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Boolean nested canalizing functions (NCFs) have important applications in molecular regulatory networks, engineer-

ing and computer science. In this paper, we study their certificate complexity. For both Boolean values b ∈ {0, 1}, we

obtain a formula for b-certificate complexity and consequently, we develop a direct proof of the certificate complexity

formula of an NCF. Symmetry is another interesting property of Boolean functions and we significantly simplify the

proofs of some recent theorems about partial symmetry of NCFs. We also describe the algebraic normal form of

s-symmetric NCFs. We obtain the general formula of the cardinality of the set of n-variable s-symmetric Boolean

NCFs for s = 1, . . . , n. In particular, we enumerate the strongly asymmetric Boolean NCFs.

Keywords: Boolean Function, Nested Canalizing Function, Layer Structure, Sensitivity, Certificate Complexity,

Symmetry, Partial Symmetry.

1 Introduction

Nested canalizing functions (NCFs) were introduced in Kauffman et al. (2003). It was shown in Jarrah

et al. (2007) that they are identical to the unate cascade functions, which have been studied extensively

in engineering and computer science. It was shown in Butler et al. (2005) that this class of functions

produces binary decision diagrams with the shortest average path length. Recently, canalizing and (par-

tially) NCFs have received a lot of attention He and Macauley (2016); Jarrah et al. (2007); Kadelka et al.

(2017a,b); Layne et al. (2012); Li and Adeyeye (2019); Li et al. (2013); Moriznmi (2014); Murrugarra

and Laubenbacher (2012); Shmulevich and Kauffman (2004).

In Cook et al. (1986), Cook et al. introduced the notion of sensitivity as a combinatorial measure

for Boolean functions. It was extended by Nisan Nisan (1989, 1991) to block sensitivity. Certificate

complexity was first introduced by Nisan in 1989 Nisan (1989, 1991).

In Li et al. (2013), a complete characterization for NCFs was obtained via its unique algebraic normal

form, from which explicit formulas enumerating NCFs and their average sensitivity were derived.

In Theorem 3.6 Li and Adeyeye (2019), the formula of the sensitivity of any NCF was obtained based

on a characterization of NCFs from Theorem 4.2 Li et al. (2013). It was shown that block sensitivity is

the same as sensitivity for NCFs.

ISSN subm. to DMTCS © 2021 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/2001.09094v6
http://dmtcs.episciences.org/
http://dmtcs.episciences.org/6191


2 Yuan Li, Frank Ingram, Huaming Zhang

In Moriznmi (2014), the author proved sensitivity is the same as the certificate complexity for read-

once functions, a class of functions which include the NCFs, characterized as those that can be written

using the logical conjunction, logical disjunction, and negation operations, where each variable appears at

most once.

In this paper, we obtain formulas of b-certificate complexity of an NCF f for b = 0, 1. We denote them

by C0(f) and C1(f). As a byproduct, we obtain a direct proof of the certificate complexity formula which

is still the same as the formula of sensitivity Li and Adeyeye (2019).

Symmetric Boolean functions have important applications in coding theory and cryptography. In Sec-

tion 4, based on Theorem 4.2 in Li et al. (2013), we study the properties of symmetric NCFs. We sig-

nificantly simplify the proofs of some theorems in Rosenkrantz et al. (2019). We also investigate the

relationship between the number of layers of an NCF and its number of symmetry levels. For 1 ≤ s ≤ n,

we obtain an explicit formula of the number of n-variable s-symmetric Boolean NCFs. When s = n, this

number is the cardinality of strongly asymmetric NCFs. Specifically, we prove that there are more than

n!2n−1 strongly asymmetric NCFs when n ≥ 4.

2 Preliminaries

In this section, we introduce the definitions and notations. Let F be the field F2 = {0, 1} and f : Fn −→ F
be a function. It is well known Lidl and Niederreiter (1977) that f can be expressed as a polynomial,

called the algebraic normal form (ANF):

f(x1, . . . , xn) =
⊕

0≤ki≤1
i=1,...,n

ak1···kn
x1

k1 · · ·xn
kn ,

where each ak1···kn
∈ F. The symbol ⊕ stands for addition modulo 2.

A permutation of [n] = {1, . . . , n} is a bijection from [n] to [n].

