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The forbidden number forb(m,F ), which denotes the maximum number of unique columns in an m-rowed (0, 1)-

matrix with no submatrix that is a row and column permutation of F , has been widely studied in extremal set theory.

Recently, this function was extended to r-matrices, whose entries lie in {0, 1, . . . , r − 1}. The combinatorics of the

generalized forbidden number is less well-studied. In this paper, we provide exact bounds for many (0, 1)-matrices

F , including all 2-rowed matrices when r > 3. We also prove a stability result for the 2× 2 identity matrix. Along

the way, we expose some interesting qualitative differences between the cases r = 2, r = 3, and r > 3.

Keywords: forbidden configurations, (0, 1)-matrices, extremal set theory

1 Introduction

We call a matrix simple if it has no repeated columns. Every set system (or simple hypergraph) corre-

sponds to a simple (0, 1)-matrix via its element-set incidence matrix, and such matrices provide a con-

venient language for extremal set theory. We generalize this situation to r-matrices, which have entries

in {0, 1, . . . , r − 1}. Such matrices can be thought of as r-coloured set systems or as representations of

collections of functions from a given finite set into {0, 1, . . . , r − 1}.

For two matrices F and A, we say that F is a configuration of A, denoted F ≺ A, if A contains a

submatrix which is a row and column permutation ofF . If F ⊀ A, we say that A avoidsF . Configurations

of simple (0, 1)-matrices correspond to traces of set systems or hypergraphs. For a given finite collection

F of matrices, we denote by Avoid(m, r,F) the collection of m-rowed, simple r-matrices that avoid
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every matrix F ∈ F . We let |A| denote the number of columns of A. The main extremal function in the

study of forbidden configurations is

forb(m, r,F) = max{|A| : A ∈ Avoid(m, r,F)}.

When r = 2 we usually write forb(m,F) in place of forb(m, 2,F). We also use forb(m, r, F ) instead

of the more cumbersome forb(m, r, {F}). We will use several simple properties of this function. For

example, if F ≺ F ′ then forb(m, r, F ) ≤ forb(m, r, F ′). Also, we let F c denote the complement of the

(0, 1)-matrix F , where each 0 is replaced by a 1 and vice versa; then forb(m, r, F ) = forb(m, r, F c).
The foundational result in the theory of forbidden configurations is Sauer’s theorem (proven in [10],

also by Perles and Shelah [11] and Vapnik and Chervonenkis [12]). Let Kk denote the complete k × 2k

simple (0, 1)-configuration (corresponding to the power set of a k-element set).

Theorem 1.1. For every positive integer m,

forb(m,Kk) =

(
m

k − 1

)

+

(
m

k − 2

)

+ · · ·+

(
m

1

)

+

(
m

0

)

.

Alon [1] gave a generalization for complete r-matrices, but the forbidden number is exponential when

r > 2. This is a special case of a more general phenomenon proved by Füredi and Sali [9].

Theorem 1.2. Let F be a family of r-matrices. If for every pair i, j ∈ {0, 1, . . . , r − 1} there is an

(i, j)-matrix in F , then forb(m, r,F) = O(mk) for some positive integer k. If F has no (i, j)-matrix for

some pair i, j ∈ {0, 1, . . . , r − 1}, then forb(m, r,F) = Ω(2m).

Extensive investigations have been undertaken for forbidden configurations of simple (0, 1)-matrices;

see, for example, the excellent dynamic survey of Anstee [3]. On the other hand, the more general case of

r-matrices is not so well-explored. Previous papers mainly focus on providing bounds on the forbidden

number for special classes of sets in the polynomial case [5, 6]. In this paper, we dive into exponential

forbidden numbers and provide exact bounds when (0, 1)-configurations of r-matrices are forbidden. This

is similar in flavour to a recent paper of Füredi, Kostochka, and Luo [7], which proves several minimum-

degree conditions that guarantee cycles in hypergraphs; by dropping the assumption of uniformity, their

bounds jump from polynomial to exponential.

The structure of the paper is as follows. Section 2 provides a method to transfer bounds for r = 2
to larger values of r. The following three sections calculate forbidden numbers of specific classes of

matrices. We obtain exact results when r > 3 and bounds for r = 3 that differ from the forbidden

number by an additive constant. We also prove a stability result for the identity configuration. Our work

culminates in Section 6, which provides exact forbidden numbers for all two-rowed (0, 1)-configurations

for every r > 3 and a large class of two-rowed (0, 1) configurations when r = 3. The main tool in both

cases a reduction lemma. Finally, Section 7 applies the method of Section 2 to obtain a nearly complete

classification of (0, 1)-configurations of size 3× 2 and 3× 3.

