . , k − 1} such that

〈j + ℓ1m+ 1, j + (ℓ1 + 1)m〉 = 〈j + ℓ2m+ 1, j + (ℓ2 + 1)m〉. (56)

By our choices of N and m, Lemma 4.2 gives that 2x | (ℓ2 − ℓ1)m. Since |ℓ2 − ℓ1| < k < 2b, this shows

that 2a | m.

For i = 1, 2, 〈j+ ℓim+1, j+(ℓi+1)m〉 can be broken into the partial block 〈j+ ℓim+1, ℓim+2a〉,
then some blocks of length 2a, and finally a partial block 〈(ℓi+1)m+1, j+(ℓi+1)m〉. By assumption,

all of these blocks coincide for i = 1, 2. Recall that we can view t as a word over the alphabet {Aa, Ba},

where |Aa| = |Ba| = 2a. Since Aa and Ba differ at every position, we see that 〈ℓim+ 1, ℓim+ 2a〉 and

〈(ℓi+1)m+1, (ℓi+1)m+2a〉 must coincide for i = 1, 2 as well. Putting this all together, we have that

〈ℓ1m+ 1, (ℓ1 + 1)m+ 2a〉 = 〈ℓ2m+ 1, (ℓ2 + 1)m+ 2a〉. (57)

Thus, m 6∈ APj′ (t, k) for any 1 ≤ j′ < 2a. Reversing the roles of j and j′ completes the proof. ✷

Corollary 4.4 For any fixed j, k ∈ Z
≥0 with k ≥ 3, the statement

m ∈ APj(t, k) ⇐⇒ 2m ∈ APj(t, k)

holds for all but finitely many m ∈ Z
+.
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Proof: Recall that t is fixed under the morphism µ : {0, 1}≤ω → {01, 10}≤ω uniquely defined by µ(0) =
01 and µ(1) = 10. With this in mind, it is easily seen that m ∈ APj(t, k) if and only if 2m ∈ AP2j(t, k).
Moreover, applying Proposition 4.3, we have that for sufficiently large m, 2m ∈ AP2j(t, k) if and only if

2m ∈ APj(t, k). Together, this shows that for all but finitely many m ∈ Z
+, m ∈ APj(t, k) if and only

if 2m ∈ APj(t, k) ✷

Having motivated our definition of Γj(k), let us proceed by proving a Corollary to (Defant, 2017,

Proposition 6) (stated above as Proposition 3.15).

Corollary 4.5 (cf. (Defant, 2017, Corollary 7)) Let m, k ∈ Z
+, where m ∈ (2Z+ − 1) \ Fj(t, k) and

k ≥ 3. Let δ(m) = ⌈log2(m/3)⌉. Then k − 1 ≥ 2δ(m).

Proof: By the hypotheses of the corollary, we have that the j-fix of t of length km is not a k-anti-power.

It follows that there exist integers n1 and n2 with 0 ≤ n1 < n2 ≤ k − 1 such that

〈n1m+ j + 1, (n1 + 1)m+ j〉 = 〈n2m+ j + 1, (n2 + 1)m+ j〉. (58)

Using Proposition 3.15, the remainder of the proof follows easily from the proof of (Defant, 2017, Corol-

lary 7). ✷

We now present a technical lemma that will be useful for constructing identical pairs of subwords of the

Thue-Morse word. These pairs of subwords will allow us to establish upper bounds on Kj(m) for certain

odd values of m. It will be useful to keep in mind that Γj(k) ≥ m whenever k ≥ Kj(m); this fact follows

from Definitions 1.3 and 1.5.

Lemma 4.6 (cf. (Defant, 2017, Lemma 8)) Suppose that ℓ ≥ 2, 2 ≤ m < 2ℓ, r, h, p, q are nonnega-

tive integers satisfying the following conditions:

• h < 2ℓ−2

• rm = 2ℓ+1p+ 2ℓ−1 + h− j

• (r + 1)m ≤ 2ℓ+1p+ 5 · 2ℓ−2 − j

• (r + 2ℓ−2)m = 2ℓ+1q + 3 · 2ℓ−2 + h− j

• tp+1 6= tq+1

Then 〈rm+ j + 1, (r + 1)m+ j〉 = 〈(r + 2ℓ−2)m+ 1, (r + 2ℓ−2 + 1)m〉, and Kj(m) ≤ r + 2ℓ−2 + 1.