Definition 2.1 (Definition 2.3 in Jarrah et al. (2007), page 168) Let f be a Boolean function in n vari-

ables and σ a permutation of {1, . . . , n}. The function f is nested canalizing in the variable order

xσ(1), . . . , xσ(n) with canalizing input values a1, . . . , an and canalized output values b1, . . . , bn, if it

can be represented in the form

f(x1, . . . , xn) =







b1 xσ(1) = a1
b2 xσ(1) = a1, xσ(2) = a2
b3 xσ(1) = a1, xσ(2) = a2, xσ(3) = a3
...

bn xσ(1) = a1, xσ(2) = a2, . . . , xσ(n−1) = an−1, xσ(n) = an
bn xσ(1) = a1, xσ(2) = a2, . . . , xσ(n−1) = an−1, xσ(n) = an,

where a = a⊕ 1. The function f is nested canalizing if it is nested canalizing in some variable order.

Theorem 2.1 (Theorem 4.2 in Li et al. (2013), page 28) Let n ≥ 2. Then f(x1, . . . , xn) is nested canal-

izing iff it can be uniquely written as

f(x1, . . . , xn) = M1(M2(· · · (Mr−1(Mr ⊕ 1)⊕ 1) · · · )⊕ 1)⊕ b, (1)



Certificate complexity and symmetry of nested canalizing functions 3

where Mi =
∏ki

j=1(xij ⊕ aij ), i = 1, . . . , r, ki ≥ 1 for i = 1, . . . , r − 1, kr ≥ 2, k1 + · · · + kr = n,

aij ∈ F2, {ij | j = 1, . . . , ki, i = 1, . . . , r} = {1, . . . , n}.

Because each NCF can be uniquely written as (1) and the number r is uniquely determined by f , we

can define the following.

Definition 2.2 For i = 1, ..., r, each Mi of an NCF f in (1) is defined as the i-th layer of f , where r is the

number of layers. The vector <k1, . . . , kr> is called the layer structure, where ki ≥ 1 for i = 1, ..., r−1,

kr ≥ 2, k1 + · · ·+ kr = n. Each ki is the size of Mi.

The i-th layerMi is a product of variables and their negations. Such a product is called extended monomial

in Li et al. (2013) or psedomonomial in Curto et al. (2013).

Note that we always have kr ≥ 2 by Theorem 2.1. Throughout this paper, all NCFs will be assumed to

be on n variables, with layer structure <k1, . . . , kr>.

3 Certificate Complexity of NCFs

Let x = (x1, . . . , xn) ∈ Fn. For any subset S of [n], we form x
S by negating the bits in x indexed by

elements of S. We denote x{i} by x
i.

Definition 3.1 (Definition 2.1 in Kenyon and Kutin (2004), page 45; Definition 1 in Rubinstein (1995),

page 297) The sensitivity of f at x, denoted as s(f,x), is the number of indices i such that f(x) 6= f(xi).
The sensitivity of f is s(f) = max

x∈{0,1}n s(f,x).

Certificate complexity was first introduced by Nisan Nisan (1989, 1991), and was initially called sensi-

tive complexity. In the following, we will slightly modify (actually, simplify) the definition of certificate,

but the definition of certificate complexity will remain the same.

Definition 3.2 Let f(x1, . . . , xn) be a Boolean function andα = (a1, . . . , an) ∈ Fn a word. If {i1, . . . , ik} ⊂
[n] and the restriction f(x1, . . . , xn)|xi1=ai1 ,...,xik

=aik
is a constant function, where its constant value is

f(α), then we call the subset {i1, . . . , ik} a certificate of f on α.

Definition 3.3 The certificate complexity C(f, α) of f on α is defined as the smallest cardinality of a

certificate of f on α. The certificate complexity C(f) of f is defined as max{C(f, y) | y ∈ Fn}. The

b-certificate complexity Cb(f) of f , b ∈ F, is defined as max{C(f, y) | y ∈ Fn, f(y) = b}.

Obviously, C(f) = max{C0(f), C1(f)}.

Example 3.4 Let f(x1, x2, x3) = x1x2x3⊕x1x2⊕x3 and g(x1, x2, x3) = x1x2x3. We list the certificate

complexity of f on every word in Table 1.

It is easy to check C(g, (1, 1, 1)) = 3 and C(g, α) = 1, where α 6= (1, 1, 1). Hence, C(g) = 3.