2 General bounds

For a given configuration A, let Ā denote its underlying simple configuration. If A has m columns and

S ⊆ [m], then we let A|S be the restriction of A to the rows with indices in S. By convention, we set

forb(0, F ) = 1 for all F . In general, if F has t rows, then forb(k, F ) = 2k when 0 ≤ k < t.
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Lemma 2.1. If F is a (0, 1)-matrix and r ≥ 3, then

forb(m, r, F ) ≤
m∑

k=0

(
m

k

)

(r − 2)m−k forb(k, F ). (2.1)

Proof: Let A ∈ Avoid(m, r, F ), and let X be a k-element subset of the rows. Consider the matrix C
obtained by taking all columns of A that have 0’s and 1’s in exactly the rows in X , and let C′ = C|X . We

know that |C′| ≤ forb(k, F ). Each column in C′ appears with multiplicity at most (r − 2)m−k in C|X ,

so |C| ≤ (r − 2)m−k forb(k, F ). To finish the proof, we sum over all subsets of the rows.

The bound given by this lemma may be quite bad, especially if F is not simple. However, for simple

matrices, we have the following lower bound.

Lemma 2.2. Let F be a simple (0, 1)-matrix with n rows and fix r ≥ 3. Suppose that (Ak)
∞
k=1 is a

sequence of (0, 1)-matrices that avoids F , where Ak has k rows, such that Ak|S ⊆ An for every k ≥ n

and S ∈
(
[k]
n

)
. If we set |A0| = 1, then

forb(m, r, F ) ≥

m∑

k=0

(
m

k

)

(r − 2)m−k|Ak|. (2.2)

Proof: We construct a configuration that avoids F as follows. Let k ∈ [m]. For each k-set X of rows,

we choose the (r − 2)m−k columns that contain a copy of Ak in the rows of X and have elements of

{2, . . . , r − 1} in every other position. Let A be the configuration that contains all such columns. If

F ≺ A, then F ≺ A|S for some n-set of rows S. But every column in A|S appears in An, so F ≺ An, a

contradiction.

The condition that F is simple is absolutely essential. For simple matrices, however, this lemma can

easily extend bounds from the classical case to the generalized one. In particular, combining Lemmas 2.1

and 2.2 proves the following.

Lemma 2.3. Let F be a simple n-rowed (0, 1)-matrix. If there exists a sequence (Ak)
∞
k=1 of (0, 1)-

matrices, each of which avoids F , such that

◦ Ak has k rows,

◦ |Ak| = forb(k, F ), and

◦ Ak|S is contained in An for every k ≥ n and n-set S ⊆ [k], then

forb(m, r, F ) =

m∑

k=0

(
m

k

)

(r − 2)m−k forb(k, F ). (2.3)

3 Complete configurations

Proposition 3.1. We have forb(m, r,Kk) =
∑k−1

i=0

(
m
i

)
(r − 1)m−i. If (r − 1)m−k ≥ p − 1, then

forb(m, r, p ·Kk) =
∑k−1

i=0

(
m
i

)
(r − 1)m−i + (p− 1)

(
m
k

)
.
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Proof: We first prove that forb(m, r,Kk) =
∑k−1

i=0

(
m
i

)
(r − 1)m−i. Let An denote the n-rowed con-

figuration that contains every column with at most k − 1 zeros. Then (An) satisfies the conditions of

Lemma 2.3, so Theorem 1.1 implies that

forb(m, r,Kk) =

m∑

n=0

(
m

n

)

(r − 2)m−n

k−1∑

i=0

(
n

i

)

=

k−1∑

i=0

(
m

i

) m∑

n=0

(
m− i

n− i

)

(r − 2)m−n

=

k−1∑

i=0

(
m

i

)

(r − 1)m−i.

Now we prove the forbidden number for all p. The configuration that contains every column with at

most k−1 zeros avoids Kk. If (r−1)m−k ≥ p−1, for each k-set of rows, we may append p−1 columns

to this matrix that have zeros in that k-set and nowhere else. The resulting configuration avoids p ·Kk and

has
∑k−1

i=0

(
m
i

)
(r − 1)m−i + (p− 1)

(
m
k

)
columns.