Proof: Let u = 〈rm + j + 1, (r + 1)m + j〉 and v = 〈(r + 2ℓ−2)m + j + 1, (r + 2ℓ−2 + 1)m + j〉.
Following the proof of (Defant, 2017, Lemma 8) almost exactly (replacing his variables and conditions

with the corresponding ones established above), we get that u = v. It follows that the j-fix of t of length

(r + 2ℓ−2 + 1)m is not a (r + 2ℓ−2 + 1)-anti-power, meaning Kj(m) ≤ r + 2ℓ−2 + 1. ✷

We are now ready to prove one of the two main results of this section, the proof of which adapts a

construction from the proof of (Defant, 2017, Theorem 9).

Theorem 4.7 (cf. (Defant, 2017, Theorem 9)) Fix j ∈ Z
≥0. For all integers k ≥ 3, we have Γj(k) ≤

3k − 4. Moreover, lim sup
k→∞

Γj(k)

k
= 3.
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Proof: The proof that Γj(k) ≤ 3k − 4 follows almost exactly the corresponding part of the proof of

(Defant, 2017, Theorem 9) (replacing the reference to (Defant, 2017, Corollary 7) with a reference to

Corollary 4.5).

It remains to show that lim sup
k→∞

(Γj(k)/k) ≥ 3. For each positive integer α, define kα = 22α + 2α + 2.

Fix an integer α ≥ ⌈log2(j)⌉ + 2, and set ℓ = 2α + 2, m = 3 · 22α − 2α + 1, r = 2α + 1, h = j + 1,

p = 3 · 2α−3, and q = 3 · 22α−3 + 2α−2. Following the proof of (Defant, 2017, Theorem 9), we see that

we can apply Lemma 4.6 to get that Kj(m) ≤ r + 2ℓ−2 + 1 = kα. In other words, we have that the j-fix

of t of length kαm is not a kα-anti-power, meaning Γj(kα) ≥ m = 3 · 22α − 2α + 1. It follows that

Γj(kα)

kα
≥

3 · 22α − 2α + 1

22α + 2α + 2
(59)

for each α ≥ ⌈log2(j)⌉ + 2. Consequently, (kα)α≥⌈log2(j)⌉+2 is an increasing sequence of positive

integers with the property that Γj(kα)/kα → 3 as α → ∞. This shows that lim sup
k→∞

(Γj(k)/k) ≥ 3,

completing the proof.

✷

Remark 4.8 The construction in the previous theorem also functions to show that (2Z+ − 1) \ Fj(k) is

nonempty for sufficiently large k. In particular, for j > 0 and for any integer α ≥ ⌈log2(j)⌉, we have that

m = 3 · 22α − 2α + 1 ∈ (2Z+ − 1) \ Fj(k) for all k ≥ kα = 22α + 2α + 2.

Next, we present a lemma that will aid in the proof of the final main result of the paper. The lemma

adapts constructions from (Defant, 2017, Lemma 10), but it only applies for integers j > 0; (Defant,

2017, Lemma 10) gives the same result in the case that j = 0.

Lemma 4.9 (cf. (Defant, 2017, Lemma 10)) Fix j ∈ Z
+ and let n be the number of 1’s in the binary

expansion of j. For integers α ≥ ⌈log2(j)⌉+ 2, β ≥ ⌈log2(j)⌉+ 9, and ρ ≥ ⌈log2(j)⌉+ 8, define

kα = 22α + 2α + 2 and Kβ = 22β+1 + 3 · 2β+3 + 49 and κρ = 2ρ + 2.

We have Γj(kα) ≥ 3 ·22α−2α+1, Γj(Kβ) ≥ 3 ·22β+1−2β−1+1, and Γj(κρ) ≥ 5 ·2ρ−1−8χj(ρ)+1,

where

χj(ρ) =

{

2j + 1, if (n+ ρ) ≡ 0 (mod 2);
4j + 3, if (n+ ρ) ≡ 1 (mod 2).

Proof: The lower bound for Γj(kα) was established in the proof of Theorem 4.7. To bound Γj(Kβ) from

below, let ℓ = 2β + 3, m = 3 · 22β+1 − 2β−1 + 1, r = 3 · 2β+3 + 48, h = 48 + j, p = 9 · 2β + 17, and

q = 3 · 22β−2 + 143 · 2β−4 + 17. Following the proof of (Defant, 2017, Lemma 10), we see that we can

apply Lemma 4.6 to get that Kj(m) ≤ r + 2ℓ−2 + 1 = Kβ , meaning the j-fix of t of length Kβm is not

a Kβ-anti-power. Hence, Γj(Kβ) ≥ m = 3 · 22β+1 − 2β−1 + 1, as desired.