Lemma 3.5 Let f(x1, . . . , xn) be a Boolean function, σ be a permutation on [n], and β = (b1, . . . , bn) ∈
Fn. If g = f(xσ(1), . . . , xσ(n)) and h = f(x1 ⊕ b1, . . . , xn ⊕ bn), then the certificate complexities of f ,

f ⊕ 1, g, and h are the same.
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α f(α) C(f, α) Minimal certificates

(0,0,0) 0 2 {1,3},{2,3}
(0,0,1) 1 1 {3}
(0,1,0) 0 2 {1,3}
(0,1,1) 1 1 {3}
(1,0,0) 0 2 {2,3}
(1,0,1) 1 1 {3}
(1,1,0) 1 2 {1,2}
(1,1,1) 1 1 {3}

Tab. 1: The certificate complexity for f(x1, x2, x3) = x1x2x3 ⊕ x1x2 ⊕ x3 is 2.

Proof: Note that f(x1, . . . , xn)|xi1=ai1 ,...,xik
=aik

is a constant function if and only if

f(xσ(1), . . . , xσ(n))|xσ(i1)=ai1 ,...,xσ(ik)=aik

is a constant function. Hence, C(f, α) = C(g, α) for any α = (a1, . . . , an) ∈ Fn, and thus C(f) = C(g).
The function f(x1, . . . , xn)|xi1=ai1 ,...,xik

=aik
is a constant function if and only if

h = f(x1 ⊕ b1, . . . , xn ⊕ bn)|xi1=ai1⊕bi1 ,...,xik
=aik

⊕bik

is a constant. Hence, C(f, α) = C(h, α+β) for anyα and given β. ThusC(f) = C(h) since α 7−→ α⊕β
is a bijection of Fn.

The function f is constant if and only if f ⊕ 1 is constant, thus C(f) = C(f ⊕ 1). Specifically,

C0(f) = C1(f ⊕ 1) and C1(f) = C0(f ⊕ 1). ✷

In the following, let

f(x1, . . . , xn) = fr = M1(M2(· · · (Mr−1(Mr ⊕ 1)⊕ 1) · · · )⊕ 1) (2)

be an NCF with r layers with monomials M1 = x1 · · ·xk1 , M2 = xk1+1 · · ·xk1+k2 , . . . , Mr =
xk1+···+kr−1+1 · · ·xn.

With a straightforward calculation, we rewrite Equation (2) as

f(x1, . . . , xn) = fr = M1M2 · · ·Mr ⊕M1M2 · · ·Mr−1 ⊕ · · · ⊕M1M2 ⊕M1. (3)

Lemma 3.6 If f(x1, . . . , xn) = x1 · · ·xn, then C0(f) = 1 and C1(f) = n. Hence, C(f) = n.

Proof: It is clear that C(f, (1, . . . , 1)) = n, f(1, . . . , 1) = 1 and C(f, α) = 1, f(α) = 0 with α 6=
(1, . . . , 1). ✷ Lemma 3.6 provides the certificate complexity of an NCF fr with r = 1 layer. We are

ready to prove the following theorem.

Theorem 3.7 If f(x1, . . . , xn) = fr = M1(M2(· · · (Mr−1(Mr ⊕ 1)⊕ 1) · · · )⊕ 1)
and M1 = x1 · · ·xk1 , M2 = xk1+1 · · ·xk1+k2 , . . . , Mr = xk1+···+kr−1+1 · · ·xn, r ≥ 2, then
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C0(fr) =

{
k2 + k4 + · · ·+ kr−1 + 1, 2 ∤ r
k2 + k4 + · · ·+ kr, 2 | r,

C1(fr) =

{
k1 + k3 + · · ·+ kr, 2 ∤ r
k1 + k3 + · · ·+ kr−1 + 1, 2 | r,

Proof: We use induction on r to prove the formula of C0(fr), and the proof of C1(fr) is similar.

If r = 2, then fr = f2 = M1M2 +M1 = M1(M2 ⊕ 1). We will calculate C(f2, α) for every α such

that f(α) = 0. Since f(α) = M1(M2 ⊕ 1)(α) = 0 if and only if M1(α) = 0 or M1(α) = M2(α) = 1,

we divide all such α into two disjoint groups. In the following, we simply write M1(α) = 0 as M1 = 0,

M1(α) = 1 as M1 = 1 and so on.