Now suppose that A ∈ Avoid(m, r, p · Kk). For each k-set X of rows, there is a column of Kk that

appears at most p − 1 times in A|X . Let A′ be the configuration obtained by deleting the corresponding

columns of A for all k-sets. Since Kk is symmetric, no row-permutation of Kk is a subset of A′|X , so

Kk ⊀ A′|X for every k-set X . Therefore Kk ⊀ A′, which implies that

|A| ≤ |A′|+ (p− 1)

(
m

k

)

≤

k−1∑

n=0

(
m

n

)

(r − 1)m−n + (p− 1)

(
m

k

)

,

as claimed.

Proposition 3.1 is enough to determine the logarithmic growth rate of forb(m, r, F ) asymptotically for

every (0, 1)-configuration F .

Corollary 3.2. The asymptotic formula log forb(m, r, F ) ∼ m log(r − 1) holds as m → ∞ for every

fixed (0, 1)-configuration F and r ≥ 3.

Proof: Since F ≺ p · Kk for some p and k, Proposition 3.1 guarantees a constant C > 0 so that

forb(m, r, F ) ≤ Cmk−1(r − 1)m for every m and r. We may assume by complementation that F
contains at least one 0, in which case the configuration that contains every column with no 0’s avoids F ;

this implies that forb(m, r, F ) ≥ (r − 1)m for every m, r ∈ N. If r ≥ 3 is fixed, then the logarithmic

growth rates of the lower and upper bounds are asymptotically equal as m → ∞.

The trivial bound forb(m, r, F ) ≤ rm combined with the lower bound forb(m, r, F ) ≥ (r−1)m shows

that forb(m, r, F ) = Θ(rm) if m is fixed and forb(m, r, F ) is regarded as a function of r.

Going back to exact results, let Ks
k denote the k ×

(
k
s

)
configuration of zeros and ones in which every

column contains s ones, called the complete uniform configuration of weight s. Füredi and Quinn proved

in [8] that forb(m,Ks
k) =

∑k−1
i=0

(
m
i

)
. The configuration where s ones never appear above k − s zeros

provides the lower bound; since Ks
k ≺ Kk, Sauer’s theorem provides the upper bound. The construction

easily extends, yielding the following result.
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Proposition 3.3. If s ≤ k, then forb(m, r,Ks
k) =

∑k−1
i=0

(
m
i

)
(r − 1)m−i. If (r − 2)m−k ≥ p − 1, then

forb(m, r, p ·Ks
k) = forb(m, r,Ks

k) + (p− 1)
(
m
k

)
.

Proof: Let An be the n-rowed configuration that contains every column in which s ones do not appear

above k− s zeros. The sequence (An) satisfies the conditions of Lemma 2.3, and an identical calculation

to the one in the proof of Proposition 3.1 proves the first statement.

The proof of the upper bound for the second statement is identical to the one in Proposition 3.1. For

the lower bound, let A be the configuration that contains every column where s ones never appear above

k− s zeros; this configuration avoids Ks
k. If (r− 2)m−k ≥ p− 1, then for each X ∈

(
[m]
k

)
we can append

p− 1 columns to A that have s ones above k − s zeros in the rows of X and non-binary digits elsewhere.

The resulting configuration avoids p · Ks
k and has forb(m, r, p · Ks

k) = forb(m, r,Ks
k) + (p − 1)

(
m
k

)

columns.

A matrix is called p-simple if each column has multiplicity at most p.

Corollary 3.4. Assume that F is a k-rowed p-simple matrix such that p ·Ks
k ≺ F for some 0 ≤ s ≤ k.

If (r − 2)m−k ≥ p− 1, then

forb(m, r, F ) =

k−1∑

n=0

(
m

n

)

(r − 1)m−n + (p− 1)

(
m

k

)

.

If F is simple and Ks
k ≺ F , then forb(m, r, F ) = forb(m, r,Ks

k) = forb(m, r,Kk) for all m ∈ N and

r ≥ 2.

Proof: Since p ·Ks
k ≺ F ≺ p ·Kk, the statement follows from Propositions 3.1 and 3.3.

The result for non-simple matrices in Proposition 3.3 is only applicable when r > 3. The argument can

be modified to show that forb(m, 3, p ·Ks
k) is at most an additive constant away from

∑k−1
i=0

(
m
i

)
2m−i +

(p− 1)
(
m
k

)
.