We now establish the lower bound for Γj(κρ). Fix ρ ≥ ⌈log2(j)⌉ + 8. Define ℓ′ = ρ + 2, m′ =
5 · 2ρ−1 − 8χj(ρ) + 1, r′ = 1, h′ = 2ρ−1 − 8χj(ρ) + j + 1, p′ = 0, and q′ = 5 · 2ρ−4 − χj(ρ). It is

straightforward to verify that these choices satisfy the first four of the five conditions of Lemma 4.6. To

prove that tp′+1 6= tq′+1, we present an argument that depends on the parity of the number of 1’s in the

binary expansion of j (which we have denoted by n). Assume that n is odd; the case in which n is even

follows similarly. We consider two cases.
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First, assume that ρ ≡ 0 (mod 2). In this case, χj(ρ) = 4j + 3, so the binary expansion of χj(ρ) has

n+ 2 1’s. Note that

⌈log2 χj(ρ)⌉ = ⌈log2(4j + 3)⌉ ≤ 2 + ⌈log2(j + 1)⌉ ≤ 3 + ⌈log2(j)⌉ < ρ− 4. (60)

It follows that when right-justified, all of the 1’s in the binary expansion of 5 · 2ρ−4 are to the left of all

the 1’s in the binary expansion of χj(ρ). Binary subtraction thus shows that there are ρ− 4− n 1’s in the

binary expansion of 5 · 2ρ−4 −χj(ρ). Since n is odd and ρ is even, we get that ρ− 4− n is odd, meaning

tq′+1 = 1 6= 0 = tp′+1.

Next, assume instead that ρ ≡ 1 (mod 2), meaning χj(ρ) = 2j+1. In this case, the binary expansion

of χj(ρ) has n + 1 1’s. As before, binary subtraction shows that there are ρ − 3 − n 1’s in the binary

expansion of 5 · 2ρ−4 − χj(ρ). Since n is odd and ρ is even, we have that ρ − 3 − n is odd, meaning

tq′+1 = 1 6= 0 = tp′+1.

We have shown that ℓ′, m′, r′, h′, p′, and q′ satisfy the conditions of Lemma 4.6. Applying the lemma

gives that Kj(m) ≤ r′+2ℓ
′−2+1 = κρ. Therefore,Γj(κρ) ≥ m = 5 ·2ρ−1−8χj(ρ)+1. This completes

the proof. ✷

Theorem 4.10 (cf. (Defant, 2017, Theorem 11)) For any nonnegative integer j, lim inf
k→∞

Γj(k)

k
=

3

2
.

Proof: The inequality lim inf
k→∞

(Γj(k)/k) ≤ 3/2 follows from the corresponding part of the proof of

(Defant, 2017, Theorem 11) (replacing Γ(k) with Γj(k) and (Defant, 2017, Corollary 7) with Corollary

4.5).

It remains to show that lim inf
k→∞

(Γj(k)/k) ≥ 3/2. Recall the definitions of kα, Kβ , κρ, and χj(ρ) from

Lemma 4.9. Let η = 2 ⌈log2(j)⌉+21, fix k ≥ κη, and put m = Γj(k). Since k ≥ κη, Lemma 4.9 and the

fact that Γj is nondecreasing (see Remark 1.4) together givem = Γj(k) ≥ Γj(κη) ≥ 5·2η−1−8χj(η)+1.

Put ℓ = ⌈log2(m+ j)⌉. Let us first assume that 3 · 2ℓ−2 − 2(ℓ−2)/2 < m+ j ≤ 2ℓ. Note that

ℓ ≥
⌈

log2(5 · 2
η−1 − 8χj(η) + 1)

⌉

≥
⌈

log2(2
η+1)

⌉

= η + 1 = 2 ⌈log2 j⌉+ 21. (61)

In particular, we have that ℓ − 1 ≥ ⌈log2 j⌉ + 8. We can, therefore, apply Lemma 4.9 to get that

Γj(κℓ−1) ≥ 5 · 2ℓ−2 − 8χj(ℓ− 1) + 1. Observe that

5 · 2ℓ−2 − 8χj(ℓ− 1) + 1 ≥ (m+ j) + 2ℓ−2 − 8(4j + 3) + 1 (62)