Group 1: M1 = 0.

In this case, at least one component of α corresponding to a variable in the first layer must be 0.

Obviously, for such α, C(f2, α) = 1.

Group 2: M1 = 1 and M2 = 1.

In this case, there is only one possibility, namely,α = (1, . . . , 1). It is easy to check that C(f2, (1, . . . , 1)) =
k2, the number of variables in M2.

Take the maximal value, we have C0(f2) = k2.

If r = 3, then f3 = M1(M2(M3 ⊕ 1) ⊕ 1) = 0 ⇐⇒ M1 = 0 or M1 = M2 = M3 ⊕ 1 = 1. There are

two disjoint groups.

Group A: M1 = 0.

In this group, the certificate complexity for each word is 1.

Group B: M1 = 1, M2 = 1 and M3 = 0.

In this group, α = (

k1
︷ ︸︸ ︷

1, . . . , 1,

k2
︷ ︸︸ ︷

1, . . . , 1,

k3
︷ ︸︸ ︷

∗, . . . , ∗, 0, ∗, . . . , ∗). First of all, if we just assign the values of

the variables in M1 and M2 (all of those variables in α are 1s), since f3 = M1M2M3 ⊕M1M2 ⊕M1,

the variables in M3 never disappear (which means the function is not constant). So, we must assign one 0
to its corresponding variable in M3 and reduce f3 to M1(M2 ⊕ 1). Obviously, in order to make f3 zero,

it is necessary and sufficient to choose all the components of α corresponding to the variables in M2 to

assign. So, in this group, for any α, we have C(f3, α) = k2 + 1.

In summary, taking the maximal value, yields C0(f3) = k2 + 1.

Now we assume that the formula of C0(fr) is true for any NCF with no more than r − 1 layers. Let us

consider

f(x1, . . . , xn) = fr = M1(M2(· · · (Mr−1(Mr ⊕ 1)⊕ 1) · · · )⊕ 1)

= M1M2 · · ·Mr ⊕M1M2 · · ·Mr−1 ⊕ · · · ⊕M1M2 ⊕M1.

If g(xk1+k2+1, . . . , xn) = M3 · · ·Mr ⊕M3 · · ·Mr−1 ⊕ · · · ⊕M3M4 ⊕M3, we get fr = M1(M2(g⊕
1)⊕ 1) = M1M2g⊕M1M2⊕M1. It is clear that fr = 0⇐⇒M1 = 0 or M1 = M2 = g⊕ 1 = 1. Next,

we will evaluate C(fr, α) for all α ∈ F with f(α) = 0.

Case 1: M1 = 0.

In this case, the certificate complexity of the word is 1.

Case 2: M1 = 1, M2 = 1 and g = 0.
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In this case, α = (

k1
︷ ︸︸ ︷

1, . . . , 1,

k2
︷ ︸︸ ︷

1, . . . , 1, α′), where α′ is a word with length n − k1 − k2. Obviously, we

have fr(α) = 0 if and only if g(α′) = 0.

For a fixed α′ (equivalently, a fixed α), we try to reduce fr = M1M2g ⊕ M1M2 ⊕ M1 to zero by

assigning values of α to the variables of fr. Since M1M2 will never be zero, we must try to reduce g to

zero first. Once g is zero, we get fr = M1(M2 ⊕ 1). Hence, we have C(fr, α) = k2 + C(g, α′), and

max{C(fr, α) | α, fr(α) = 0} = k2 +max{C(g, α′) | α′, g(α′) = 0} = k2 + C0(g).

Since g is an NCF with r − 2 layers (the first layer is M3, the second layer is M4 and so on), by the

induction hypothesis, we have

C0(g) =

{
k4 + k6 + · · ·+ kr−1 + 1, 2 ∤ (r − 2)
k4 + k6 + · · ·+ kr, 2 | (r − 2).

Hence, max{C(fr, α) | α, fr(α) = 0} = k2 + C0(g) is

k2 +

{
k4 + k6 + · · ·+ kr−1 + 1, 2 ∤ (r − 2)
k4 + k6 + · · ·+ kr, 2 | (r − 2)

=

{
k2 + k4 + · · ·+ kr−1 + 1, 2 ∤ r
k2 + k4 + · · ·+ kr, 2 | r.