Proposition 3.5. Suppose p > 1 and a = ⌈log2(p− 1)⌉. Then

forb(m, 3, p ·Ks
k) ≥

k−1∑

i=0

(
m

i

)

2m−i + (p− 1)

((
m

k

)

−

(
k + a− 1

k

))

.

Proof: Let A be the configuration with all columns that do not contain s ones above k − s zeros. For

every k-set X with elements i1 < i2 < · · · < ik and is +(m− is+1)− k ≥ log2(p− 1), we may append

p− 1 columns to A with entries ci given by







ci = 1 if i ∈ X and i ≤ is

ci ∈ {0, 2} if i /∈ X and i ≤ is

ci = 2 if is < i < is+1

ci = 0 if i ∈ X and i ≥ is+1

ci ∈ {1, 2} if i /∈ X and i ≥ is+1.
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For each such column c, there is exactly one k-set S (namely S = X) so that c|S is s ones above k − s
zeros. Therefore, the resulting configuration A′ avoids p ·Ks

k.

To determine the number of columns added to A, we count the number of choices of X with is +(m−
is+1)−k < log2(p− 1). The number of choices with is+(m− is+1)−k = b is

(
k−1+b
k−1

)
, so the number

of choices of X not covered in our strategy is

a−1∑

b=0

(
k − 1 + b

k − 1

)

=

(
k + a− 1

k

)

.

In total, then A′ contains (p− 1)
((

m
k

)
−
(
k+a−1

k

))
more columns than A.

Corollary 3.6. forb(m, 3, 2 ·Ks
k) =

∑k−1
i=0

(
m
i

)
(r − 1)m−i +

(
m
k

)
.

Proof: Applying Proposition 3.5 with p = 2 gives the lower bound, and the upper bound follows from

Proposition 3.1 together with 2 ·Ks
k ≺ 2 ·Kk.

4 Identity matrices

Noting that Ik = K1
k yields the following corollary of Proposition 3.3.

Corollary 4.1. If r > 3, then forb(m, r, p · Ik) =
∑k−1

i=0

(
m
i

)
(r − 1)m−i + (p − 1)

(
m
k

)
for all m such

that (r − 2)m−k ≥ p− 1.

The main result of this section is a stability theorem for I2. It would be interesting to see similar

stability theorems for other complete uniform configurations.

With each configuration A ∈ Avoid(m, r, I2) we can associate a tournament on m vertices. Direct an

edge from i to j if there is no column in which 0 appears in row i and 1 appears in row j. If both ij and

ji are possible edges, choose just one. Since A avoids I2, there must be an edge between each pair of

vertices, so this construction gives a tournament TA on m vertices.

Proposition 4.2. Let r ≥ 2 and A ∈ Avoid(m, r, I2) such that TA is not transitive. Then |A| ≤
m(r − 1)m−1 + (r − 1)m − 2(r − 1)m−3.

Proof: We first prove the case r = 2: If A ∈ Avoid(k, 2, I2) such that TA is not transitive, then |A| ≤
m − 1. Since TA is not transitive, it contains a 3-cycle ijk. The only possible columns in A|{i,j,k} are
[
0
0
0

]

and
[
1
1
1

]

. If we delete rows i and j, then the resulting configuration A′ is simple and avoids I2, so

|A| = |A′| ≤ forb(m− 2, I2) = m− 1.

We now proceed with the general case. Suppose that A ∈ Avoid(m, r, I2) with TA not transitive. As

before, there is a 3-cycle ijk in TA. Applying the argument used in the proof of Lemma 2.1 and splitting

the sum over sets that do or do not contain {i, j, k} gives the bound

forb(m, r, I2) ≤
∑

X⊆[m]
{i,j,k}6⊆X

(r − 2)m−|X|(|X |+ 1) +
∑

X⊆[m]
{i,j,k}⊆X

(r − 2)m−|X|(|X | − 1)
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=
∑

X⊆[m]

(r − 2)m−|X|(|X |+ 1) − 2
∑

X⊆[m]
{i,j,k}⊆X

(r − 2)m−|X|.

The left sum simplifies to

m∑

k=0

(
m

k

)

(r − 2)m−k(k + 1) = m(r − 1)m−1 + (r − 1)m,

and the right sum is

m∑

k=3

(
m− 3

k − 3

)

(r − 2)m−k =

m−3∑

k=0

(
m− 3

k

)

(r − 2)m−3−k = (r − 1)m−3.

Combining the two evaluations completes the proof.

Theorem 4.3. For each integer r ≥ 2, there is a unique extremal r-configuration with m rows that avoids

I2.