≥ (m+ j) +
1

4

(

5 · 2η−1 − 8χj(η) + 1 + j
)

− 32j − 23 (63)

≥ (m+ j) +
1

4

(

5 · 22⌈log2 j⌉+21 − 8(4j + 3) + j + 1
)

− 32j − 23 (64)

> m. (65)

It follows that Γj(κℓ−1) > m. Because Γj is nondecreasing, κℓ−1 > k. Therefore,

Γj(k)

k
>

3 · 2ℓ−2 − 2(ℓ−2)/2

κℓ−1
=

3 · 2ℓ−2 − 2(ℓ−2)/2

2ℓ−1 + 2
(66)
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in the case where 3 · 2ℓ−2 − 2(ℓ−2)/2 < m+ j ≤ 2ℓ.
Assume next that 2ℓ ≤ m + j ≤ 3 · 2ℓ−2 − 2(ℓ−2)/2 and ℓ is even. By (61), we have ℓ − 2 >

2 ⌈log2 j⌉+ 18, so

(ℓ− 2)/2 > ⌈log2 j⌉+ 9 > ⌈log2 j⌉+ 2. (67)

We can thus apply Lemma 4.9 to get that Γj(k(ℓ−2)/2) ≥ 3 · 2ℓ−2 − 2(ℓ−2)/2 + 1 > m. Because Γj is

nondecreasing, k < k(ℓ−2)/2. Thus,

Γj(k)

k
>

2ℓ−1

k(ℓ−2)/2
=

2ℓ−1

2ℓ−2 + 2(ℓ−2)/2 + 2
(68)

in this case.

Finally, assume that 2ℓ−2 ≤ m + j ≤ 3 · 2ℓ−2 − 2(ℓ−2)/2 and ℓ is odd. By (61), we have ℓ − 3 ≥
2 ⌈log2 j⌉+ 18, so

(ℓ− 3)/2 ≥ ⌈log2 j⌉+ 9. (69)

Therefore, Lemma 4.9 gives that Γj(K(ℓ−3)/2) ≥ 3 ·2ℓ−2−2(ℓ−5)/2+1 > m. Since Γj is nondecreasing,

we have k < K(ℓ−3)/2. Consequently,

Γj(k)

k
>

2ℓ−1

K(ℓ−3)/2
=

2ℓ−1

2ℓ−2 + 3 · 2(ℓ+3)/2 + 49
(70)

in this case.

By (66), (68), and (70), we have that in all cases,

Γj(k)

k
>

3 · 2ℓ−2 − 2(ℓ−2)/2

2ℓ−1 + 2
. (71)

This gives that Γj(k)/k is bounded below by a positive function of ℓ. It follows that ℓ → ∞ as k → ∞.

Consequently, lim inf
k→∞

Γj(k)

k
≥ lim

ℓ→∞

3 · 2ℓ−2 − 2(ℓ−2)/2

2ℓ−1 + 2
=

3

2
. ✷

5 Conclusion and Further Directions

In Section 4, we proved that lim inf
k→∞

(Γj(k)/k) = 3/2 and that lim sup
k→∞

(Γj(k)/k) = 3. While we were

able to prove these exact asymptotic results in Section 4, we were only able to obtain the asymptotic

bounds
1

10
≤ lim inf

k→∞

γj(k)

k
≤

9

10
and

1

5
≤ lim sup

k→∞

γj(k)

k
≤

3

2
in Section 3. However, as of yet, we

have no reason to believe that the asymptotic behavior of γj and Γj depend on j. As such, we extend a

conjecture of Defant (Defant, 2017, Conjecture 22) regarding the exact asymptotic growth of γ0:

Conjecture 5.1 (cf. (Defant, 2017, Conjecture 22)) For any nonnegative integer j, we have

lim inf
k→∞

γj(k)

k
=

9

10
and lim sup

k→∞

γj(k)

k
=

3

2
.
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Note that Narayanan Narayanan (2020) has proven lim sup
k→∞

(γ0(k)/k) = 3/2.

Finally, note that it may be interesting to investigate the properties of APj(x, k) for other infinite words

x; Defant Defant (2017) suggests doing this for j = 0. In this paper, we have utilized the recursive

structure of t to prove exact asymptotic values (resp. asymptotic bounds) for Γj(k)/k (resp. γj(k)/k)

that are independent of j. It may be particularly interesting to know whether there are recursively defined

infinite words for which the asymptotic growth of analogously defined functions depends on j.
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