For any word in Case 1, the certificate complexity is only 1. In summary, we have

C0(fr) =

{
k2 + k4 + · · ·+ kr−1 + 1, 2 ∤ r
k2 + k4 + · · ·+ kr, 2 | r.

✷

Because of Lemma 3.5, we have the following.

Corollary 3.8 If any NCF is written as the one in Theorem 2.1, then

C(fr) =

{
max{k1 + k3 + · · ·+ kr, k2 + k4 + · · ·+ kr−1 + 1}, 2 ∤ r
max{k1 + k3 + · · ·+ kr−1 + 1, k2 + k4 + · · ·+ kr}, 2 | r.

Hence, the certificate complexity of NCF is uniquely determined by the layer structure (k1, . . . , kr).

The above formula is the same as the sensitivity formula s(fr) in Theorem 3.6 Li and Adeyeye (2019).

4 Symmetric Properties of NCFs

In 1938, Shannon Shannon (1938) recognized that symmetric functions have efficient switch network im-

plementations. Since then, a lot of research has been done on symmetric or partially symmetric Boolean

functions. Symmetry detection is important in logic synthesis, technology mapping, binary decision dia-

gram minimization, and testing Arnold and Harrison (1963); Das and Sheng (1971); Mishchenko (2003).

In Rosenkrantz et al. (2019), the authors investigated the symmetric and partial symmetric properties of

Boolean NCFs. They also presented an algorithm for testing whether a given partial symmetric function is

an NCF. In this section, we use a formula in Li et al. (2013) to give simple proofs for several theorems in

Rosenkrantz et al. (2019). We also study the relationship between the number of layers r and the number

of symmetry levels s (the function is s-symmetric) of NCFs. Furthermore, we obtain the formula of the

number of n-variable s-symmetric NCFs. In particular, we obtain the formula of the number of strongly

asymmetric NCFs. We start this section by providing some basic definitions and notations.
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It is well known that a permutation can be written as the product of disjoint cycles. A t-cycle (i1 · · · it)
sends ik to ik+1 for k = 1, . . . , t − 1 and sends it to i1. Namely, i1 7−→ i2 7−→ · · · 7−→ it 7−→ i1. A 2-

cycle is called a transposition. Any permutation can be written as a product of transpositions. For example,

(12 · · ·n) = ((n− 1)n) · · · (2n)(1n), where cycles are read right-to-left, as in function composition.

Definition 4.1 Let f be a Boolean function and σ = (ij) a 2-cycle. We say that variable xi is equivalent

to xj if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) (namely, f(. . . , xi, . . . , xj , . . . ) = f(. . . , xj , . . . , xi, . . . )).
We denote this by i∼fj.

It is clear that i∼fj is an equivalence relation over [n]. We call ĩ = {j | j∼fi} a symmetric class of f . If

[n]/∼f= {ĩ | i ∈ [n]} and s = |[n]/∼f| is the cardinality of [n]/∼f , we call f(x1, . . . , xn) s-symmetric.

The definition of s-symmetric in this paper is equivalent to the concept of properly s-symmetric in

Rosenkrantz et al. (2019).

Example 4.2 Let f(x1, x2, x3, x4, x5, x6, x7) = x1x2x3x4 ⊕ x5x6 ⊕ x7. Then 1̃ = 2̃ = 3̃ = 4̃ =
{1, 2, 3, 4}, 5̃ = 6̃ = {5, 6}, 7̃ = {7}. This function is 3-symmetric.

Definition 4.3 If there is an index i such that |̃i| ≥ 2, i.e., s = |[n]/∼f| ≤ n− 1, then we call f partially

symmetric. If s = 1, we call f totally symmetric or symmetric.

Obviously, a function is not partially symmetric if and only if it is n-symmetric.

For applications of 1-symmetric (totally symmetric) Boolean functions to cryptography, see Canteaut

and Videau (2005) from 2005. More results on (totally) symmetric Boolean functions can be found in Cai

et al. (1996); Castro et al. (2018); Cusick and Li (2005); Cusick et al. (2008); Li and Qi (2006); Li and

Xiang (2007); Maitra and Sarker (2002); Mitchell (1990); Savicky (1994).

Definition 4.4 (Rosenkrantz et al. (2019), page 3) A Boolean function f(x1, . . . , xn) is strongly asym-

metric if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) implies σ is the identity.

Obviously, if a Boolean function is strongly asymmetric then it is n-symmetric.