Proof: By Proposition 4.2, if A is extremal, then TA is transitive. Therefore there is an ordering i1, . . . , im
of [m] so that isit is an edge of T if and only if s < t. After permuting the rows of A according to

this order, no 0 appears above a 1. There are m(r − 1)m−1 such columns that contain a 0 and (r − 1)m

columns with no 0. Since A is extremal, it contains all these columns. Up to row and column permutation,

therefore, A is unique.

Thus, there is a gap between the unique extremal configuration that avoids I2 and any other configura-

tion that avoids I2 but is not a subconfiguration of the extremal one.

In another direction, Propositions 3.1 and 3.3 and Corollary 3.6 show that forb(m, 3, p·I2) = forb(m, 3, p·
K2) when p = 1 or p = 2. However, equality does not hold for higher values of p. The following exact

evaluation of forb(m, r, 3 · I2) shows that forb(m, 3, p · Ik) 6= forb(m, 3, p ·Kk) in general. In contrast,

Corollary 4.1 states that forb(m, r, p · Ik) = forb(m, r, p ·Kk) for every p ≥ 1 when r > 3.

Proposition 4.4. If m ≥ 4, then forb(m, 3, 3 · I2) = forb(m, 3, 3 ·K2)− 1.

Proof: Let A be the configuration constructed in the proof of Proposition 3.5 with forb(m, 3, 3 ·K2)− 2
columns that avoids 3 · I2. Appending the column c with c1 = 1, cm = 0, and ci = 2 for every 1 < i < m
creates a configuration with forb(m, 3, 3 ·K2)− 1 columns that avoids 3 · I2.

We now show that any 3-configuration that avoids 3 · I2 has at most forb(m, 3, 3 · K2) − 1 columns.

In each pair of rows, either [ 01 ] or [ 10 ] appears at most twice. Permuting the corresponding columns to the

right end of the configuration A, we create a decomposition A = [BC] where |C| ≤ 2
(
m
2

)
and B avoids

I2. If B is not the unique extremal configuration that avoids I2, then

|A| = |B|+ |C| ≤ forb(m, 3,K2)− 1 + 2

(
m

2

)

= forb(m, 3, 3 ·K2)− 1.

Otherwise, Theorem 4.3 shows that we may permute the rows of B so it contains every column where no

0 appears above a 1. Since B has at least four rows, B|{i,j} contains at least four columns of the form [ 10 ]
for every i, j ∈ [m] with i < j.
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We mark the pair i < j for each time that 0 appears in row i and 1 appears in row j in the configuration

C. Since A avoids 3 · I2 and B|{i,j} already contains four columns of the form [ 10 ], each pair has at most

two marks. Each column of C contributes at least one mark. If the pair (1,m) has at most one mark, then

there are at most 2
(
m
2

)
− 1 columns in C. If (1,m) has two marks, then there is a column c in C with

c1 = 0, cm = 1, and cs 6= 2 for some 1 < s < m. In this case the column c contributes at least two

marks: one for (1,m), and one for either (1, s) or (s,m). So in this case, too, there are at most 2
(
m
2

)
− 1

columns in C. In either case,

|A| = |B|+ |C| ≤ forb(m, 3, 3 ·K2)− 1,

proving the lower bound.

The upper bound in this argument shows that forb(m, 3, p · K2) < forb(m, 3, p · I2) for all p ≥ 3.

Indeed, by following this mark argument, one can calculate exact forbidden numbers for larger p. It’s not

too hard to show, for example, that forb(m, 3, 4 · I2) = forb(m, 3, 4 ·K2) − 2 and forb(m, 3, 5 · I2) =
forb(m, 3, 5 ·K2) − 5. The computations, however, rapidly become rather case-heavy as p increases. In

general, the mark argument can be extended to show that the difference between forb(m, 3, p · I2) and

forb(m, 3, p ·K2) is superlinear in p; for example,

forb(m, 3, p · I2) ≤ forb(m, 3, p ·K2)−
1

4
(p− 1) log2(p− 1)

(
log2(p− 1)− 1

)
, (4.1)

although this is not sharp.

5 Block matrices

Proposition 5.1. If (r − 2)m−a−b ≥ p− 1 , then

forb
(

m, r,
[
0a×p

1b×p

])

=
a−1∑

ℓ=0

(
m

ℓ

)

(r − 1)m−ℓ +
b−1∑

k=0

(
m

k

)

(r − 1)m−k

−

a−1∑

ℓ=0

b−1∑

k=0

(
m

ℓ

)(
m− ℓ

k

)

(r − 2)m−ℓ−k + (p− 1)

(
m

a

)(
m− a

b

)

. (5.1)

Proof: Any maximal matrix that avoids F :=
[
0a×p

1b×p

]

contains all columns that have fewer than a zeros

or fewer than b ones. This accounts for the first three terms of (5.1). Thus we need only bound the number

of columns that contain at least a zeros and at least b ones. There are (r − 2)m−a−b columns that contain

exactly a zeros and b ones for a fixed a-set X and b-set Y of rows. If (r − 2)m−a−b ≥ p − 1, then for

each disjoint X,Y ⊆ [m] with |X | = a and |Y | = b, we may take p− 1 columns with 0’s in the rows in

X and 1’s in the rows of Y and entries in {2, . . . , r − 1} elsewhere. This is (p− 1)
(
m
a

)(
m−a

b

)
columns,

which provides the lower bound.

For the upper bound, we again use a mark argument. Consider the set of ordered pairs (X,Y ) where

X,Y ⊆ [m] are disjoint, |X | = a, and |Y | = b. Given a matrix A, we place a mark on the pair (X,Y ) for

every column c ∈ A such that c|X contains only zeros and c|Y contains only ones. There can be at most

(p− 1)
(
m
a

)(
m−a
b

)
marks in total if the matrix A avoids F . Every column that contains at least a zeros and



Exponential multivalued forbidden configurations 9

b ones contributes at least one mark, so there are at most (p − 1)
(
m
a

)(
m−a
b

)
such columns, which gives

the upper bound.

Corollary 5.2. If (r − 2)m−2 ≥ p− 1, then

forb(m, r, p · [ 01 ]) = 2(r − 1)m − (r − 2)m + (p− 1)m(m− 1).

6 Forbidden configurations with 2 rows

We define the general 2-rowed (0, 1)–forbidden configuration

F (a, b, c, d) =

[
0 · · · 0
0 · · · 0
︸ ︷︷ ︸

a

1 · · · 1
0 · · · 0
︸ ︷︷ ︸

b

0 · · · 0
1 · · · 1
︸ ︷︷ ︸

c

1 · · · 1
1 · · · 1
︸ ︷︷ ︸

d

]

. (6.1)

Our main tools will be two reduction lemmas.

Lemma 6.1 (Reduction Lemma for r > 3). Suppose b, c ≥ 1 and set b′ = min{b, c}. If (r − 2)m−2 ≥
2(max{b, c} − 1), then

forb
(
m, r, F (a, b, c, d)

)
= forb

(
m, r, F (a, b′, b′, d)

)
.

Proof: If b = c the statement is trivial, so suppose without loss of generality that b < c. We set F :=
F (a, b, c, d) and F ′ = F (a, b, b, d). It follows from F ′ ≺ F that forb(m, r, F ′) ≤ forb(m, r, F ). To

prove the reverse inequality, we want to show that |A| ≤ forb(m, r, F ′) for every A ∈ Avoid(m, r, F ).
This is true if A avoids F ′, so suppose instead that F ′ ≺ A. By permuting the rows of A, we may assume

that some instance of F ′ appears in its first two rows. We write A in the block form

A =





0 0 1 · · · r − 1
0 1 0 · · · r − 1

A0,0 A0,1 A1,0 · · · Ar−1,r−1



 . (6.2)

Because F ′ appears in the first two rows, we know that |A0,0| ≥ a, that |A0,1|, |A1,0| ≥ b, and that

|A1,1| ≥ d. If either of A0,1 or A1,0 contains at least c columns, then A contains F in the first two rows.

But A avoids F , so |A1,0|, |A0,1| < c. We assumed that (r− 2)m−2 ≥ 2(c− 1), so it is possible to delete

the columns with [ 01 ] or [ 10 ] in the first two rows and append |A0,1|+ |A1,0| distinct columns c to A with

c1 = 0, c2 = 1, and ci /∈ {0, 1} for i > 2. The resulting configuration does not contain I2 in its first two

rows, so it does not contain F ′ in the first two rows, either. Moreover, this operation does not create a new

instance of F ′ in A.

Iterating this process for every appearance of F ′ in A produces a matrix with the same number of

columns as A that avoids F ′. Thus |A| ≤ forb(m, r, F ′), as desired.