Let

f(x1, x2, x3, x4, x5, x6) = x1x2 ⊕ x2x3 ⊕ x3x4 ⊕ x4x5 ⊕ x5x1 ⊕ x6.

It is easy to check that f is 6-symmetric (not partially symmetric) but not strongly asymmetric since

f(x1, x2, x3, x4, x5, x6) = f(xσ(1), xσ(2), xσ(3), xσ(4), xσ(5), xσ(6)) for σ = (12345).
In the following, we frequently use Equation (1). Recall that aij is called the canalizing input of the

variable xij .

Proposition 4.5 (Theorem 3.1 in Rosenkrantz et al. (2019)) All variables in the same symmetric class of

an NCF must be in the same layer and have the same canalizing input.

Proof: This follows immediately from the uniqueness of Equation (1). ✷

Remark 4.6 In each layer Mj , for j = 1, . . . , r, there are either one or two symmetric classes. If there

are two symmetric classes, then one has canalizing input 0, and the other has canalizing input 1.

Proposition 4.7 Let n ≥ 2 and <k1, . . . , kr> be the layer structure of an NCF f . If kj ≥ 3 for some j,

then f is partially symmetric. Moreover, if f is s-symmetric, then ⌈ s
2⌉ ≤ r ≤ min{n− 1, s}.



8 Yuan Li, Frank Ingram, Huaming Zhang

Proof: If kj ≥ 3 for some j, then at least two variables have the same canalizing inputs by Remark

4.6. Hence, this layer has a symmetric class with at least 2 variables and f is partially symmetric. From

Equation (1), the last layer has at least two variables, so r ≤ n − 1. We have r ≤ s since all variables

from different layers must belong to different symmetric classes. Finally, because each layer contributes

at most two symmetric classes, we obtain s ≤ 2r which means ⌈ s
2⌉ ≤ r. ✷

Proposition 4.8 Let f be an s-symmetric NCF with r layers. Then r ≤ s ≤ min{2r, n}.

Proof: It follows from the proof of the previous property. ✷

Proposition 4.9 (Theorem 3.2 in Rosenkrantz et al. (2019)) If an NCF contains r1 layers with only one

canalizing input, and r2 layers with two distinct canalizing inputs, then it is (r1 + 2r2)-symmetric.

Proof: This is a straightforward application of the uniqueness of Equation (1). ✷

Next, we will provide a new and shorter proof for the following proposition.

Proposition 4.10 (Theorem 3.7 in Rosenkrantz et al. (2019)) An n-variable NCF is strongly asymmetric

iff it is n-symmetric.

Proof: We already know that strong asymmetry implies n-symmetry.

If an NCF f is n-symmetric, i.e., not partially symmetric, then each layer has one or two variables with

different canalizing inputs by Proposition 4.7. If there is a permutation σ such that f(xσ(1), . . . , xσ(n)) =
f(x1, . . . , xn), then, for any i, because of the uniqueness of Equation (1), we know xσ(i) and xi must be

in the same layer of f(x1, . . . , xn). If this layer has only one variable, then σ(i) = i. If this layer has two

variables xi and xj with i 6= j, then this layer must be M = xi(xj ⊕ 1) or M = (xi ⊕ 1)xj . Without

loss of the generality, we assume M = xi(xj ⊕ 1), if σ(i) = j, then σ(j) = i since xσ(i) and xi must be

in the same layer. Because xσ(i)(xσ(j) ⊕ 1) = xj(xi ⊕ 1) 6= M , which is contrary to the uniqueness of

Equation (1). Hence, we still have σ(i) = i. In summary, we always have σ(i) = i for any i. Therefore,

σ is the identity and f is strongly asymmetric. ✷

Strongly asymmetric NCFs were studied in Rosenkrantz et al. (2019), and in Theorem 3.8, the authors

enumerated those that have exactly n− 1 layers, which is the maximal possible number because kr ≥ 2.

Though they used this assumption in their proof, they apparently omitted it from the theorem statement.

We will state the correct version below, and refer the reader to Rosenkrantz et al. (2019) (Theorem 3.8)

for the proof.

Theorem 4.11 There are n!2n−1 strongly asymmetric NCFs on n variables with exactly n− 1 layers.

In the remainder of this section, we will enumerate the s-symmetric NCFs on n variables. As a corol-

lary, we will derive a formula for the number of strongly asymmetric NCFs.