Theorem 6.2 (Forbidden numbers for 2-rowed (0, 1)-matrices with r > 3). Let F = F (a, b, c, d) and

α = max{a, d,min{b, c}}, and suppose (r − 2)m−2 ≥ 2max{a, b, c, d}. If α > 0, then

forb
(
m, r, F (a, b, c, d)

)
= m(r − 1)m−1 + (r − 1)m + (α− 1)

(
m

2

)

. (6.3)
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Otherwise, F = p · [ 01 ] and

forb(m, r, p · [ 01 ]) = 2(r − 1)m − (r − 2)m + (p− 1)m(m− 1). (6.4)

Proof: The case F = p · [ 01 ] is given by Corollary 5.2. We prove the statement for α > 0 in cases.

Case 1: α = a and b, c ≥ 1. By Lemma 6.1, we may assume that b = c. Then 02×a ≺ F and F is

a-simple, so the statement follows from Corollary 3.4. Taking the (0, 1)-complement of F handles the

case α = d with b, c ≥ 1.

Case 2: α = min{b, c}. This implies b, c ≥ 1, so by Lemma 6.1, we may assume b = c. Then

c · I2 ≺ F ≺ c · K2, so the upper bound follows from Proposition 3.1 and the lower bound from

Corollary 4.1 with k = 2.

Case 3: b = 0 or c = 0. By possibly taking the complement, we may assume that b = 0. Since the

arguments are symmetric, suppose a ≥ d, which implies that α = a. Then F ≺ F (a, 1,max{1, c}, d), so

by Lemma 6.1,

forb(m, r, a · 02) ≤ forb(m, r, F ) ≤ forb(m, r, F (a, 1, 1, d)).

The lower and upper bounds are equal by Corollary 3.4 and Case 1.

Proving a reduction lemma for r = 3 requires a different approach.

Lemma 6.3 (Reduction Lemma for r = 3). Let b′ = min{b, c}. If 2m−2 ≥ (max{a, b, c, d}− 1)m2 and

b′ ≥ 1, then

forb
(
m, 3, F (a, b, c, d)

)
= forb

(
m, 3, F (a, b′, b′, d)

)
.

Proof: Let p = max{a, b, c, d}, so that F := F (a, b, c, d) is p-simple, and set F ′ = F (a, b′, b′, d). As

above, forb(m, r, F ′) ≤ forb(m, r, F ) follows from the observation that F ′ ≺ F .

Now let A ∈ Avoid(m, 3, F ). We want to show that |A| ≤ forb(m, r, F ′). If A does not contain F ′,

this is clear, so we assume that F ′ ≺ A. We write A in block form as

A =





0 1
1 0

A0,1 A1,0

∣
∣
∣
∣
∣
∣

0 1 0 1 2 2 2
0 1 2 2 0 1 2
B C D E F G H



 . (6.5)

By possibly taking the complement of F , we may assume that b ≤ c. Moreover, since the statement

is trivial if b = c, we assume that strict inequality holds. Since F ′ ≺ A but F ⊀ A, we have that

b ≤ |A0,1|, |A1,0| < c. If there is a column in B that is not in D, then we may delete the column
[
0
0
v

]

and

insert the column
[
0
2
v

]

without introducing F as a configuration. By replacing binary digits in the first

two rows with 2’s in this manner, we may assume that

B ⊆ D ⊆ H

B ⊆ F ⊆ H
and

C ⊆ E ⊆ H

C ⊆ G ⊆ H.

The matrices [ 0 1 2
D E H ] and [ 0 1 2

F G H ] both avoid F , so |DEH |+ |FGH | ≤ 2 forb(m − 1, 3, F ). Also,

B ∪ C ⊆ H . From inclusion-exclusion, |B|+ |C| − |H | ≤ |B ∩C|. Because A avoids p ·K2, we know

that B ∩ C avoids p ·K1, so |B ∩ C| ≤ 2m−2 + (p− 1)(m− 2). Therefore

|A| ≤ 2(c− 1) + 2 forb(m− 1, 3, F ) + 2m−2 + (p− 1)(m− 2).
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If 2m−2 ≥ (p− 1)m2, then Proposition 3.1 implies

|A| ≤ 2(p− 1) + 2 forb(m− 1, 3, p ·K2) + 2m−2 + (p− 1)(m− 2)

= (m− 1)2m−1 + 2m + 2m−2 + (p− 1)m(m− 1) + (p− 1)m

≤ m2m−1 + 2m = forb(m, 3, I2).

Since I2 ≺ F ′, this shows that |A| ≤ forb(m, 3, F ′), completing the proof.

Theorem 6.4. Suppose max{a, d} ≥ min{b, c}. If 2m−2 ≥ (max{a, b, c, d} − 1)m2, then

forb
(
m, 3, F (a, b, c, d)

)
= (r − 1)m +m(r − 1)m−1 + (max{a, d} − 1)

(
m

2

)

. (6.6)

Proof: Since all arguments are symmetric, we assume that a ≤ d and b ≤ c. If b ≥ 1, then

d · 12 ≺ F (a, b, b, d) ≺ d ·K2.

The forbidden numbers of both bounding configurations are equal by Corollary 3.4, and applying Lemma 6.3

shows that F (a, b, b, d) and F (a, b, c, d) have the same forbidden number. If b = 0 then F (a, 0, c, d) ≺
F (a, 1,max{1, c}, d). We have d · 12 ≺ F (a, 0, c, d), and by Lemma 6.3,

forb
(
m, 3, F (a, 1,max{1, c}, d)

)
= forb

(
m, 3, F (a, 1, 1, d)

)
≤ forb(m, 3, d ·K2).

Again the upper and lower bounds are equal by Corollary 3.4.

The remaining question is to evaluate forb
(
m, 3, F (a, b, c, d)

)
when min{b, c} > max{a, d}. By the

Reduction Lemma, we need only consider the case b = c. The smallest 2-rowed (0, 1)-matrix whose

forbidden number is not known when r = 3 is

[
0 1 1 0 0
0 0 0 1 1

]

.

7 Forbidden configurations with 3 rows

Lemma 2.3 provides a handful of results on 3-rowed forbidden matrices for free.

Corollary 7.1. The following forbidden numbers are exact for all r ≥ 2 when m ≥ 3.

F forb(m, r, F )
[
0
1
1

]

or
[
1 1
0 1
0 0

]

m(r − 1)m−1 + 2(r − 1)m − (r − 2)m −m(r − 2)m−1

[
1 0
0 1
0 0

]

or
[
1 0 1 0
0 1 1 1
0 0 0 1

]

2m(r − 1)m−1 + (r − 2)m.

Proof: Theorem 3.2 of [4] proves that the configuration Am = [0mIm1m] is extremal for the second

matrix in the first row of the table when r = 2, and it is not too hard to see that Am is extremal for the
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first matrix, as well. The sequence (Am) satisfies the conditions of Lemma 2.3, and |Am| = m + 1 if

m ∈ {0, 1} and |Am| = m+ 2 otherwise, so for either matrix F , we have

forb(m, r, F ) =

m∑

k=0

(
m

k

)

(r − 2)m−k forb(k, F );

simplifying this sum yields the expression in the first row of the table.

Let Um denote the m×m upper-triangular matrix with 1’s on and above the diagonal and 0’s elsewhere.

Theorem 3.3 of [4] proves that Am = Um ∪ Icm ∪ 0m is an extremal configuration (when r = 2) for both

matrices in the second row of the table. Both Um and Icm have a column with exactly one 0 and are

otherwise disjoint, so |Am| = 2m for m ≥ 1, and |A0| = 1 by convention. As before, (Am) satisfies the

conditions of Lemma 2.3, so for either forbidden matrix F ,

forb(m, r, F ) =

m∑

k=0

(
m

k

)

(r − 2)m−k forb(k, F )

=

m∑

k=0

(
m

k

)

(r − 2)m−k2k + (r − 2)m

= 2m(r − 1)m−1 + (r − 2)m,

as claimed.

The matrices
[
1 0 1
0 1 1
0 0 0

]

and
[
1 0 0
0 1 1
0 0 1

]

are sandwiched between the two matrices in the second row of Corol-

lary 7.1, so they have the same forbidden number. Our results, together with (0, 1)-complementation,

evaluate the exact forbidden number for all 3 × 2 and 3 × 3 simple matrices for r ≥ 3 except F =
[
1 0
0 1
0 1

]

. We can, however, bound forb(m, r, F ) using our previous results. Theorem 3.3 in [2] states that

forb(m,F ) ≤ 3
2m+ 1; applications of our Lemma 2.1 and Proposition 3.3 show that

m(r − 1)m−1 + (r − 1)m ≤ forb(m, r, F ) ≤
3

2
m(r − 1)m−1 + (r − 1)m.
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