Let N(n, s) be the cardinality of the set of n-variable s-symmetric Boolean NCFs.

Proposition 4.12 (Proposition 3.9 in Rosenkrantz et al. (2019)) If n ≥ 2, then N(n, 1) = 4.

Proof: Since f is 1-symmetric, i.e., totally symmetric, then there is only one layer, and all canalizing

inputs must be the same. So, f must be one of the following functions: x1 · · ·xn, x1 · · ·xn ⊕ 1, (x1 ⊕
1) · · · (xn ⊕ 1) or (x1 ⊕ 1) · · · (xn ⊕ 1)⊕ 1. ✷
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Theorem 4.13 For n ≥ 2, the number of strongly asymmetric NCFs is

N(n, n) =
n!√
2
((1 +

√
2)n−1 − (1−

√
2)n−1).

Proof: By Theorem 2.1, we have

f(x1, . . . , xn) = M1(M2(· · · (Mr−1(Mr ⊕ 1)⊕ 1) · · · )⊕ 1)⊕ b.

1. It is clear that b has two choices.

2. By Proposition 4.7, we have ⌈n
2 ⌉ ≤ r ≤ n− 1.

3. For each layer structure <k1, . . . , kr>, since f is strongly asymmetric (not partially symmetric), we

have 1 ≤ ki ≤ 2 by Proposition 4.7 and thus kr = 2 due to kr ≥ 2 always. There are

(
n

k1

)(
n− k1
k2

)(
n− k1 − k2

k3

)

· · ·
(
n− k1 − · · · − kr−1

kr

)

=
n!

k1!k2! · · · kr!
ways to distribute the n variables to the layers.

4. Each layer Mj is either xi ⊕ a or (xk ⊕ a)(xl ⊕ a⊕ 1). In any case, there are two choices. Hence,

totally, there are 2r choices.

Combining the information above, we obtain

N(n, n) = 2
∑

⌈n
2
⌉≤r≤n−1

∑

k1+···+kr=n
1≤ki≤2,kr=2

n!

k1!k2! · · · kr!
2r.

If n ≥ 3, then it can be written as

N(n, n) =
∑

⌈n
2 ⌉≤r≤n−1

∑

k1+···+kr−1=n−2
1≤ki≤2,

n!

k1!k2! · · · kr−1!
2r.

Suppose that exactly j elements of the set {k1, . . . , kr−1} are equal to 2. We obtain 2j+r−1−j = n−2
since k1 + · · ·+ kr−1 = n− 2. This implies j = n− r − 1. Hence,

N(n, n) =
∑

⌈n
2 ⌉≤r≤n−1

(
r − 1

n− r − 1

)
n!

2n−r−1
2r = 2n!

∑

⌈n
2 ⌉≤r≤n−1

(
r − 1

n− r − 1

)

22r−n.

Let k = n− r − 1, and so r = n− k − 1. It is clear that ⌈n
2 ⌉ ≤ r ≤ n− 1 ⇔ 0 ≤ k ≤ ⌊n

2 ⌋ − 1. We

have

N(n, n) = 2n!
∑

0≤k≤⌊n
2 ⌋−1

(
n− 2− k

k

)

2n−2−2k.

Since
(
n−2−k

k

)
= 0 if k ≥ ⌊n

2 ⌋, we have

N(n, n) = 2n!

n−2∑

k=0

(
n− 2− k

k

)

2n−2−2k.
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We assumed that n ≥ 3 in the above proof. A direct calculation shows that the formula is still true for

n = 2.

Let

pn(t) = 2n−2tn−2(1 + t
2 )

n−2 + 2n−3tn−3(1 + t
2 )

n−3 + · · ·+ 1 =
2n−1tn−1(1 + t

2 )
n−1 − 1

2t(1 + t
2 )− 1

.

A direct computation shows that the sum
∑n−2

k=0

(
n−2−k

k

)
2n−2−2k is the coefficient of tn−2 in the

polynomial pn(t). We rewrite pn(t) as a sum of two rational expressions:

pn(t) = tn−1 (2 + t)n−1

t2 + 2t− 1
+

−1

t2 + 2t− 1
·

If we write these two rational expressions as power series, it is clear that the smallest order of the terms

in the first rational expression is n− 1. So, the sum
∑n−2

k=0

(
n−2−k

k

)
2n−2−2k is the coefficient of tn−2 in

the power series of −1
t2+2t−1 . We have

−1

t2 + 2t− 1
=

−1

2
√
2(−1−

√
2− t)

+
1

2
√
2(−1 +

√
2− t)

·

By the formula of geometric series, we obtain

−1

t2 + 2t− 1
=

1

2
√
2

∞∑

k=0

(−(1−
√
2)k+1 + (

√
2 + 1)k+1)tk.

Therefore, the coefficient of tn−2 is
(
√
2+1)n−1−(1−

√
2)n−1

2
√
2

. Consequently, we obtain

N(n, n) =
n!√
2
((1 +

√
2)n−1 − (1−

√
2)n−1).

✷

When n = 2, 3, 4, we have N(2, 2) = 4 and N(3, 3) = 24 and N(4, 4) = 240.

From the above proof, if n ≥ 4, then

N(n, n) = 2n!
n−2∑

k=0

(
n− 2− k

k

)

2n−2−2k = 2n!(2n−2 + (n− 3)2n−4 + · · · ) > 2n!2n−2 = n!2n−1.

We have obtained the formulas of N(n, 1) and N(n, n). In the following, we derive the formula

N(n, s) for n ≥ 3 and 2 ≤ s ≤ n− 1.

Theorem 4.14 Let n ≥ 3 and 2 ≤ s ≤ n − 1. Then N(n, s), the number of n-variable s-symmetric

NCFs, is

2
∑

⌈ s
2
⌉≤r≤s

∑

k1+···+kr=n
ki≥1,kr≥2

n!

k1!k2! · · · kr!
∑

t1+···+tr=s
1≤ti≤min{2,ki}

∏

1≤i≤r

((ti − 1)(2ki − 2) + 1− (−1)ti).
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Proof: By Theorem 2.1, we have

f(x1, . . . , xn) = M1(M2(· · · (Mr−1(Mr ⊕ 1)⊕ 1) · · · )⊕ 1)⊕ b.

1. It is clear that b has two choices.

2. By Proposition 4.7, we get ⌈ s
2⌉ ≤ r ≤ s.

3. For each layer structure <k1, . . . , kr>, there are

n!

k1!k2! · · · kr!
ways to distribute the n variables.

4. Each layer Mi contributes ti symmetry classes, where 1 ≤ ti ≤ min{2, ki} and t1 + · · · + tr = s
since f is s-symmetric.

5. For each fixed layer Mi =
∏ki

j=1(xij ⊕ aij ), there are 2ki choices for Mi. Two of them contribute

one symmetric class (all canalizing inputs aij are equal) and 2ki − 2 of them contribute two symmetric

classes. Since

(ti − 1)(2ki − 2) + 1− (−1)ti =

{
2, ti = 1
2ki − 2, ti = 2,

there are (ti − 1)(2ki − 2) + 1− (−1)ti choices of Mi contributing ti symmetric classes for ti = 1, 2.

Combining the information above, we obtain the formula of N(n, s).
✷

We have

n∑

j=1

N(n, j) = 2n+1
n−1∑

r=1

∑

k1+···+kr=n
ki≥1,kr≥2

n!

k1!k2! · · · kr!
.

The right side is the cardinality of the set of n-variable Boolean NCFs according to Li et al. (2013).

When n ≥ 2, it is clear that N(n, s) ≥ 1. Consequently, for any s, there exists NCFs which are not

s-symmetric. In particular, there exists n-variable NCFs that are not (n− 1)-symmetric (Corollary 3.3 in

Rosenkrantz et al. (2019)).

From Corollary 4.9 in Li et al. (2013), the number of NCFs with r layers is

2n+1
∑

k1+···+kr=n
ki≥1,kr≥2

n!

k1!k2! · · · kr!
. (4)

When r is the maximal value n− 1, the above number can be simplified as n!2n.

5 Conclusion

In this paper, we obtained the formulas of the b-certificate complexity of any NCF for b = 0, 1. We

extended some results from Rosenkrantz et al. (2019) on symmetric and partially symmetric NCFs and we

studied the relationship between the number of layers and the number of symmetry levels. We derived the

formulas of the cardinality of all n-variable s-symmetric Boolean NCFs. As a special case, we obtained

the number of n-variable strongly asymmetric Boolean NCFs.
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